
Reusable V1

.1

Ar
tif

act
s Evaluated

V1.1

Ar
tif

acts
Available

V1.1

Re
su
lts R

eproduced

Sparta: High-Performance, Element-Wise Sparse
Tensor Contraction on Heterogeneous Memory

Jiawen Liu∗
jliu265@ucmerced.edu

University of California, Merced

Jie Ren
jren6@ucmerced.edu

University of California, Merced

Roberto Gioiosa
roberto.gioiosa@pnnl.gov
Pacific Northwest National

Laboratory

Dong Li
dli35@ucmerced.edu

University of California, Merced

Jiajia Li
jiajia.li@pnnl.gov

Pacific Northwest National
Laboratory, William & Mary

Abstract
Sparse tensor contractions appear commonly in many appli-
cations. Efficiently computing a two sparse tensor product
is challenging: It not only inherits the challenges from com-
mon sparse matrix-matrix multiplication (SpGEMM), i.e.,
indirect memory access and unknown output size before
computation, but also raises new challenges because of high
dimensionality of tensors, expensive multi-dimensional in-
dex search, and massive intermediate and output data. To ad-
dress the above challenges, we introduce three optimization
techniques by using multi-dimensional, efficient hashtable
representation for the accumulator and larger input tensor,
and all-stage parallelization. Evaluating with 15 datasets, we
show that Sparta brings 28 − 576× speedup over the tradi-
tional sparse tensor contraction with sparse accumulator.
With our proposed algorithm- and memory heterogeneity-
aware data management, Sparta brings extra performance
improvement on the heterogeneous memory with DRAM
and Intel Optane DC Persistent Memory Module (PMM) over
a state-of-the-art software-based data management solution,
a hardware-based data management solution, and PMM-only
by 30.7% (up to 98.5%), 10.7% (up to 28.3%) and 17% (up to
65.1%) respectively.

CCS Concepts: • Mathematics of computing → Mathe-
matical software performance; • Computing method-
ologies→ Shared memory algorithms.

Keywords: sparse tensor contraction, tensor product, multi-
core CPU, non-volatile memory, heterogeneous memory

∗This work was done when the author was an intern at PNNL.

ACM acknowledges that this contribution was authored or co-authored
by an employee, contractor, or affiliate of the United States government.
As such, the United States government retains a nonexclusive, royalty-free
right to publish or reproduce this article, or to allow others to do so, for
government purposes only.
PPoPP ’21, 2/27 – 3/3, 2021, Republic of Korea
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8294-6/21/02. . . $15.00
https://doi.org/10.1145/3437801.3441581

1 Introduction
Tensors, especially those high-dimensional sparse tensors are
attracting increasing attention, because of their popularity
in many applications. High-order sparse tensors have been
studied well in tensor decomposition on various hardware
platforms [9, 27, 35–38, 41, 50, 51, 54, 63–65] with a focus on
the product of a sparse tensor and a dense matrix or vector.
Nevertheless, the two sparse tensor contraction (SpTC),

foundation for a spectrum of applications, such as quantum
chemistry, quantum physics and deep learning [4, 18, 31, 39,
58, 59], still lacks sufficient research, especially with element-
/pair-wise sparsity. In essence, SpTC, a high-order extension
of sparse matrix-matrix multiplication (SpGEMM), multiplies
two sparse tensors along with their common dimensions.
Efficient SpTC introduces multiple challenges.

First, the size and non-zero pattern of the output tensor are
unknown before computation. Thus, memory allocation for
the output tensor is difficult. Unlike operations such as the
multiplication of a sparse tensor and a dense matrix/vector
where the size of the output data is predictable, the output
tensor of an SpTC is usually sparse and the non-zero pattern
(e.g., the number of non-zero elements and their distribution)
is unpredictable before the actual computation. Sparse data
objects and unpredictable output size also exist in SpGEMM.
Two popular approaches have been proposed to solve these
issues for SpGEMM, while they are not efficient for SpTC.
The first approach, using an extra symbolic phase [47] to
predict the accurate output size and non-zero pattern, suf-
fers from expensive pre-processing and is unaffordable in a
dynamic sparsity environment. This issue is especially se-
vere in SpTC, because an SpTC with the exact same input
is usually computed only once in a long sequence of ten-
sor contractions [4]. However, with the symbolic approach,
every SpTC is attached to both a symbolic phase and SpTC
computation, which is very expensive, especially for large ap-
plications. The second approach makes a loose upper-bound
prediction on the memory consumption of the output tensor.
However, a tight prediction for SpTC of high-order tensors is

318

Corrected Version of Record. V.1.1. Published March 1, 2021.

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3437801.3441581

PPoPP ’21, 2/27 – 3/3, 2021, Republic of Korea Jiawen Liu, Jie Ren, Roberto Gioiosa, Dong Li, and Jiajia Li

very difficult because its more contract dimensions (see Sec-
tion 2.2) make the prediction less accurate, using the existed
prediction algorithms [2, 11].

Second, irregular memory accesses along with multi-dimen-
sional index search to the second input tensor and accumu-
lator introduce performance problems. Similar to SpGEMM,
SpTC has indirect memory accesses to the second input ten-
sor, caused by the non-zero indices of the first input tensor.
Take an SpGEMM C = A × B as an example. A non-zero
A(0, 1) gets, e.g., B(1, 1), to perform multiplication; while
A(0, 10) computes with, e.g. B(10, 2). Those irregular mem-
ory accesses of B and the sparse accumulator, which happen
more often with the high-dimensional tensors, are not cache-
friendly. In addition, index search and accumulator, which
are used to address irregular memory accesses in SpTC, are
more expensive than that in SpGEMM. Our evaluation shows
that they take 54% of SpTC execution time on average.

Third, massive memory consumption caused by large input
and output tensors and intermediate results creates pressure
on the traditional DRAM-based machine. Sparse tensors from
real-world applications easily consume a few to dozens of
GB memory, while the output tensor could be even larger,
because it contains more non-zero elements than any of
the input sparse tensor. The intermediate results could be
large as well, especially for multi-threading environment
where each thread has its own intermediate results. Com-
pared to the well-studied sparse tensor times dense matri-
ces/vectors [27, 35, 37, 64], SpTC results in substantial mem-
ory consumption easily, which can be beyond typical DRAM
capacity (up to a few hundreds of GB) on a single machine.
However, expanding DRAM capacity is not cost-effective,
while adding cheap but much slower SSD causes significant
performance drop. This memory capacity problem is becom-
ing more serious in those HPC applications with increasing
dimension size in tensors [4, 10, 15, 18, 45, 53, 66].
To address the first two challenges, we propose Sparta

