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GUANGMING TAN and JUNHONG LIU, State Key Laboratory of Computer Architecture, Institute

of Computing Technology, Chinese Academy of Sciences, University of Chinese Academy of Sciences

JIAJIA LI, Computational Science and Engineering, Georgia Institute of Technology

Sparse matrix vector multiplication (SpMV) is an important computational kernel in traditional high-

performance computing and emerging data-intensive applications. Previous SpMV libraries are optimized by

either application-specific or architecture-specific approaches but present difficulties for use in real applica-

tions. In this work, we develop an auto-tuning system (SMATER) to bridge the gap between specific optimiza-

tions and general-purpose use. SMATER provides programmers a unified interface based on the compressed

sparse row (CSR) sparse matrix format by implicitly choosing the best format and fastest implementation

for any input sparse matrix during runtime. SMATER leverages a machine-learning model and retargetable

back-end library to quickly predict the optimal combination. Performance parameters are extracted from

2,386 matrices in the SuiteSparse matrix collection. The experiments show that SMATER achieves good per-

formance (up to 10 times that of the Intel Math Kernel Library (MKL) on Intel E5-2680 v3) while being portable

on state-of-the-art x86 multicore processors, NVIDIA GPUs, and Intel Xeon Phi accelerators. Compared with

the Intel MKL library, SMATER runs faster by more than 2.5 times on average. We further demonstrate its

adaptivity in an algebraic multigrid solver from the Hypre library and report greater than 20% performance

improvement.
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1 INTRODUCTION

Modern high-performance computing technologies are driven simultaneously by Exascale FLOPs
(Exaflops) and data-intensive applications. Although the challenges of these applications are
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Fig. 1. The dilemma of sparse solvers and libraries.

diverse, they share the requirement for sparse linear system solvers. For example, most execu-
tion time is spent solving large-scale sparse linear systems in Exaflops applications, laser fusion
in international thermonuclear experimental reactors (ITERs) (Adam Hill 2005), and global cloud
systems resolving climate modeling (Khairoutdinov and Randall 2001). Similarly, numerous large-
scale graph analysis applications, such as PageRank (Brin and Page 1998; Beamer et al. 2017)
and HITS (Spirin and Han 2012), involve sparse matrix solvers to identify relationships. All of
these algorithms rely on a core sparse matrix vector multiplication (SpMV) kernel, which con-
sumes a large percent of overall execution time. For example, the algebraic multigrid (AMG) solver
(Falgout 2006) from Hypre (Falgout and Yang 2002), an iterative algorithm widely used in laser fu-
sion and climate modeling, reports over 90% SpMV runtime operations of its runtime on Intel Xeon
E5-2680.

The diversity of both sparse matrices and processor architectures exacerbates the difficulty of
SpMV optimization. In finite element calculations of solid mechanics, the generated sparse matri-
ces have a few diagonals, whereas social network applications can produce sparse matrices with
power-law nonzero distributions. Diverse sparse matrix characteristics are generated from both
different applications and different stages within a single algorithm, such as the AMG v-cycle. Over
the past decades, most studies have focused on developing efficient storage formats specific to ei-
ther applications or architectures (Kourtis et al. 2011; Bell and Garland 2008; Su and Keutzer 2012;
Vuduc et al. 2005; Yang et al. 2011; Sun et al. 2011; Vuduc and Moon 2005; Williams et al. 2009;
Buluc et al. 2011; Grewe and Lokhmotov 2011; Srinivasa and Sosonkina 2012; Choi et al. 2010;
Nagar and Bakos 2011; Stevenson et al. 2012). Although previous studies adopted hand-tuned li-
braries or auto-tuning techniques following processor architectures’ evolvement (Buluc et al. 2011;
Bell and Garland 2008; Kourtis et al. 2011; Williams et al. 2009; Vuduc et al. 2005; Yang et al. 2011;
Choi et al. 2010; Su and Keutzer 2012; Byun et al. 2012; Ansel et al. 2009; Belter et al. 2009; Arm-
strong and Rendell 2008; Liu et al. 2013; Buono et al. 2016; Liu et al. 2018b), a high-performance
SpMV library that is adaptive to diverse sparse matrices and processor architectures remains in
demand.

Figure 1 shows the current dilemma of sparse matrix computation between basic operation
libraries and numerical solvers. Most sparse numerical solvers or applications are not adaptive to
diverse sparse matrices, and commonly used solvers, such as Hypre (Falgout and Yang 2002), PETSc
(Brown et al. 2012), and Trilinos (Heroux et al. 2005), support only one popular compressed row
(CSR) format. Consequently, solvers cannot achieve equal efficiency on diverse sparse matrices due
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Table 1. Affiliation of Sparse Matrices in the SuiteSparse Matrix

Collection to Their Optimal Formats

Application Domains CSR COO DIA ELL Total
graph 187 114 6 27 334

linear programming 267 52 3 5 327

structural 224 14 35 4 277
combinatorial 122 50 10 84 266

circuit simulation 110 149 0 1 260

computational fluid dynamics 110 8 47 3 168
optimization 113 15 8 2 138

2D_3D 64 21 19 17 121

economic 67 4 0 0 71
chemical process simulation 47 14 2 1 64

power network 45 15 0 1 61

model reduction 29 34 6 1 60

theoretical quantum chemistry 21 0 26 0 47
electromagnetics 17 1 12 3 33

semiconductor device 28 1 3 1 33

thermal 19 3 3 4 29
materials 12 3 11 0 26

least squares 10 2 0 9 21

computer graphics vision 8 1 1 2 12
statistical mathematical 2 1 3 4 10

counterexample 3 4 1 0 8

acoustics 5 0 2 0 7
robotics 3 0 0 0 3

Percentage 63% 21% 9% 7% 2386

to their different sparsity patterns. Our experimental evaluation (Table 1 in Section 2) confirms this
phenomenon by testing SpMV performance with four matrix formats in the Suit-eSparse matrix
collection (Davis and Hu 2011). Compounding the problem, most sparse operation libraries provide
complicated interfaces that limit their usability. For example, Intel (2017) and OSKI (Vuduc et al.
2005) libraries provide different interfaces for their supported formats, where users must determine
the optimal format and function for their applications. Therefore, it is highly desirable to provide
a library that can automatically determine and employ the most suitable sparse matrix format for
real-world applications on a given processor architecture.

This article presents the design and implementation of an SpMV library (SMATER) that is co-
operatively auto-tuned between algorithms and architectures using our previous state-of-the-art
SpMV auto-tuner (SMAT, Li et al. (2013)) and a set of optimized SpMV implementations on various
processor architectures as the back-end warehouse.