(Algorithm 2) with performance optimizations conducted
in five stages: input processing, index search, accumulation,
writeback, and output sorting. In particular, we employ dy-
namic arrays to accurately allocate memory space for the
accumulator and output tensor to avoid the challenge of
unknown output. For multi-threading environment, we in-
troduce a thread-private, dynamic object to store the output
tensor from each thread for better parallelization. To address
the challenge of irregular memory accesses, we perform per-
mutation and sorting on input sparse tensors before compu-
tation, thus significantly improve temporary locality of non-
zeros in the first input tensor and spatial locality of non-zeros
in the second input tensor. Furthermore, we adopt hash table-
based approaches based on a large-number representation
for the second tensor and accumulator to significantly speed
up the process of multi-dimensional search in SpTC. With
the above optimizations, Sparta substantially outperforms
the traditional SpTC algorithm extended from SpGEMM. By

0 0 0 1
0 0 0 2
0 1 0 0

X:

(i1 i2)
F

(i3 i4)
C

(j3 j4)
F

(j1 j2)
C

val (j1 j2)
C

(j3 j4)
F

0 4

F
(j3 j4)

0 5

1st SPA:

0 0 0 4
0 0 0 5
0 1 0 3

(i1 i2)
F

(j3 j4)
F

Z:

Input Processing

0 3 0 0
0 4 0 1
0 4 0 2
0 5 0 1

0 0 0 1
0 0 0 2
0 1 0 0

(i1 i2)
F

(i3 i4)
C

0 0 0 3
0 1 0 4
0 1 0 5
0 2 0 4

0 3
2nd SPA:

Output SortingComputation

Y:

0

1

2

4, 5.0
5, 6.0

Key
{LN (j1 j2)}

Value
{LN (j3 j4), val}

1st HtA: 4
5

22.0

2nd HtA: 3 12.0

Value
{val}

Key
{LN (j3 j4)}

4.0
5.0
7.0
6.0

val
4.0
5.0
6.0
7.0

val
1.0
2.0
3.0

val
1.0
2.0
3.0

val
22.0

val

22.0
6.0

12.0

HtAHtY

1 5

3

42
2
3
4

2 3 4

Accumulation
Writeback

Index Search

Value (val)

Key in
hash table

Value in
hash table

Index

SpTC-HtY-HtA
SpTC-SPA

Permute/Sort

6.0

6.0
12.0

Build hash table
4, 7.0

3, 4.0

Figure 1. Workflow of the traditional SpTC-SPA and Sparta
on Z = X ×{1,2}

{3,4} Y.

evaluating real data from quantum chemistry and physics,
our element-wise Sparta beats their block-sparse algorithms
by 7.1× on average.
To address the third challenge, we explore the emerging

persistent memory-based heterogeneous memory (HM). In
particular, recent Intel Optane DC Persistent Memory Mod-
ule (PMM) provides bandwidth and latency only slightly
inferior to that of DRAM but with only half of the price.
PMM often pairs with a small DRAM to build HM, where
frequently accessed data objects are placed in DRAM and
the rest reside in PMM with large memory capacity of sev-
eral TBs. It is performance-critical to decide the placement
of data objects of SpTC (input and output tensors and in-
termediate results) on PMM-based HM, to make the best
use of DRAM’s high bandwidth and low latency without
causing frequent data movement between PMM and DRAM.
We first characterize memory read/write patterns associ-
ated with those data objects in SpTC, and reveal the perfor-
mance sensitivity of SpTC to the placement of those data
objects on PMM and DRAM. Sparta then prioritizes the
data placement between DRAM and PMM statically based
on our knowledge of the SpTC algorithm and characteri-
zation of data objects for best performance. Sparta effec-
tively avoids unnecessary data movement suffered in the
traditional application-agnostic solutions (such as hardware-
managed DRAM caching [55, 70, 80] or software-based page
hotness tracking [1, 13, 24, 25, 72, 74, 76, 81]).

Our main contributions are summarized as follows:
• We introduce the first, high-performance SpTC sys-
tem for arbitrary-order element-wise sparse tensor
contraction, named Sparta. Its implementation is open-
sourced 1. (Section 3).

• We explore the emerging PMM-based HM to address
memory capacity limitation suffered in the traditional
tensor computations (Section 4).

1https://github.com/pnnl/HiParTI/tree/sparta

319

https://github.com/pnnl/HiParTI/tree/sparta

Sparta: High-Performance, Element-Wise Sparse Tensor Contraction on Heterogeneous Memory PPoPP ’21, 2/27 – 3/3, 2021, Republic of Korea

Table 1. List of symbols and notation.
Symbols Description

X,Y,Z Sparse tensors
Z = X ×{𝑚}

{𝑛} Y Tensor contraction between two tensors

𝑁𝑋 Tensor order ofX
𝐼 , 𝐽 , 𝐾, 𝐿, 𝐼𝑛 Tensor mode sizes

𝑛𝑛𝑧𝑋 #Non-zeros of the input tensorX
𝑁𝐹 #Mode-𝐹𝑋 sub-tensors ofX

𝑛𝑛𝑧𝐹 The #Non-zeros of sub-tensors ofX
𝑝𝑡𝑟𝐹 Pointers for mode-𝐹𝑋 sub-tensor locations ofX
𝐶𝑋 A set of contract modes inX, {𝑛} in ×{𝑚}

{𝑛} contraction
𝐹𝑋 A set of free modes inX, |𝐹𝑋 | + |𝐶𝑋 | = 𝑁𝑋

𝐶𝑋
𝑛𝑧 Contract mode indices of a non-zero element inX

𝐹𝑋𝑛𝑧 Free mode indices of a non-zero element inX

𝑣𝑎𝑙𝑋 A set of non-zero values inX

𝑣𝑎𝑙𝑋𝑛𝑧 Value of a non-zero element inX

• Evaluating with 15 datasets, Sparta brings 28 − 576×
speedup over the traditional SpTC with SPA. With
our proposed algorithm- and memory heterogeneity-
aware data management, Sparta brings extra perfor-
mance improvement on HM built with DRAM and
PMM over a state-of-the-art software-based data man-
agement solution, a hardware-based data management
solution, and PMM-only by 30.7% (up to 98.5%), 10.7%
(up to 28.3%) and 17% (up to 65.1%) respectively (Sec-
tion 5).

2 Background
2.1 Sparse Tensors
A tensor can be regarded as a multidimensional array. Each
of its dimensions is called a mode, and the number of dimen-
sions or modes is its order. For example, a matrix of order 2
means it has two modes (rows and columns). We represent
tensors with calligraphic capital letters, e.g., X ∈ R𝐼×𝐽 ×𝐾×𝐿
(a tensor with four modes), and 𝑥𝑖 𝑗𝑘𝑙 is its (𝑖, 𝑗, 𝑘, 𝑙)-element.
Table 1 summarizes notation and symbols for tensors.