The proposed SMATER system uses CSR format as the unified interface, since this format is
relatively popular and CSR SpMV achieves the best performance in the SuiteSparse (Davis and Hu
2011) sparse matrix collection (Table 1). Users need only prepare sparse matrices in CSR format
as input, and SMATER automatically determines the optimal format and implementation based
on the sparse matrix structure and the available architecture. SMATER employs auto-tuning
based on black-box machine learning, which can be trained by representative features extracted
from both sparse matrices and architectural configurations. Once the model is trained on the
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target architecture, it is used to evaluate the input sparse matrix during runtime and optimize
the format. The back-end warehouse combines the SpMV library (Intel MKL) and our hand-tuned
implementation. Other SpMV libraries, such as Kourtis et al. (2011), Williams et al. (2009), Vuduc
et al. (2005), Yang et al. (2011), Choi et al. (2010), Su and Keutzer (2012), Byun et al. (2012), and Liu
(2015), can be easily included in the back-end warehouse.

SMATER has evolved as an adaptive sparse library from our previously proposed SMAT auto-
tuner (Li et al. 2013) by integrating hand-tuned sparse BLAS implementations (spBLAS) as the
retargetable back end. The main differences with the previous SMAT auto-tuner and the contribu-
tions of this article are as follows:

—We propose a platform-adaptive SpMV library (SMATER) based on auto-tuning techniques
for multicore/many-core architectures with a unified interface. The auto-tuner systemati-
cally extends the parameter space to be more compatible with blocked sparse formats and
many-core architecture configurations. In contrast, SMAT was implemented for only two
x86 multicore processors and four storage formats: DIA, ELL, CSR, and COO.

—We design a flexible and extensible retargetable back-end warehouse to provide a unified
interface for diverse processor architectures. The warehouse facilitates users to adopt the
tuned library to improve output performance with little or no extra programming effort. The
spBLAS back-end library offers specific SpMV implementations on multicore CPU, NVIDIA
GPU, and Xeon Phi platforms, supplementing SMAT and numerical solvers.

—We implement SMATER and train it using the SuiteSparse sparse matrix collection (Davis
and Hu 2011). Experiments show SMATER adaptivity on two x86 multicore processors (Intel
Xeon E5-2680 and AMD Opteron 6168) and two many-core coprocessors (NVIDIA Tesla K20
and Intel Xeon Phi 3120A).

With sparse matrices selected from various application areas, SpMV kernels generated by
SMATER achieve impressive performance, up to 127GFLOPS and 64GFLOPS for single precision
(SP) and double precision (DP), respectively. On many-core coprocessors, SMATER achieves the
highest performance of 43GFLOPS (SP) and 26GFLOPS (DP). Compared to SELL-C-σ (Kreutzer
et al. 2014; Anzt et al. 2014), SMATER achieves an average 2.39 and 2.41 speedup for SP and DP,
respectively, on Intel Xeon E5-2680 v3, and 2.41 and 2.58 on NVIDIA GPU K20 for the best C and
σ . Compared to cuSPARSE, SMATER achieves an average 2.0 speedup. Compared with Intel MKL,
SMATER achieves 2.87 speedup and 2.83 speedup on average for SP and DP, respectively, on Intel
Xeon Phi 3120A. We also evaluate the adaptability of SMAT in the AMG algorithm of the sparse
solver Hypre (Falgout and Yang 2002), and the results show that the performance can be improved
above 20%.

2 MOTIVATION

Sparse matrices are generally stored in compressed format, and since the sparse format is closely
related to compression effectiveness and SpMV performance, more than 15 compressed for-
mats (Bell and Garland 2008; Kourtis et al. 2011; Vuduc et al. 2005; Saad 1994; Su and Keutzer
2012; Stevenson et al. 2012; Yan et al. 2014; Liu and Vinter 2015a, 2015c) have been developed.
Unfortunately, it is nontrivial to determine the most suitable sparse matrix format for a given ar-
chitecture, particularly when nonzero element distribution is random. Extracting sufficient perfor-
mance characteristics from various sparse matrices and architectures is challenging when building
a model that can efficiently and accurately determine the optimal format during runtime. However,
overcoming this challenge will provide significant performance benefits for real applications.

To explore sparse characteristics and assess potential benefits arising from tuning storage for-
mats, we perform experiments using the SuiteSparse matrix collection (Davis and Hu 2011), which
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Fig. 2. SMATER framework.

consists of over 2,000 sparse matrices from extensive real-world applications. For simplicity and
to enhance accuracy, we study 2,386 sparse matrices, excluding very small (<100 × 100) or com-
plex matrices and considering four sparse formats: CSR, COO, DIA, and ELL. We use naive SpMV
implementations of each format to test the performance on Intel Xeon E5-2680. Table 1 shows the
number of matrices in which a particular format achieves better SpMV performance than others.
For example, in the graph domain, 187 matrices achieve the highest SpMV performance using CSR
format, and 114 using COO format, whereas in the theoretical quantum chemistry domain, 26 of
47 matrices obtain the best SpMV performance using DIA format. The bottom row (Percentage)
shows the calculated proportions of all matrices affiliated with each format. The number of ma-
trices in each domain is shown in column 6 (Total). Sparse matrices from the same or different
domains show distinct affinities to specific formats, highlighting both the necessity and difficulty
in determining the optimal format for a given sparse matrix.

3 SMATER FRAMEWORK

Figure 2 shows the major SMATER components, including the SMAT auto-tuner and retargetable
back-end library (spBLAS). Two modes are available to support numerical solvers and applications,
using auto-tuner or spBLAS interfaces, respectively. The SMATER workflow proceeds as follows:

—At system initialization, SMATER can select online auto-tuning or directly call spBLAS
APIs.

—Once the online stage of the auto-tuner is activated, SMATER offers the optimal storage
format for the sparse matrix.

—If the optimal format is not CSR, the spBLAS library transforms the matrix storage format
as appropriate and implements SpMV computation.

SMATER is very flexible for different application types. Generally, numerical solvers call an
SpMV computational kernel hundreds of times during their computation. Hence, it is beneficial to
enable the auto-tuner model to choose the optimal storage format, because execution time saved
by the optimal format is much larger than that of the one-time format transformation. On the other
hand, for applications that only call SpMV kernels several times, we can directly call the spBLAS
library to implement the xCSR_SpMV computation, avoiding format transformation. Besides, some
applications compute SpMV on sparse matrices with similar patterns, indicating identical optimal
storage formats. Therefore, we do not need to choose the optimal format by auto-tuner for every
SpMV; rather, we determine the optimal format once and reuse it in the future. These three aspects
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enable SMATER to be efficient for different applications. SMATER always hides the complexity of
tuning on diverse processor architectures for all cases.

If the SMAT auto-tuner mode is selected, users need only input the sparse matrix in the popular
CSR format, and SMAT will select the optimal storage format. Given a sparse matrix in CSR format,
SMAT extracts its sparse features first. The feature values train a prediction model, which is used
to predict the optimal format and implementation provided by the back-end spBLAS library. A
confidence value is set to rule this prediction model. When the confidence value is larger than
the threshold, the optimal SpMV format and optimal SpMV implementation have been achieved;
otherwise, an execution measure process is triggered to test possible solutions and output the
one with the highest performance. Meanwhile, the best-generated implementation will update the
corresponding SpMV kernel in the back-end library.

The spBLAS back-end library offers specific SpMV implementations for multicore CPUs,
NVIDIA GPUs, and Xeon Phi, providing support for SMAT and numerical solvers. On the NVIDIA
GPU platform, the spBLAS library optimizes SpMV by encapsulating the cuSPARSE library,
whereas on the Xeon Phi platform, spBLAS fully captures the advantages of multithreading and
SIMDization from our implementations and Intel MKL library, where the offload model serves as
an acceleration device.

As an auto-tuning-based library, SMATER exhibits reusability, extensibility, and portability.
First, on a specific architecture, the auto-tuner generates the learning model in the offline stage,
and then uses the model repeatedly for different input matrices. Second, SMATER extends well on
diverse architectures due to the architecture features being considered. However, the difference
from the existed auto-tuning systems is that SMATER employs the performance of retargetable
back-end implementations to reflect the influence of architecture features—instead of using accu-
rate architecture features. This is advantageous in two ways. First, it makes SMATER compatible
with new architectures, which is the most significant feature of auto-tuning systems and is the
biggest difference from other libraries. Second, it more accurately and simply conducts the learn-
ing model using only one performance value instead of numerous architecture features. Ultimately,
this narrows the number of factors when considering both application and architecture features.

4 AUTO-TUNER

The auto-tuner leverages machine learning to choose the optimal storage format. This section
discusses the main SMAT auto-tuner concepts with the additional functions. Figure 3 shows the
architectural framework integrated with the new retargetable spBLAS back end. We consider
architecture (i.e., register, cache, TLB sizes, prefetching, and threading policy) and application
(i.e., matrix dimension, diagonal occurrence, and nonzero distribution, described in Section 4.1)
parameters to optimize SpMV and evaluate its performance on diverse real-world sparse matrices.
The large-parameter space makes it impossible to exhaustively search the optimal sparse format
and optimization method for a specific architecture. Therefore, we use machine learning to train
a tree-based model to assist decision making.

Since sparse matrices have different SpMV behaviors, we first select a set of features to repre-
sent different sparse matrices. Then, we test the feature values on the SuiteSparse matrix collec-
tion (Davis and Hu 2011) to build a feature database, where each matrix generates a feature record.
Each record is labeled by the format that achieves the highest SpMV performance. The decision
tree method is used to train a tree-based model on the feature database to predict the optimal
sparse format.

However, a predicted format is insufficient because SpMV can have quite a few implementa-
tions using different optimization methods and setting different architecture parameters. Consid-
ering the optimization methods (i.e., cache blocking, register blocking, and parallelization), a large
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Fig. 3. SMAT auto-tuning system with a self-updating retargetable back-end library.

number of SpMV implementations are built as the back-end warehouse, including spBLAS. Given
an architecture, we test a set of benchmarks and use a scoreboard algorithm to mark the best SpMV
implementation for each format. We call this process kernel searching, which is particularly use-
ful when multicore CPU and many-core accelerators are both considered. Using kernel searching,
our trained model reflects both application features with architecture characteristics. Both kernel
searching and model training are depicted as black arrows in Figure 3 as the offline part, whereas
the online part of SMAT (red arrows in Figure 3) shows the extracted features of the input sparse
matrix. After we extract these features, the trained model predicts the optimal format affiliated
with a specific confidence value. If the confidence value is acceptable, we output this SpMV kernel
as the optimal one; otherwise, several candidate kernels are tested to determine the optimal one.

We improve the SMAT framework by adding a feedback path between online SMAT and the
back-end warehouse. If an input sparse matrix needs to execute the candidate SpMV kernels to de-
termine which have the highest performance, feedback of the execution performance is sent to our
back end. The scoreboard compares and records these performance numbers, which may lead to an
update of the selected optimal implementation. Adding this feedback path allows the input sparse
matrices, particularly those with no obvious features, to help improve future SMAT accuracy.

4.1 Feature Selection

We briefly present the method to extract sparse structure features, which is described in more
detail in our previous paper (Li et al. 2013). To build an application-aware auto-tuner, we extract
features from more than 2,000 sparse matrices in the SuiteSparse matrix collection (Davis and
Hu 2011). Table 2 summarizes the completed feature parameters of sparse structures used in the
SMAT auto-tuner. We extend SMAT to support block formats and include two new features of
dense subblocks.

Since CSR is the default SMAT format, we design more advanced parameters to describe SpMV
behavior of the other formats by analyzing the relationships between parameter values and SpMV
performance on matrices from the SuiteSparse matrix collection (Davis and Hu 2011) collection.
Hence, we divide the 13 parameters into six categories as follows:

—Matrix dimension includes the basic matrix dimension parameters, M and N, which can
be applied to all formats (marked as

√
in Table 2).
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Table 2. Feature Parameters of a Sparse Matrix and the Relationship with the Formats

Parameter Meaning Formula DIA (B/S)ELL (B)CSR (B)COO

Matrix M #Rows -
√ √ √ √

Dimension N #Columns -
√ √ √ √

Diagonal

Situationc

Ndiags #Diagonals - ↓

NTdiags_ratio
The ratio of
“true” to all
diagonals

#“t rue diaдonals ′′

N diaдs
↑

Nonzero

Distribution

NNZ #Nonzeros -
√ √ √ √

aver_RD #Nonzeros per
row

N N Z
M

√ √ √ √

max_RD
The maximum
#Nonzeros per
row

maxM
1 {#nnzs per row } ↓

var_RD
The variance of
#Nonzeros per
row

ΣM
1 |r ow_deдr ee−aver _RD |2

M
↓

Nonzero

Ratio

ER_DIA The ratio of
nonzeros in DIA

N N Z
N diaдs×M

↑

ER_ELL The ratio of
nonzeros in ELL

N N Z
max_RD×M ↑

Power-Law R
A factor of
power-law
distribution

P (k ) ∼ k−R [1, 4]

Block Size

est_rs
The estimated
dense subblock’s
row size

- ↑ ↑ ↑ ↑

est_cs
The estimated
dense subblock’s
column size

- ↑ ↑ ↑ ↑

—Diagonal situation includes the number of diagonals (Ndiaдs) and the ratio of “true” di-
agonals (NTdiaдs_ratio).

—Nonzero distribution includes the total number of nonzero elements (NNZ ) and the
average, maximum, and variance of the number of nonzero elements per row (aver_RD,
max_RD, and var_RD, respectively).