Sparse data, in which most of its elements are zeros, is
common in various applications. Compressed representa-
tions of the sparse tensor have been proposed to save its
storage space. In this work, we employ the most common
representation, coordinate (COO) format, which is used in
Tensor Toolbox [7] and TensorLab [68] (Refer to Section 3.2
for more reasons). A non-zero element is stored as a tuple
for its indices, e.g., (𝑖, 𝑗, 𝑘, 𝑙) for a fourth-order tensor, in a
two-level pointer array 𝑖𝑛𝑑𝑠 , along with its non-zero value
in a one-dimensional array 𝑣𝑎𝑙 .

2.2 Sparse Tensor Contraction
Tensor contraction, a.k.a. tensor-times-tensor or mode-
({𝑛}, {𝑚}) product [10], is an extension of matrix multipli-
cation, denoted by

Z = X ×{𝑚}
{𝑛} Y, (1)

where {𝑛} and {𝑚} are tensor modes to do contraction.

Example: Z = X×{1,2}
{3,4} Y. This contraction operates on 𝐼3

and 𝐼4 inX and 𝐽1 and 𝐽2 inY (𝐼3 = 𝐽1) and (𝐼4 = 𝐽2). All of the
four modes are contract modes (annotated with 𝐶𝑋 = {3, 4}
and 𝐶𝑌 = {1, 2}), and the other modes are free modes. This
example’s operation is formally defined as:

𝑧𝑖1𝑖2 𝑗3 𝑗4 =

𝐼3 (𝐽1)∑
𝑖3 (𝑗1)=1

𝐼4 (𝐽2)∑
𝑖4 (𝑗2)=1

𝑥𝑖1𝑖2𝑖3𝑖4𝑥 𝑗1 𝑗2 𝑗3 𝑗4 . (2)

The number of modes of the output Z, 𝑁𝑍 = |𝐹𝑋 | + |𝐹𝑌 | =
(𝑁𝑋 − |𝐶𝑋 |) + (𝑁𝑌 − |𝐶𝑌 |). This is our walk-through example
in the following discussion.

2.3 Intel Optane DC Persistent Memory Module
The recent release of the Intel PMMmarks the first mass pro-
duction of byte-addressable NVM. PMM can be configured
in Memory or AppDirect mode. In Memory mode, DRAM
becomes a hardware-managed direct-mapped write-back
cache to PMM and is transparent to applications. In Ap-
pDirect mode, the programmer can explicitly control the
placement of data objects on PMM and DRAM. Sparta works
on AppDirect mode and performs better than Memory mode.
PMM brings up to 6TB memory capacity on a single ma-

chine with higher latency and lower bandwidth than DRAM.
The read latency of PMM is 174 ns and 304 ns for sequential
and random reads respectively, while the counterpart read
latency of DRAM is 79 ns and 87 ns. The write latency of
PMM is 104 ns and 127 ns for sequential and random writes
respectively, while 86 ns and 87 ns for DRAM. In our evalua-
tion platform (Section 5.1), the PMM bandwidth is 39 GB/s
and 13 GB/s for read and write respectively, while 104 GB/s
and 80 GB/s for DRAM.

3 Sparse Tensor Contraction Algorithm
This section introduces our SpTC algorithms, SpTC-SPA and
Sparta, to address the challenges of unknown output and
irregular memory accesses along with multi-dimensional
index search.

3.1 Overview
Figure 1 depicts the workflow of our SpTC algorithm. Our al-
gorithm has five stages: 1 input processing, 2 index search,
3 accumulation, 4 writeback, and 5 output sorting, where
1 and 5 are called input/output processing collectively, and
2 , 3 and 4 are computation collectively. We describe the
input/output processing stages in this section and the compu-
tation stages are illustrated in Sections 3.2 to 3.5.

Input processing 1 . Figure 1 uses two tiny sparse ten-
sors X and Y as input examples. When the modes of X or
Y are not in the "correct mode order", permutation and sort-
ing are needed. "Correct mode order" means: The contract
modes 𝐶𝑋 ((𝑖3, 𝑖4) in Figure 1) are the rightmost modes of
X and 𝐶𝑌 ((𝑗1, 𝑗2)) are the leftmost modes of Y. X is first
permuted to the “correct mode order“ by exchanging mode

320

PPoPP ’21, 2/27 – 3/3, 2021, Republic of Korea Jiawen Liu, Jie Ren, Roberto Gioiosa, Dong Li, and Jiajia Li

Algorithm 1: SpTC-SPA: Sparse tensor contraction
of Example 2: Z = X ×{1,2}

{3,4} Y, extended from
SpGEMM [20] with sparse accumulator (SPA)
Input: Input tensors X ∈ R𝐼1×𝐼2×𝐼3×𝐼4 and Y ∈ R𝐽1×𝐽2×𝐽3×𝐽4 ,

contract modes 𝐶𝑋 = {3, 4}, 𝐶𝑌 = {1, 2}
Output: The output tensor Z ∈ R𝐼1×𝐼2×𝐽3×𝐽4

1 Permute and sort X, Y if not yet;
2 for X(𝑖1, 𝑖2, :, :) in X do
3 Initiate a sparse accumulator 𝑆𝑃𝐴
4 for Non-zero 𝑥 (𝑖1, 𝑖2, 𝑖3, 𝑖4) in X(𝑖1, 𝑖2, :, :) do
5 for Non-zero 𝑦 (𝑖3, 𝑖4, 𝑗3, 𝑗4) in Y(𝑖3, 𝑖4, :, :) do
6 𝑣 = 𝑥 (𝑖1, 𝑖2, 𝑖3, 𝑖4) × 𝑦 (𝑖3, 𝑖4, 𝑗3, 𝑗4)
7 if 𝑆𝑃𝐴(𝑗3, 𝑗4) exists then
8 Accumulate 𝑆𝑃𝐴(𝑗3, 𝑗4)+ = 𝑣

9 else
10 Append 𝑣 to 𝑆𝑃𝐴

11 Write 𝑆𝑃𝐴 back to Z(𝑖1, 𝑖2, :, :)
12 Permute and sort Z as needed
13 return Z

indices, which is cheap for COO format 2. Then according
to the new mode order, all the non-zero elements of X are
sorted using a quick sort algorithm with the complexity of
O(𝑛𝑛𝑧𝑋 𝑙𝑜𝑔(𝑛𝑛𝑧𝑋) where 𝑛𝑛𝑧𝑋 is the number of non-zero
elements in X. In Figure 1, X only needs sorting (but not
permutation) due to its correct mode order; Permutation
and sorting are both needed for Y. Permutation and sort-
ing are necessary to improve data locality for an efficient
implementation of our SpTC algorithms.