—Nonzero ratio includes the ratio of nonzero elements in DIA or ELL formats (ER_DIA and
ER_ELL, respectively).

—Power law is the power law distribution factor, R, which reflects the SpMV behavior of
COO format.

—Block size includes the estimated block size of dense subblocks (est_rs and est_cs). Upper or
lower arrows in Table 2 indicate the SpMV performance trend as a parameter value increases
or decreases, respectively. Since block size affects all blocked or sliced formats, we mark all
formats with arrows. We also support Sliced ELL (SELL (Monakov et al. 2010)) format, which
shares the same features as ELL format.

We also introduce details regarding the additional block features, est_rs and est_cs, that rep-
resent the row and column size of dense subblocks, respectively. A sparse matrix can be stored in
block format with many different dense subblock sizes. Most sparse matrices can achieve close to or
the highest performance with block size ≤8 (Vuduc et al. 2005). Thus, we only consider block sizes
from 1 × 1 to 8 × 8. However, since it is not trivial to determine the best block size, we compute the
fill ratio for each of the 64 possible block size combinations using a sampling method (Vuduc et al.
2005) to compute the fill ratio of a small portion (1%) of the sparse matrix for each combination.
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Block sizes for the whole matrix (est_rs and est_cs) are then estimated using the fill ratio of this
small portion (see Section 4.2 for details).

4.2 Model Training

4.2.1 Model Generation. Since optimal storage format selection is formulated as a classifica-
tion problem in supervised learning, we classify a particular sparse matrix to one of the possible
candidates (DIA, ELL, CSR, COO, SELL (Monakov et al. 2010), BELL (Choi et al. 2010), BCSR, or
BCOO):

f ( �x1, �x2, . . . , �xn , �TH ) → Cn (DIA, (B)ELL, (B)CSR, (B)COO, SELL), (1)

where �xi (i = 1, . . . ,n) is the set of parameter values for a sparse matrix in the training set; �TH is the
set of threshold values for each attribute; andCn (DIA,ELL,CSR,COO, SELL,BELL,BCSR,BCOO )

represents the eight categories. Our goal is to generate �TH according to the mapping relationship
in the training dataset.

With respect to machine learning, we introduce the SMAT auto-tuner with three key com-
ponents: feature selection, training model, and prediction. We also define an attribute collection
{M, N, Ndiags, NTdiags_ratio, NNZ, max_RD, var_RD, ER_DIA, ER_ELL, R, est_rs,
est_cs, Best_Format}, where Best_Format is the target attribute. Training on 2,055 matrices
from the SuiteSparse matrix collection (Davis and Hu 2011), we obtain accurate parameter values
of the training matrices. For example, matrix t2d_q9 had a record of {9,801, 9,801, 9, 1.0, 87,025, 9,
0.35, 0.99, 0.99, inf, 2, 2, DIA}, where inf means that the power-law distribution cannot calculate
an R value for this matrix since it has no scale-free network attribute. The set of parameter values
constitutes the matrix feature database.

Using the matrix feature database, SMAT generates a learning model (combining data mining
and analytical methods (Vuduc et al. 2005)) in a ruleset pattern with confidence data. The hybrid
model is discussed in detail in Section 4.3. Hence, the auto-tuning system extracts informative
patterns from the input data and outputs the ruleset pattern as the trained model. Data mining is
used to generate a trained model focused on the basic formats, whereas the analytical method is
used to determine the optimal block size for the chosen format.

Data mining leverages the RuleQuest Research (2012) tool to generate a ruleset pattern. Since
inaccuracy may exist for a rule, we guide (RuleQuest Research 2012) to generate rules with confi-
dence data, adding a confidence value between 0 and 1 to each rule, i.e., the ratio of the number
of correctly classified matrices to the number of matrices following this rule. A larger confidence
value implies a more reliable rule, and the confidence data role is shown in detail in Section 4.3.

We use the analytical method to decide estimated block sizes, est_rs and est_cs. Assuming
perf _dense (r , c ) is the performance for a dense matrix stored in a blocked format, f r (θ ) is the fill
ratio of a portion of a sparse matrix (θ ), where θ = 1 is the fill ratio of the whole sparse matrix.
We find that when θ = 1%, the fill ratio is accurate for 80% of the 2,386 matrices, consistent with
previous studies (Vuduc et al. 2005). Thus, we choose θ = 1% in the SMAT system, and hence the
estimated performance for a sparse matrix with block size (r , c ) can be expressed as

perf (r , c ) = perf _dense (r , c )/f r (θ ). (2)

We choose the largest perf (r , c ) among the 64 block size combinations, and set est_rs, est_cs to
be the corresponding block size. We precompute perf _dense (r , c ) for each (r , c ) and store them in
a table, and then when a matrix is input, we estimate its fill ratio and search for the corresponding
perf _dense (r , c ) value in the table. To increase prediction accuracy, we test the performance of
different dense matrix sizes that can be fitted into caches and memory and use the corresponding
performance numbers according to the input matrix size.
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Fig. 4. Kernel search with a scoreboard algorithm.

The data mining method will not be affected by new blocking parameters added from the ana-
lytical method, since the blocking parameters only have influence when a basic format is decided.
For example, if the ELL format is chosen by the data mining method, we can decide which block
size will gain the best performance in BELL (Choi et al. 2010) format, but not in BCSR and BCOO
formats.

4.2.2 Kernel Search. It is important to narrow the optimized implementations of the library to
search the optimal kernel on a given platform. SMAT can leverage both existing auto-tuning tools
and the retargetable back-end library to help search in the offline stage.

The kernel searching process is conducted using a performance record table and scoreboard
algorithm, as shown in Figure 4. We run all possible implementations (up to 24, excluding 189
blocked format implementations, because we have to search for the best block size in runtime due
to different input matrices) and recorded the corresponding performance. Optimization methods
are arranged in a particular order in each record, and the performance number in this record is
indexed by all of its optimization strategies. A scoreboard is established from the performance
record table to identify the most efficient optimization according to SpMV kernel behavior on
this architecture. If the single optimization implementation shows a performance gain compared
with the native implementation, the corresponding optimization method is marked with 1 on the
scoreboard; otherwise, it is marked by −1. We consider that the optimization has no effect on this
architecture when the performance gap between two implementations is <0.01 and ignore this
strategy by default. Hence, when more than one optimization strategy is considered, the imple-
mentation compares each performance with that for the implementation that has just one less
optimization strategy. Thus, we finally obtain the score of each optimization, and the implemen-
tation with the highest score is considered to be the best for the corresponding format on the
considered architecture. Optimal kernels are called when the data mining method is used to build
the trained model and execute/measure module runs.