Output sorting 5 . The output Z is not sorted in the
computation stages (see Sections 3.2 and 3.5 for details). De-
pending on the needs, sorting could be acted on Z after the
computation stages, using the quick sort algorithm. This
could avoid potential sorting when using Z as an input for
any subsequent SpTC computations. In our algorithms and
evaluation, sorting on Z is considered by default to get a
thorough understanding of all stages.

3.2 Sparse Accumulator for High-order Sparse
Tensors

Sparse accumulator (SPA) is a popular approach in sparse
matrix-sparsematrixmultiplication (SpGEMM) [19, 20], which
uses a sparse representation to hold the indices and non-zero
values of the current active matrix row to do accumulation
and is conceptually parallel. We extend SPA to SpTC (named
SpTC-SPA) for an arbitrary-order sparse tensor and any con-
traction operation. Figure 1 uses the fourth-order tensor con-
traction example in Section 2.2 to illustrate the five stages.

Index search 2 . Take 𝑥 (0, 1, 0, 0) in Figure 1 to illustrate.
The indices (0, 0) in mode-3 and 4 are used to search in Y for

2For example, to exchange modes 𝑖1 and 𝑖2, we only need to switch the
pointers of their indices.

sub-tensor Y(0, 0, :, :) to multiply with. A linear search iter-
ates non-zeros of Y until Y(0, 0, :, :) is found. As shown in Al-
gorithm 1, we loop all non-zeros ofX by units of sub-tensors
(see Line 2). For each non-zero 𝑥 (𝑖1, 𝑖2, 𝑖3, 𝑖4), we use the in-
dices (𝑖3, 𝑖4) to do linear search in Y to locate the sub-tensor
Y(𝑖3, 𝑖4, :, :) to perform multiplication. The linear search has
the complexity of O(𝑛𝑛𝑧𝑌) because of searching all non-
zeros of Y in the worst case. To solve the multi-dimensional
index search challenge, we construct Y as a hash table dis-
cussed in Section 3.3.
We explain the reason of using COO format in our algo-

rithms by comparing with the popular compressed storage
row (CSR) [69] and its generalized, compressed sparse fiber
(CSF) [65] format as follows. For example, we can directly lo-
cate row indices in a CSR-represented sparse matrix, but not
column indices. Similarly, except the first mode, all the other
contract modes have to do linear search as well in a CSF-
represented sparse tensor (Refer to [64, 65] for more details).
Thus, index search on CSF-represented Y is not significantly
better than its COO representation.

Accumulation 3 . In Figure 1, if 𝑦 (0, 0, :, :) is found,
𝑥 (0, 1, 0, 0) times every non-zero in Y(0, 0, :, :), and accumu-
lates the result to 𝑆𝑃𝐴. For example, 𝑧 (0, 1, 0, 3) accumulates
the product of 𝑥 (0, 1, 0, 0) and𝑦 (0, 0, 0, 3). If 𝑆𝑃𝐴(0, 3) already
exists, this product is added; Otherwise, the product along
with its indices (0, 3) are appended to 𝑆𝑃𝐴.

In Algorithm 1, since every X(𝑖1, 𝑖2, :, :) independently
accumulates to Z(𝑖1, 𝑖2, :, :), 𝑆𝑃𝐴 is allocated for each sub-
tensor of X. For each non-zero 𝑥 (𝑖1, 𝑖2, 𝑖3, 𝑖4), if Y(𝑖3, 𝑖4, :, :)
is found by the index search, all non-zeros in Y(𝑖3, 𝑖4, :, :)
are stored contiguously and have good spatial data-locality
due to the permutation and sorting of Y in the input pro-
cessing stage. Since every non-zero in Y(𝑖3, 𝑖4, :, :) computes
with 𝑥 (𝑖1, 𝑖2, 𝑖3, 𝑖4), X gets good temporary data-locality. If
𝑆𝑃𝐴(𝑗3, 𝑗4) already exists, the product 𝑣 is added; Otherwise,
𝑣 along with its indices (𝑗3, 𝑗4) are dynamically appended to
𝑆𝑃𝐴. We also employ the linear search to locate 𝑆𝑃𝐴(𝑗3, 𝑗4)
with the complexity of O(|𝑆𝑃𝐴|) (|SPA| is the size of 𝑆𝑃𝐴).
Once the traverse of all non-zeros in X(𝑖1, 𝑖2, :, :) is done,
𝑆𝑃𝐴 contains the final results ofZ(𝑖1, 𝑖2, :, :). The same multi-
dimensional search challenge occurs in the index search
stage, which is optimized with hash tables discussed in Sec-
tion 3.4.

Writeback 4 . Figure 1 shows the write-back stage which
copies 𝑆𝑃𝐴 to Z(0, 1, :, :). In Section 3.5, we introduce tem-
porary data for better parallelization and memory locality
for the write-back stage.

To solve the challenge of the unknown output size, tradi-
tionally two approaches, a two-phase method with symbolic
and numeric phases [47] and a loose upper-bound size pre-
diction [2, 11], have been introduced. The symbolic phase
counts the number of non-zero elements of the output, which
is expensive. Then, a precise memory space is allocated to
perform the computation (the numeric phase). The approach

321

Sparta: High-Performance, Element-Wise Sparse Tensor Contraction on Heterogeneous Memory PPoPP ’21, 2/27 – 3/3, 2021, Republic of Korea

Figure 2. Percentage of execution time breakdown of SpTC-
SPA (Algorithm 1).

of loose upper-bound size prediction allocates large enough
memory based on probabilistic or upper bound prediction,
which is more than sufficient for the output. In SpTC-SPA,
we use dynamic vectors for the 𝑆𝑃𝐴 and output tensor, like
the progressive method [19] but more precise. The total time
complexity of SpTC-SPA is

𝑇𝑆𝑃𝐴 = O(𝑛𝑛𝑧𝑋 𝑙𝑜𝑔(𝑛𝑛𝑧𝑋) + 𝑛𝑛𝑧𝑌 𝑙𝑜𝑔(𝑛𝑛𝑧𝑌))
+ O(2 × 𝑛𝑛𝑧𝑋 × 𝑛𝑛𝑧𝑌 + 𝑛𝑛𝑧𝑍) + O(𝑛𝑛𝑧𝑍 𝑙𝑜𝑔(𝑛𝑛𝑧𝑍))

(3)

where the three terms correspond to the time complexity
of input processing, computation with index search, accu-
mulation, writeback, and output sorting. Figure 2 illustrates
the execution time breakdown of the stages of SpTC-SPA
(Refer to x-axis meanings in Section 5 and Table 3). This
evaluation matches theoretical analysis in Eq. (3): The SpTC
time is dominated by the computation stages. Stages 1 and
5 , shown together as input/output processing, take less than
1% of execution time of the algorithm. Compared to the two-
phase method, our SpTC-SPA approach significantly reduces
the input processing time; Compared to the prediction meth-
ods, SpTC-SPA can significantly reduce 𝑆𝑃𝐴 and the output
space. Thus, our SpTC-SPA algorithm is a good baseline for
SpTCs, by following the spirit of SpGEMM SPA approach
with dynamic, precise memory allocation, and good data
locality, to support arbitrary-order sparse tensors and any
tensor contraction operation. Figure 2 for all of our test cases
and Eq. 3 show that the stages 2 and 3 are the performance
bottleneck. We focus on these two stages for performance
optimization in Sections 3.2 to 3.5.

3.3 Hash Table-Represented Sparse Tensor
To address the problems of the multi-dimensional index
search and inherit good data locality from SpTC-SPA, we
propose to represent the input tensor Y with hash table.

Figure 1 depicts the process of converting Y represented
in the COO format into a hash table𝐻𝑡𝑌 with a large-number
representation and its usage in the example SpTC. The index
search for Y(0, 0, :, :) uses X’s contract indices (0, 0), which
is taken as the keys in 𝐻𝑡𝑌 naturally. Since we need to keep
the information of free indices of Y, (0, 3), and non-zero
values 4.0 for the next stage 3 , the tuple ((0, 3), 4.0) is put as
the values in 𝐻𝑡𝑌 . Since the keys in 𝐻𝑡𝑌 are index tuples, as
the tensor order grows, it is difficult and time-consuming to
do key matching on multi-dimensional tuples. We introduce

Algorithm 2: Sparta: Sparta sparse tensor contrac-
tion for arbitrary-order data.
Input: Input tensors X ∈ R𝐼1×···×𝐼𝑁𝑋 and Y ∈ R𝐽1×···×𝐽𝑁𝑌 ,

contract modes 𝐶𝑋 , 𝐶𝑌
Output: The output tensor Z

1 Permute and sort X if needed;
2 Obtain 𝑁𝐹 , |𝐹𝑋 |, sub-tensors of X, and its 𝑝𝑡𝑟𝐹 ;
3 Convert Y to 𝐻𝑡𝑌 with 𝐿𝑁 (𝐶𝑌) as keys and

(𝐿𝑁 (𝐹𝑌), 𝑣𝑎𝑙𝑌) as values;
4 // Compute: Z = X ×𝐶𝑌

𝐶𝑋
Y

5 for 𝑓 in 1, . . . , 𝑁𝐹 do
6 Initiate thread-local 𝐻𝑡𝐴 with 𝐹𝑌 as keys
7 for 𝑛𝑧 in 𝑝𝑡𝑟𝐹 [𝑓], . . . , 𝑝𝑡𝑟𝐹 [𝑓 + 1] do
8 if 𝐿𝑁 (𝐶𝑋𝑛𝑧) is not found in 𝐻𝑡𝑌 then
9 continue

10 for (𝐿𝑁 (𝐹𝑌𝑛𝑧), 𝑣𝑎𝑙𝑌𝑛𝑧) in (𝐿𝑁 (𝐹𝑌),𝑉𝑌) of 𝐻𝑡𝑌 do
11 𝑣 = 𝑣𝑎𝑙𝑋𝑛𝑧 * 𝑣𝑎𝑙𝑌𝑛𝑧
12 if 𝐿𝑁 (𝐹𝑌𝑛𝑧) is found in 𝐻𝑡𝐴 then
13 Accumulate 𝑣𝑎𝑙𝐻𝑇𝑛𝑧 + = 𝑣

14 else
15 Insert (𝐿𝑁 (𝐹𝑌𝑛𝑧), 𝑣) to 𝐻𝑡𝐴

16 Form (𝐹𝑋𝑛𝑧 , 𝐹𝑌𝑛𝑧) as coordinates and 𝑣𝑎𝑙𝐻𝑇𝑛𝑧 as non-zero
value and append to Z𝑙𝑜𝑐𝑎𝑙

17 Gather thread-local Z𝑙𝑜𝑐𝑎𝑙 independently to Z

18 Permute and sort Z if needed
19 return Z

a large-number representation, noted as the 𝐿𝑁 function in
Figure 1, which converts a sparse index tuple to a large index
in a dense pattern. For example, (0, 3) tuple is converted
to 3 = 0 × 𝐽4 + 3. Having unique identifiers is extremely
important for a fast hash table search. The large-number
representation obtains unique numbers for every tuple of
keys in 𝐻𝑡𝑌 . As a result, the index search becomes faster on
𝐻𝑡𝑌 by doing integer comparison for key comparison. To
create 𝐻𝑡𝑌 from Y in the COO format, we use the separate
chaining hash table [71] with fix-sized buckets to distribute
the keys. Compared to the COO format, the contract indices
have no duplication due to the unique key feature of the hash
table, which reduces the index search space. To maintain
the good spatial data locality from Algorithm 1, we adopt
dynamic arrays to store the non-zeros having the same key
in Y.

The creation and usage of𝐻𝑡𝑌 for an arbitrary-order SpTC
with random contract modes𝐶𝑋 and𝐶𝑌 are illustrated in Al-
gorithm 2. The three for-loops in Algorithm 2 are in the same
order as those in Algorithm 1. The first and second loops enu-
merate sub-tensors in X and non-zeros in the sub-tensor us-
ing 𝑝𝑡𝑟𝐹 to indicate locations. The indices of contract modes
𝐶𝑌 , and the tuple of freemodes and non-zero value (𝐹𝑌 , 𝑣𝑎𝑙𝑌)
are taken as the keys and values in𝐻𝑡𝑌 respectively in Line 3.

322

PPoPP ’21, 2/27 – 3/3, 2021, Republic of Korea Jiawen Liu, Jie Ren, Roberto Gioiosa, Dong Li, and Jiajia Li

For each non-zero element 𝑛𝑧, we use 𝐿𝑁 (𝐶𝑋𝑛𝑧), the large-
number representation of the contract indices 𝐶𝑋 in X to
search in 𝐻𝑡𝑌 (Line 8). Compared with the linear search in
SpTC-SPAwith the complexity of O(𝑛𝑛𝑧𝑌), the time complex-
ity of hash table search on 𝐻𝑡𝑌 is significantly reduced to
O(1) [71]. We also optimize input processing. The COO-to-
hashtable conversion is faster than permutation and sorting
of Y (i.e., O(𝑛𝑛𝑧𝑌) versus O(𝑛𝑛𝑧𝑌 𝑙𝑜𝑔(𝑛𝑛𝑧𝑌))).
Our proposed hash table-represented sparse tensor with

the large-number compressed keys significantly improves
the SpTC performance by efficiently addressing the multi-
dimensional index search issue and maintaining temporary
and spatial data locality. To reduce the frequency of index
search, we always treat the larger input tensor as Y in our
SpTC algorithms.