4.3 Prediction

This section discusses the runtime system components of SMAT (red arrows in Figure 3). This
procedure depends on the hybrid model, combining black-box machine learning and analytical
models, as shown in Figure 5. When a sparse matrix is input, its features are first extracted
using the parameter set and recorded. The parameter values are then input to the trained model
and output the predicted format, where the included confidence level determines the prediction
reliability. If the confidence is larger than the experimentally derived threshold, the SpMV format
with the best implementation is output. Otherwise, an additional execution and measure module
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Fig. 5. Runtime procedure.

is triggered to run candidate SpMV kernels with part of the four formats to decide the best SpMV
kernel by comparison.

Runtime overhead is critical to online prediction applicability. First, we reduce overhead by con-
sidering rule tailoring and grouping. We order the rules according to their estimated contribution
to the overall training set: rules that reduce the error rate the most appear first, and rules that con-
tribute the least appear last. We then tailor the rules from the top down until the subset of rules
achieves similar predictive accuracy with the whole ruleset, where a 1% accuracy gap is considered
acceptable. We choose rules 1 to 15 for Intel platforms, decreasing the feature database error to
9.6%, which is competitive with the 9.0% error achieved by the whole ruleset (40 rules).

Second, we employ an incomplete procedure strategy to accelerate candidate selection. We do
not need to go through all the rules if prediction confidence is high after some subset has been pro-
cessed. This will provide a quicker prediction, saving runtime overhead. For example, suppose that
when feature parameter values from the first feature extraction process section are calculated, the
learning model predicts the DIA rule group and obtains DIA confidence. If the DIA confidence is
larger than the threshold, then DIA format will be the best SpMV format with its best implementa-
tion as the output. First, the format group order should be set to realize the incomplete procedure.
Since DIA achieves the highest performance when the matrix satisfies its conditions, we arrange
the DIA rule group first to pursue high performance. Since ELL format has a regular behavior that
is relatively easy to predict, the ELL rule group is placed second after DIA. The CSR rule group pa-
rameters are calculated in the first feature extraction process section along with DIA and ELL, and
hence CSR is placed third. Thus, COO is the final format to predict in the format search module.
Following this order, the prediction runtime time could be significantly reduced while retaining
accurate prediction.

To determine the best block size, we first consider the chosen format from Model I using data
mining, then extract blocking parameter values in the feature extraction process until after the
basic format is decided, thus shortening the runtime prediction process as much as possible. If the
format confidence is large enough, we evaluate its blocked format to decide the best block size.
Otherwise, if there are several candidate formats, i.e., all candidate confidence values are less than
the threshold, we evaluate blocked formats of each basic format to estimate the best block size.
Then, we execute SpMV in the blocked formats with the best block size, or the basic formats once
and choose the best format.
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Fig. 6. The algorithm hierarchy.

5 BACK END

The spBLAS library offers specific SpMV implementations on multiple hardware platforms, in-
cluding CPU, NVIDIA GPU, and Xeon Phi. Considering the difficulty of applying different
programming models on diverse platforms, the CPU is abstracted as a host while NVIDIA GPU
and Xeon Phi are abstracted as devices in Figure 6. We use a general Matrix class to encapsu-
late all sparse matrix formats and their SpMV implementations. HostMatrix and DeviceMatrix are
inherited from the Matrix class to separately represent host and device format. Thus, users do
not need to specifically consider device types, which dramatically reduces programmer workload.
HostMatrix and DeviceMatrix classes derive specific sparse matrix storage format classes, such
as COOMatrix, CSRMatrix, ELLMatrix, and DIAMatrix. We implement these formats on both the
host and devices for various SpMV algorithms. The spBLAS library defines the algorithm inter-
faces in a high-level abstract class and implements the specific algorithm on the corresponding
hardware platform. The SpMultVector() function is a member function of the sparse matrix class
that computes SpMV. The function has two explicit parameters: in is the input dense vector, and
out is the output vector.

While the spBLAS back-end library is able to automatically detect the hardware platform during
compiling or runtime, we use the open-source, cross-platform family of “CMake” tools to probe
the hardware platforms. Hence, the library automatically perceives hardware accelerators and pro-
gramming environments, and the host code can be compiled regardless of whether hardware ac-
celerators are present. When the system includes GPU accelerators and a CUDA programming
environment, spBLAS compiles the code and stops probing other accelerators. Otherwise, the sys-
tem probes for an OpenCL environment, or others.

To fully activate the vector computing units on Xeon Phi, the spBLAS back-end library adopts
DIA, CSR, BCSR, COO, HYB (Bell and Garland 2008), BCOO, ELL, BELL, and SELL (Monakov et al.
2010) storage formats for the auto-tuner and numerical solvers. Considering the disadvantage of
filling zeros in the SELL (Monakov et al. 2010) storage format, we first split sparse matrices into
submatrices and rank them. We continue a second split with 16 or eight elements per row for SP and
DP, respectively, so that every data segment fills the 512-bit SIMD FMA unit. The Xeon Phi vector
processing capacity is fully used by memory alignment. We also provide blocking formats (BCSR,
BCOO, and BELL) for better SpMV memory locality. Block size is chosen from 1 × 1 to 8 × 8, and
we implement different loop unrolling strategies for different block sizes to increase performance.
We also exploit instruction-level optimization, including using the gather instruction to collect
the X vector and improve AVX 512 vector registers’ efficiency and leverage to implement SpMV
computation.

To ensure efficient usage of computing resources, multithreading is employed to parallelize
SpMV implementations. We split sparse matrices into even submatrices for each thread while
maintaining an even number of nonzero elements for load balance. Other general optimizations
including data alignment and loop unrolling are also adopted.
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Fig. 7. The architecture of spBLAS.

Figure 7 shows that the spBLAS library framework includes back-end, extension, and utils mod-
ules. The back-end module supports primary SpMV algorithms, with sparse matrix files stored in
MatrixMarket (MM) format. The spBLAS library recognizes MM format and stores the sparse ma-
trix in a CSR format data structure in its memory. Since different storage formats correspond to
different SpMV algorithms with various performances in different platforms, the spBLAS library
offers a variety of storage formats and SpMV implementations on diverse platforms, including
CPU, NVIDIA GPU, and Xeon Phi. A format transformation interface is provided to convert a
sparse matrix from one format to another.

The spBLAS library uses C++ language to implement SpMV and extend third-party languages
and libraries, such as Matlab, cuSPARSE library, and Intel MKL library. Users can also integrate the
spBLAS library into their own algorithms or libraries. Thus, spBLAS provides a unified interface
for different platforms, dramatically decreasing programmer workload. It also has an extension
module for users who have special needs for their applications, further extending spBLAS library
flexibility.

6 EXPERIMENTS AND ANALYSIS

This section reports experiments to evaluate SMATER performance for benchmark matrices and
a real application, including accuracy and overhead analysis.

6.1 Experimental Setup

Platform. Experiments were conducted on different architectures: Intel Xeon E5-2680 v3 and
AMD Opteron 6168 multicore processors, and NVIDIA GPU K20 and Intel Xeon Phi 3120A many-
core coprocessors, as detailed in Table 3. We used the icc compiler for Intel Xeon E5-2680 v3 and
Intel Xeon Phi 3120A, gcc for AMD Opteron 6168, and nvcc for NVIDIA GPU K20. Many-core
coprocessors have significantly higher peak performance than multicore processors.

Benchmark. The training dataset for the offline data mining component included 2,055 sparse
matrices randomly chosen from the SuiteSparse matrix collection (Davis and Hu 2011). We se-
lected another 331 matrices for performance evaluation. Figure 8 shows 16 representative matrix
data graphs, chosen according to their nonzero distribution pattern: matrices 1 to 4 are largely a
diagonal pattern, 5 to 8 have similar nonzeros per row, 9 to 12 have the highest performance for
the CSR format, and 13 to 16 have power-law nonzero distribution.

Application. To demonstrate SMATER practicality, we integrated it with the Hypre (Falgout
and Yang 2002) package, a scalable linear solver library from the Lawrence Livermore National
Laboratory (LLNL), and employed the algebraic multigrid (AMG) algorithm as a preconditioner
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Table 3. Experimental Platform Configuration

Platform Frequency #Cores LLC Size Memory Size Bandwidth GFLOPS

Intel Xeon
2.5GHz 24∗ 30MB 64GB 68GB/s 960 (SP), 480 (DP)

E5-2680 v3

AMD Opteron
1.9GHz 12∗ 12MB 16GB 42GB/s 91 (SP), 46 (DP)

6158

NVIDIA Tesla
900MHz 2496 1.5MB 5GB 208GB/s 3,520 (SP), 1,170 (DP)

K20

Intel Xeon Phi
1.1GHz 57∗ 28MB 6GB 240GB/s 1,003 (SP), 502 (DP)

3120A

∗: Number of physical cores, without considering hyperthreading technology.

Fig. 8. Representative matrices.
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Fig. 9. SMATER performance in single and double precision on two CPU platforms.

of conjugate gradients to solve large-scale scientific simulation problems on unstructured grids,
which also solves Au = f directly.

6.2 Performance

We measure SpMV performance in GFLOPS, the ratio of the number of floating-point operations
to execution time.

6.2.1 Multicore CPUs. Figure 9 shows single (SP) and double (DP) precision SpMV performance
for the two multicore processors using 16 threads. The highest performance on the Intel platform
is 127GFLOPS (13% efficiency) and 64GFLOPS (13%) for SP and DP, respectively (Figure 9(a)). The
comparable AMD platform performances are 38GFLOPS (42%) and 22GFLOPS (48%), respectively
(Figure 9(b)).

The highest performance is achieved for matrices 1 to 4, because they have banded nonzero
distributions. The performance gap between SP and DP is larger for matrices with more regular
distributions (e.g., banded nonzero distributions). Overall performance variation is approximately
10 times, strongly supporting adopting a SMATER auto-tuner due to its adaptivity for diverse
sparse matrices. The 16 typical matrices achieve this performance using various formats (DIA, ELL,
BCSR, COO, BELL (Choi et al. 2010), or SELL (Monakov et al. 2010)), indicating that it is meaningful
to implement a high-performance SpMV library aware of sparse structures (applications).

Figure 10 compares SMATER and Intel MKL multithreaded library performance for SP and DP
on the Intel platform. SMATER obtains maximum speedup of approximately 10 and 4.9 times for
SP and DP, respectively. Although the figure only shows 16 representative matrices, we collect
experimental data for all 331 matrices, and average speedup compared to MKL was >3 times for
both SP and DP. Thus, SMATER has significant performance advantages due to optimized SpMV
implementations with SIMDization and load-balancing policies. Choosing the best format and im-
plementation enables the highest SpMV performances.

6.2.2 Many-Core Accelerators. Figure 11 shows SMATER performance and bandwidth on
NVIDIA GPU, where bandwidth is derived from the performance. For example, we use
2 ∗ nnz/time to compute the CSR format GFLOPS performance, where 2*nnz is the num-
ber of multiplication and addition operations, and ((m + 1 + nnz) ∗ sizeo f (int ) + (2 ∗ nnz +m) ∗
sizeo f (double ))/time to compute GB/s bandwidth, where nnz is the number of nonzeros andm is
the number of rows of the sparse matrix. Bandwidth differs significantly due to matrix irregular
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Fig. 10. The performance of SMATER versus MKL.

Fig. 11. The performance and bandwidth of SMATER on GPU.

memory access (Figure 11(b)), with most test matrices’ bandwidth being slightly smaller than the
theoretical NVIDIA GPU hardware bandwidth (208GB/s).

Figure 12 shows SMATER performance on Intel Xeon Phi. Since GPU and Xeon Phi memory
sizes are both smaller than the CPU memory size, we can only provide performance outcomes for
a subset of the sparse matrices.

The highest GPU performance is 43 and 26GFLOPS for SP and DP, respectively; both are
achieved for matrix 2 in DIA format, whereas other matrices only achieve 3 to 7GFLOPS, sig-
nificantly less than its peak performance (Table 3). Thus, the GPU does not show any advantage
compared to multicore platform performance. Although SP performance is usually higher than
DP, some matrices have similar performance in both precisions, and matrix 5 achieves higher per-
formance in DP. This phenomenon is also present for the multicore platforms (Figure 9). Sparse
matrix performance behavior is not as uniform as dense sparse operations due to the diverse ir-
regular memory access patterns generated.

SMATER achieves up to 20GFLOPS (SP) and 16GFLOPS (DP) performance (matrix 1) on Intel
Xeon Phi (Figure 12). Therefore, we test SMATER performance using the MKL library for Xeon
Phi with 60, 120, 180, and 240 threads, achieving the highest performance for 120 threads. We then
analyze SMATER SP and DP performance using 120 threads.
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Fig. 12. The performance of SMATER on Intel Xeon Phi coprocessors.

Fig. 13. Relative performance benefit of SMATER over the other libraries.

The best storage format varies between the different platforms. For example, for matrix bfly,
the best storage format is CSR and ELL for CPU and GPU platforms, respectively. Block size for
optimal performance also differs. For example, for matrix pcrystk02, optimal format is BCSR with
3 × 3 block size, whereas for matrix whitaker3_dual, optimal format is BELL with 1 × 2 block size.