3.4 Hash Table-based Sparse Accumulator
The hash table [3, 47–49], hashmap [12], and heap [6] are
popular data structures to represent the accumulator in state-
of-the-art SpGEMM research, where the hash table performs
best according to prior evaluations [47]. As mentioned in
Section 3.2 and Figure 2, the stage 3 in SpTC-SPA could dom-
inate the performance of an SpTC. To efficiently accumulate
the intermediate results, we propose a hash table-based accu-
mulator 𝐻𝑡𝐴, illustrated in Figure 1. We take the free indices
of Y, (0, 3), as the key and refer to the intermediate result as
the values in the hash table. The separate chaining hash table
and the large-number representation 𝐿𝑁 are also adopted
here for fast key matching and hash search.
We observe that the key in 𝐻𝑡𝐴 ((0, 3) in Figure 1) is the

same as the free indices in Y in the value tuples of 𝐻𝑡𝑌 .
To avoid the key conversion for 𝐻𝑡𝐴, we convert the free
indices of Y to the large-number representation in the stage
1 (Line 3 in Algorithm 2). We directly retrieve the keys
from the values of 𝐻𝑡𝑌 , avoiding indices-key conversion
between 𝐻𝑡𝑌 and 𝐻𝑡𝐴 during computation. As depicted in
Figure 1 and Algorithm 2, the accumulation performs similar
to SpTC-SPA but on the hash table 𝐻𝑡𝐴 instead.

By far, we form the Sparta SpTC algorithm (Algorithm 2).
Compared to SpTC-SPA, we replace Y and 𝑆𝑃𝐴 with the two
hash tables𝐻𝑡𝑌 and𝐻𝑡𝐴 based on large-number representa-
tion respectively. Sparta solves the multi-dimensional index
search challenge (Section 1), gets faster processing for input
Y, extracts unnecessary index computation/conversion out
of the computation, while maintains the good data locality
shown in SpTC-SPA, to reduce the SpTC execution time. The
total time complexity of Sparta:

𝑇𝑆𝑝𝑎𝑟𝑡𝑎 = O(𝑛𝑛𝑧𝑋 𝑙𝑜𝑔(𝑛𝑛𝑧𝑋) + 𝑛𝑛𝑧𝑌)
+ O

(
2 × 𝑛𝑛𝑧𝑋 × 𝑛𝑛𝑧𝐹𝑎𝑣𝑔 + 𝑛𝑛𝑧𝑍

)
+ O(𝑛𝑛𝑧𝑍 𝑙𝑜𝑔(𝑛𝑛𝑧𝑍))

(4)

where 𝑛𝑛𝑧𝐹𝑎𝑣𝑔 is the average size of all sub-tensors (e.g.
Y(𝑗1, 𝑗2, :, :) in Algorithm 1). The three terms in Eq. (4) corre-
spond to the time complexity of the stages 1 , computation

with 2 , 3 and 4 , and 5 . Eq. (4) shows that depending on
different sparse tensors, the SpTC time could be dominated
by different stages (more details are found in Section 5).

3.5 Parallelization
We parallelize all the five stages of SpTC-SPA and Sparta
algorithms. For the stage 1 , since permutation takes negligi-
ble time, we only parallelize the quick sort algorithm using
OpenMP tasks, which is also used in the stage 5 . Sparta has
the COO-to-hashtable representation for Y in the stage 1 .
We parallelize sub-tensors of Y and use locks on the buckets
of 𝐻𝑡𝑌 to ensure correct insertion and updates. Since the
separate chaining hash table almost evenly distributes search
requests between threads, using locks for multi-threading
still gets an acceptable performance (7.8× speedup on aver-
age using 12 threads over a sequential version in our experi-
ments).
In the computation stages, we parallelize the outermost

loop for sub-tensors ofX (Line 2 in Algorithm 1 and Line 5 in
Algorithm 2). Thus, the sparse accumulator 𝑆𝑃𝐴 in SpTC-SPA
and hash table accumulator 𝐻𝑡𝐴 in Sparta are both thread-
private and each thread can do accumulation independently.
Because of the dynamic output structure, directly writing the
intermediate, thread-local 𝑆𝑃𝐴 or 𝐻𝑡𝐴 to Z is not feasible.
We introduce thread-local dynamic 𝑍𝑙𝑜𝑐𝑎𝑙 in Algorithm 2 to
write the intermediate results. In particular, after a thread
completes its execution, we have the size of 𝑍𝑙𝑜𝑐𝑎𝑙 which
can be used to allocate the space for Z. Then all threads
write their 𝑍𝑙𝑜𝑐𝑎𝑙 to Z in a parallel pattern. The introduc-
tion of 𝑍𝑙𝑜𝑐𝑎𝑙 helps to solve the unknown output challenge
(Section 1) in multi-threading parallel environment and im-
proves the performance of the stage 4 with the cost of an
affordable thread-local storage 𝑍𝑙𝑜𝑐𝑎𝑙 .

4 Data Placement on PMM-based
Heterogeneous Memory Systems

We discuss our approaches to leveraging HM to address the
memory capacity bottleneck of SpTC.

4.1 Characterization Study
Tomotivate our solution of data placement on heterogeneous
memory, we characterize memory accesses to major data ob-
jects in Sparta (Algorithm 2). We summarize memory access
patterns (sequential/random and read/write) in Table 2. We
consider six major data objects in the five stages (i.e., input
processing, computation (combining index search, accumu-
lation, writeback) and output sorting). The six major data
objects are the two input tensors (X and Y), the hash table-
represented second input tensor (𝐻𝑡𝑌), thread-local hash
table-based accumulator (𝐻𝑡𝐴), the thread-local temporary
data (Z𝑙𝑜𝑐𝑎𝑙), and the output tensor (Z).

We study the performance impact of the placement of the
six data objects with the tensor Nell-2 (2-Mode contraction)

323

Sparta: High-Performance, Element-Wise Sparse Tensor Contraction on Heterogeneous Memory PPoPP ’21, 2/27 – 3/3, 2021, Republic of Korea

Table 2. Memory access patterns associated with data ob-
jects in five stages ("Ran" = Random; "Seq" = Sequential;
"RW" = Read-Write; "RO" = Read-Only; "WO" = Write-Only).
Stages Data Objects

X Y 𝐻𝑡𝑌 𝐻𝑡𝐴 Z𝑙𝑜𝑐𝑎𝑙 Z

Input Processing 1 Ran, RW Seq, RO Ran, RW - - -
Index Search 2 Seq, RO - Ran, RO - - -
Accumulation 3 - - - Ran, RW Seq, WO -
Writeback 4 - - - - Seq, RO Seq, WO
Output Sorting 5 - - - - - Ran, RW

in Figure 3, by evaluating Sparta on a server with an HMwith
PMM and DDR4 (described in Section 5.1). We use the execu-
tion time to reflect the underneath PMM and DRAMmemory
characteristics and their impact on SpTC performance. Our
baseline is the Sparta execution time when placing all data
in DRAM, which achieves the best performance. We perform
six tests: each one by placing only one data object in PMM,
while leaving the others in DRAM.We have three interesting
observations to guide our data placement in HM.