6.2.3 Relative Performance. Figure 13 shows the relative performance benefit from SMATER
over the SELL-C-σ (Kreutzer et al. 2014; Anzt et al. 2014) format and vendor-supplied SpMV library
using the NVIDIA K20 and Intel Xeon E5-2680 v3 (24-core) platforms. Table 3 shows the detailed
platform configurations. The data points in Figure 13 represent the ratio of SMATER performance
to that for the other libraries. SMATER performance is generally superior, aside from a few cases.
The two zero points are due to the matrices being so large that SELL-C-σ (Kreutzer et al. 2014;
Anzt et al. 2014) format is unable to deal with them, although other libraries can. SMATER obtains
average speedup of approximately 2 times (up to 10 times), compared to performance for other
libraries for DP and SP test matrices.
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Table 4. Prediction Format of SMAT on GPU

Matrix Matrix SMAT Model

Number Name Prediction Format Accuracy
1 pcrystk02 DIA R
2 denormal DIA R
3 cryg10000 ELL W
4 apache1 DIA R
5 bfly ELL R
6 whitaker3_dual ELL R
7 ch7-9-b3 ELL R
8 shar_te2-b2 ELL R
9 pkustk14 ELL R
10 crankseg_2 COO R
11 Ga3As3H12 COO R
14 D6-6 CSR R
15 dictionary28 CSR R
16 roadNet-CA CSR R

“R” and “W” represent right and wrong prediction, respectively.

6.2.4 CPU Scalability. The number of threads for the best sparse matrix performance differs for
the CPU-based platforms. Generally, performance improves for an increasing number of threads
for matrices pcrystk02, denormal, apachel, ch7-9-b3, shar_te2-b2, D6-6, and dictionary28. How-
ever, when the number of threads exceed hardware hyperthreading (48 for our CPU platform),
performance improvements cease. There are exceptions for some matrices (pkustk14, rankseg_2,
Ga3As3H12, HV15R, and europe_osm) that continue to increase performance when the num-
ber of threads is bigger than 48. On the other hand, performances for matrices cryg1000 and
whitaker3_dual are relatively constant for different numbers of threads, and performances of bfly

and roadNet-CA fluctuate when the number of threads equals 12 and 48, respectively.

6.3 Accuracy and Overhead

As an auto-tuning system, SMAT performance and usability are both significant. Two important
aspects to consider are whether SMAT can find the most accurate format (accuracy) and what is
the price needed to pay for good performance (prediction overhead).

For all 331 test matrices, SMAT accuracy equals 92% and 82% on the Intel platform, and 85% and
82% on the AMD platform for SP and DP, respectively. Similarly, SMAT accuracy on GPU equals
89% (SP) and 95% (DP) for 289 testing matrices, respectively. Thus, even if SMAT does not choose
the optimal format, it still achieves fairly good performance, sufficient to be used in practical ap-
plications. Table 4 shows GPU accuracy details. The only incorrect prediction is matrix 3, which
should have used DIA rather than the predicted ELL format. However, correct predictions are made
for all other matrices. SMATER optimal formats for matrices 9 to 16 differ from our previous CPU
predictions (Li et al. 2013), demonstrating that algorithm behavior on different architectures is not
the same. Thus, it is reasonable to inspect algorithm behavior when transforming to a machine
with different architecture.

In all tests, if the trained model generates a confident prediction, the overhead is <5 times SpMV
runtime using CSR format. When the model fails to decide an exact format, SMAT needs to choose
from several candidates, which increases runtime to ≈15 times CSR-SpMV. Compared with other
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Fig. 14. V-cycle involved with SpMV kernels in AMG solver.

auto-tuner overheads (OSKI (40 times) and clSpMV (1–20 times)), the SMAT overhead is considered
acceptable.

6.4 Application in Algebraic Multigrid

Consider a problem of the form Au = f , where A is a large sparse matrix, and u and f are dense
vectors. The goal is to solve this equation and obtainu with sufficient precision. Hypre AMG solves
this problem by building N levels of virtual grids with a set of grid operators (A0, . . . ,AN−1) and
grid transfer operators (P0, . . . , PN−2) in a setup process where parallel implementation of general
sparse matrix-matrix multiplication is essential (Liu and Vinter 2015b; Liu et al. 2018; Hou et al.
2017). Figure 14 illustrates a typical V-cycle in AMG. The P operators perform SpMV between
adjacent grids, while A operators perform relaxations, using Jacobi and Gauss-Seidel methods,
that also have SpMV kernels. Thus, SpMV consumes the most V-cycle execution time. However,
the two sets of sparse matrices show dynamically different matrix features from the original A.
Thus, implementing SMATER would be useful to choose the best format and implementation for
operators on each level, improving overall performance.

We perform experiments on cljp and rugeL coarsening methods in the setup process to generate
A operators with different structures. Input matrices are generated by 7- and 9-point Laplacian
methods. Rather than employing CSR format all the time, SMATER chooses DIA format for A
operators in the first few levels, and ELL format for most P operators. We simply replace the
SpMV kernel codes with SMAT interfaces without changing the original CSR data structure in the
Hypre package. The AMG solution achieves >20% performance gain compared with Hypre AMG
on the multicore CPU platform.

Figure 15 compares the AMG iteration execution time on CPU, MIC, and GPU platforms. Each
black bar represents the time required to build operators in each level, and white bars indicate the
iterated solver runtime. Total time consumed on CPU is the least when the number of iterations
equals 10, but the time on MIC is the greatest. As iterations increase, the total time consumed on
CPU becomes the greatest, which can be attributed to the following:

—The phase of building operators is not parallelized on the accelerators.
—The building phase on GPU or MIC has extra overhead of transferring matrices from the

host to acceleration device, which degrades the total performance.
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Fig. 15. The breakdown of AMG execution time.

However, as the number of iterations increases, the ratio of the solver involving SpMV also
increases, demonstrating the advantage of accelerators to improve overall performance.

7 RELATED WORK

Several recent studies have investigated optimizing sparse matrix vector multiplication, and
Filippone et al. (2017) provided a review of sparse matrix formats available on NVIDIA GPUs.
Although we are unable to provide a comprehensive set, we contrast our outcomes for several key
representatives.

Storage format. The proposed SMATER system determines the optimal storage format for
sparse matrices, building on our previous work. There are currently more than 15 sparse matrix
storage formats (Bell and Garland 2008; Kourtis et al. 2011; Vuduc et al. 2005; Saad 1994; Su and
Keutzer 2012; Stevenson et al. 2012; Yan et al. 2014; Liu and Vinter 2015a; Maggioni and Berger-
Wolf 2016; Nagasaka et al. 2016; Liu and Vinter 2015c; Xie et al. 2018), most of which are either
application or architecture specific, and hence have limited applicable domains.