Observation 1: Performance difference between read
and write matters a lot to performance of Sparta. For
example, the memory access pattern associated withY in the
input processing stage is sequential read-only, and placing
it on PMM causes ignorable performance loss; In contrast,
the memory access pattern associated with Z𝑙𝑜𝑐𝑎𝑙 in the
accumulation stage is sequential write-only, and placing it
on PMM causes 12.9% performance loss. The bandwidth
difference between read and write on PMM is about 3×,
which leads to the difference in Sparta’s performance.

Observation 2: Sequential and random accesses have
large performance difference. For example, the memory
access pattern associated with Y in the input processing
stage is sequential read-only, and placing it on PMM causes
ignorable performance loss; In contrast, the memory access
pattern associated with 𝐻𝑡𝑌 in the index search stage is ran-
dom read-only, and placing it on PMM causes 30.8% perfor-
mance loss. The performance difference between sequential
and random accesses on PMM is due to the unique architec-
ture of PMM (e.g., the combining buffer in devices [73, 79]);
Sequential accesses also makes hardware prefetching more
effective for improving data locality.

Observation 3: The performance of Sparta is not sen-
sitive to the placement of some data objects on PMM. For
example, placing X and Y on PMM, Sparta has ignorable
performance loss, because of the memory access patterns
discussed in the above two observations.
The first two observations are unique to PMM (not seen

in DRAM). In DRAM, both read and write, and sequential
and random accesses have small performance difference. We
get the same observations for other 14 datasets.

4.2 Data Placement Strategy
Driven by the characterization results, we use the following
data placement strategy. X and Y are always on PMM, be-
cause of the observation 3. For the other four data objects,

Figure 3. Performance after placing a data object in PMM
while leaving others in DRAM. The x-axis shows the data
object placed in PMM. “All in DRAM” means all data objects
are placed in DRAM.

we decide their placement in DRAM, following the priority
of 𝐻𝑡𝑌 ≻ 𝐻𝑡𝐴 ≻ Z𝑙𝑜𝑐𝑎𝑙 ≻ Z, according to their importance
to the performance summarized from the characterization
results. For each of the four data objects, we make the best
efforts to place them into DRAM. This means that given a
data object, if there is remaining DRAM space after exclud-
ing the memory consumed by the data objects with higher
priority, that object is placed into DRAM as much as possible;
If there is no remaining DRAM space, that object is placed
into PMM.

To implement the above data placement strategy, we must
estimate the memory consumption of the four data objects,
to decide whether they should be placed into DRAM or not.
We discuss it as follows.

The placement of 𝐻𝑡𝑌 . We estimate the memory con-
sumption of 𝐻𝑡𝑌 using Eq. 5 based on tensor information
and knowledge on data structures used in 𝐻𝑡𝑌 . In Eq. 5,
𝑆𝑖𝑧𝑒𝐻𝑡𝑌 is the memory consumption of 𝐻𝑡𝑌 ; 𝑆𝑖𝑧𝑒𝑒𝑝 , 𝑆𝑖𝑧𝑒𝑖𝑑𝑥
and 𝑆𝑖𝑧𝑒𝑣𝑎𝑙 are the size of the entry pointer for a bucket in
𝐻𝑡𝑌 , the size of an index, and the size of a value, respec-
tively; #𝐵𝑢𝑐𝑘𝑒𝑡𝑠𝐻𝑡𝑌 is the number of buckets in 𝐻𝑡𝑌 ; 𝑛𝑛𝑧Y
is the number of non-zero elements in Y; 𝑁𝑌 is the number
of modes of Y.

𝑆𝑖𝑧𝑒𝐻𝑡𝑌 = 𝑆𝑖𝑧𝑒𝑒𝑝 · #𝐵𝑢𝑐𝑘𝑒𝑡𝑠𝐻𝑡𝑌 + 𝑛𝑛𝑧Y · (𝑆𝑖𝑧𝑒𝑖𝑑𝑥 · 𝑁𝑌
+ 𝑆𝑖𝑧𝑒𝑣𝑎𝑙 + 𝑆𝑖𝑧𝑒𝑒𝑝) (5)

Eq. 5 includes the memory consumption for metadata
(i.e., the pointers pointing to each bucket in the hash table,
modeled as 𝑆𝑖𝑧𝑒𝑒𝑝 · #𝐵𝑢𝑐𝑘𝑒𝑡𝑠𝐻𝑡𝑌); Eq. 5 also includes the
memory consumption for storing all non-zero elements of
Y in 𝐻𝑡𝑌 , each of which consumes memory for an index, a
value, and a pointer pointing to another element, modeled
as 𝑆𝑖𝑧𝑒𝑖𝑑𝑥 · 𝑁𝑌 + 𝑆𝑖𝑧𝑒𝑣𝑎𝑙 + 𝑆𝑖𝑧𝑒𝑒𝑝 .

To use Eq. 5, we must know 𝑛𝑛𝑧Y and #𝐵𝑢𝑐𝑘𝑒𝑡𝑠𝐻𝑡𝑌 . 𝑛𝑛𝑧Y
as a tensor feature is typically known; #𝐵𝑢𝑐𝑘𝑒𝑡𝑠𝐻𝑡𝑌 is defined
by the user, and hence is known.

The placement of 𝐻𝑡𝐴. We use Eq. 6 to estimate the
memory consumption of 𝐻𝑡𝐴. While Eq. 5 estimates the
exact memory consumption, Eq. 6 gives an upper bound on
the memory consumption (𝑆𝑖𝑧𝑒𝐻𝑡𝐴).

324

PPoPP ’21, 2/27 – 3/3, 2021, Republic of Korea Jiawen Liu, Jie Ren, Roberto Gioiosa, Dong Li, and Jiajia Li

51
83

133

28 35

179
57 60 45

157 193
576

36 42

1.14
3

1.14 1.09

28 17
26

1.01 1.07 1.021 1 1 1 1 1 1 1 1 1 1 1
1

10

100

1000

Chicago NIPS Chicago NIPS Uber Vast Uracil Chicago NIPS Uber Vast Uracil

1-Mode 2-Mode 3-Mode

Sp
ee

du
p

HtY + HtA COOY + HtA COOY + SPA

Figure 4. Speedups of HtY+HtA (i.e., Sparta) and COOY+HtA over COOY+SPA (i.e., SpTC-SPA) for SpTCs on Chicago, NIPS,
Uber, Vast and Uracil with 1-mode, 2-mode and 3-mode.