Several hybrid storage formats have been recently developed. Su and Keutzer (2012) proposed a
Cocktail format to split sparse matrices and represent the submatrices in different formats accord-
ing to relative sparse matrix format advantages. Similarly, cuSPARSE (NVIDIA 2010) on NVIDIA
GPUs stores a sparse matrix with hybrid format, HYB, a combination of more than two basic for-
mats. These hybrid storage formats show better performance than conventional formats for some
sparse matrices. Their major difference from SMATER is that the hybrid formats are determined
statically and are not applicable to dynamic sparse structures, such as required in different AMG
solver levels.

Several studies have also proposed relatively flexible formats. Vuduc et al. (2005) improved the
blocked compressed sparse row (BCSR) format for VBR to explore dense blocks with different sizes.
Kourtis et al. (2011) proposed CSX to exploit dense structures not limited to dense blocks, but also
one-dimension bars and dense diagonals by compressing metadata. However, the process to search
for subblocks costs too much to be conducted online. Yan et al. (2014) proposed an extended SpMV
format, called blocked compressed common coordinate (BCCOO), that used bit flags to store row
indices in a blocked common coordinate (COO) format, alleviating bandwidth problems. In con-
trast, SMATER selects the optimal format from the existing formats, rather than designing a new
format. The previously trained machine-learning model makes online decisions feasible, enabling
new formats in SMATER simply by plugging them into the feature database and kernel library
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components. Other sparse operations, including sparse triangular solve, also require searching for
storage formats (Liu et al. 2017; Wang et al. 2018).

Auto-tuning approach. Auto-tuning is a promising tool to develop domain-specific
performance-critical libraries, solving performance and portability problems. Several successful
auto-tuning libraries have been developed in the scientific computing field, including PAK (Liu
et al. 2018a), ATLAS (Whaley and Dongarra 1998), FFTW (Frigo and Johnson 2005), SPI-
RAL (Püschel et al. 2005), and OSKI (Vuduc et al. 2005). Auto-tuning techniques have been particu-
larly investigated for SpMV applications. jin Im et al. (2004) created BCSR format to better develop
dense block performance in sparse matrices. Vuduc et al. (2005) built an auto-tuner (OSKI) to tune
matrix block sizes in BCSR or VBR formats. Williams et al. (2009) combined auto-tuning with
a hierarchy strategy to choose the best parameter combinations. Choi et al. (2010) implemented
BCSR and sliced blocked ELLPACK (SBELL) formats on NVIDIA GPUs to tune block sizes. Yang
et al. (2011) proposed a mixed format and automatically chose the partition size of each format
using an auto-tuning model. Yan et al. (2014) built an auto-tuning framework to tune parame-
ter values among different strategies and proposed two formats (BCCOO and BCCOO+). Zhao
et al. (2018) used deep learning for auto-tuning, which is a development of SMAT but is not as
flexible as SMATER. Sedaghati et al. (2015) also used a decision tree approach to build an auto-
tuner for GPUs, but they only used approximately 700 matrices. A common feature of previous
auto-tuning approaches is the focus on tuning implementations on diverse processing architec-
tures for a given storage format or its variant beforehand. In contrast, in addition to architectural
auto-tuning, SMATER extends to cooperatively tune storage formats by extracting key perfor-
mance parameters from input sparse matrices. Algorithm-architecture cotuning was previously
advocated in the PetaBricks compiler (Ansel et al. 2009), and our results further support this as an
important auto-tuning trend.

Prediction model. A core SMATER component is the machine-learning-based prediction
model employed to search optimal format and implementation. It is a common strategy to apply
prediction models for auto-tuning. ATLAS (Whaley and Dongarra 1998) performed an empirical
search to determine the optimal parameter values bounded by the architecture features. However,
an actual run of the generated code was required to measure and record performance and hence
choose the best implementation. This empirical search was efficient to generate high-quality BLAS
codes, even though the search process required significant runtime. Many recently proposed auto-
tuners have adopted the model-driven approach (Vuduc et al. 2005; Su and Keutzer 2012; Kourtis
et al. 2011; Yang et al. 2011; Choi et al. 2010; Neelima et al. 2014; Li et al. 2015, 2017) without requir-
ing code runs. Although the model-driven method decreases prediction time, code performance is
generally significantly lower than an empirical search (Yotov et al. 2005). In contrast, the SMATER
system combines the learning model and rarely called empirical search to simultaneously ensure
code performance and reduce prediction time.

Although clSpMV (Su and Keutzer 2012) also uses a prediction model to tune its Cocktail for-
mat, there are some crucial differences from SMATER. The first and most important distinction
in online decision making is that clSpMV uses the maximum GFLOPS measured in the offline
stage. Unfortunately, our experiments on the SuiteSparse matrix collection (Davis and Hu 2011)
(see Table 1) show that the maximum performance of one format is not sufficiently representative
to reflect the performance of all matrices suitable for this format. It is more accurate to use the
features of each input matrix to predict its own best format rather than a single maximum perfor-
mance for each format. Second, we extract more features from realistic matrices in the SuiteSparse
matrix collection (Davis and Hu 2011) collection, which can feed more training data to data min-
ing tools to generate more reliable rules as the learning model. Armstrong and Rendell (2008) also
use reinforcement learning to choose the best format, but users must decide factor values that
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influence the learning model accuracy. Ultimately, SMATER offers a more convenient system to
automatically generate the model and achieve similar prediction accuracy.

8 CONCLUSION

This article proposes the SMATER system, extending the automatic input adaptive library genera-
tion tool SMAT for SpMV. SMATER combines several statistical and machine-learning techniques
to build a hybrid model and enable both application- and architecture-dependent black-box pre-
diction. In particular, we provide a unified interface to eliminate tedious work on choosing proper
formats and implementation of diverse sparse matrices.

This work indicates that machine-learning techniques are useful to learn irregular algorithm
behaviors. As optimization methods and hardware architecture develop, more algorithm perfor-
mance factors and hardware features must be considered. These factors constitute a large parame-
ter space for building a performance model. This model is difficult to build for irregular algorithms
due to the large input space and unclear relationships between them. Machine-learning techniques
are useful to determine complicated parameter relationships and devise a model. We can combine
the machine-learning-generated model and our algorithm analysis to build a reliable model.

Due to cooperative auto-tuning between algorithms and architectures, SMATER achieves im-
pressive performance in our work. The generated SpMV obtains 127 (38) GFLOPS in single preci-
sion and 64 (22) GFLOPS in double precision on an Intel (AMD) multicore processor. The averaged
speedup is greater than 3 times that of the Intel MKL sparse library. For many-core architectures,
SMATER also achieves 43 (20) GFLOPS in single precision and 26 (16) GFLOPS in double preci-
sion on NVIDIA GPU (Intel Xeon Phi). The advantage of SMATER is also demonstrated in a real
application in which it improves the Hypre sparse linear system solver by about 20%.
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