𝑆𝑖𝑧𝑒𝐻𝑡𝐴 = 𝑆𝑖𝑧𝑒𝑒𝑝 · #𝐵𝑢𝑐𝑘𝑒𝑡𝑠𝐻𝑡𝐴 + 𝑛𝑛𝑧𝑋𝐹𝑚𝑎𝑥 · 𝑛𝑛𝑧𝑌𝐹𝑚𝑎𝑥 · (𝑆𝑖𝑧𝑒𝑖𝑑𝑥
· |𝐹𝑌 | + 𝑆𝑖𝑧𝑒𝑣𝑎𝑙 + 𝑆𝑖𝑧𝑒𝑒𝑝) (6)

In Eq. 6, |𝐹𝑌 | is the number of free modes of Y; 𝑛𝑛𝑧𝑋
𝐹𝑚𝑎𝑥

is
the maximum size of all non-zero sub-tensorsX(𝐹𝑋 , :, . . . , :);
𝑛𝑛𝑧𝑌

𝐹𝑚𝑎𝑥
represents the maximum size of all non-zero sub-

tensors Y(𝐶𝑌 , :, . . . , :). The product of 𝑛𝑛𝑧𝑋
𝐹𝑚𝑎𝑥

and 𝑛𝑛𝑧𝑌
𝐹𝑚𝑎𝑥

gives an upper bound on the number of non-zero elements
stored in 𝐻𝑡𝐴.
Eq. 6 gives an upper bound, because we do not know

the exact number of non-zero elements in Y that have the
same contract indices as those in X; We use the maximum
number to give an upper bound and ensure there is enough
space allocated in DRAM for 𝐻𝑡𝐴. Using the upper bound
does not cause significant waste of DRAM space, because
𝐻𝑡𝐴 per thread is usually 10-50 MB (even with the largest
dataset using 768GB memory in our evaluation). Given tens
of threads in a machine, the upper bound takes only a few
GB of DRAM, which is typically a small portion of DRAM
space in an HPC server.

To use Eq. 6, wemust know𝑛𝑛𝑧𝑋
𝐹𝑚𝑎𝑥

and𝑛𝑛𝑧𝑌
𝐹𝑚𝑎𝑥

.𝑛𝑛𝑧𝑋
𝐹𝑚𝑎𝑥

and 𝑛𝑛𝑧𝑌
𝐹𝑚𝑎𝑥

are known after the input processing stage, and
the dynamic allocation of 𝐻𝑡𝐴 can happen after the input
processing stage but before the index search stage where
𝐻𝑡𝐴 is accessed. Hence, Eq. 6 can be used to effectively direct
data placement. In addition, DRAM is evenly partitioned be-
tween threads for placing 𝐻𝑡𝐴 per thread, in order to avoid
load imbalance.

The placement of Z𝑙𝑜𝑐𝑎𝑙 . The memory consumption of
Z𝑙𝑜𝑐𝑎𝑙 can be estimated after 𝐻𝑡𝐴 is filled (Line 16 in Algo-
rithm 2) and before memory allocation for Z𝑙𝑜𝑐𝑎𝑙 happens.
The memory consumption of Z𝑙𝑜𝑐𝑎𝑙 is equal to the size of
𝐻𝑡𝐴 plus the size of 𝐹𝑋𝑛𝑧 · 𝑛𝑛𝑧𝐻𝑡𝐴, where 𝐹𝑋𝑛𝑧 refers to free
indices of a non-zero element inX and 𝑛𝑛𝑧𝐻𝑡𝐴 is the number
of non-zero elements in 𝐻𝑡𝐴. In addition, DRAM is evenly
partitioned between threads for placing Z𝑙𝑜𝑐𝑎𝑙 per thread, in
order to avoid load imbalance.

The placement of Z. The size of Z is the summation of
the size of Z𝑙𝑜𝑐𝑎𝑙 in each thread. The size of Z is estimated
in Line 17 in Algorithm 2, before memory allocation for Z
happens.

Static placement vs. dynamicmigration.The data place-
ment strategy in Sparta is static, which means a data object,
once placed in DRAM or PMM, is not migrated to PMM or
DRAM in the middle of execution. The traditional solutions
are application-agnostic and dynamic. They track page (or
data) access frequency [1, 13, 24, 25, 56, 57, 72, 74, 76, 81] or
manage DRAM as a hardware cache for PMM [42, 55, 70, 80]
to decide the placement of data objects on DRAM and PMM.
The traditional solutions, once determining frequently ac-
cessed data (hot data), dynamically migrate hot or cold data
between DRAM and PMM for high performance. However,
those dynamic migration solutions cannot work well in our
case because they can cause unnecessary data movement.
For example, the performance of Sparta is not sensitive to
the placement of X and Y on PMM and DRAM, because of
their sequential read patterns. The dynamic solutions can
unnecessarily migrate them to DRAM for high performance.
For another example, 𝐻𝑡𝑌 has a random access pattern. Any
dynamic migration solution cannot effectively capture its
pattern and hence causes unnecessary data migration. Our
evaluation results in Section 5.5 show that two dynamic mi-
gration solutions (i.e., the hardware-based Memory mode
and software-based IAL [77]) perform worse than Sparta by
10.7% (up to 28.3%) and 30.7% (up to 98.5%) respectively.

Other datasets.We evaluate 15 datasets in total, and 11
of them show the same priority for data placement (i.e., 𝐻𝑡𝑌
≻ 𝐻𝑡𝐴 ≻ Z𝑙𝑜𝑐𝑎𝑙 ≻ Z). However, there are four cases showing
different priorities (i.e.,𝐻𝑡𝐴 ≻𝐻𝑡𝑌 ≻Z𝑙𝑜𝑐𝑎𝑙 andZ). For those
uncommon cases, we can use the same method to determine
data placement; The above methods to determine the sizes
of the data objects are still valid.

Table 3. Characteristics of sparse tensors in the evaluation.
Tensors Order Dimensions #Non-zeros Density
Nell-2 3 12𝐾 × 9𝐾 × 28𝐾 76M 2.4 × 10−5
NIPS 4 2𝐾 × 3𝐾 × 14𝐾 × 17𝐾 3M 1.8 × 10−6
Uber 4 183 × 24 × 1𝐾 × 1𝐾 3M 2 × 10−4
Chicago 4 6𝐾 × 24 × 77 × 32 5M 1 × 10−2
Uracil 4 90 × 90 × 174 × 174 10M 4.2 × 10−2
Flickr 4 320𝐾 × 28𝑀 × 2𝑀 × 731 113M 1.1 × 10−14
Delicious 4 533𝐾 × 17𝑀 × 2𝑀 × 1𝐾 140M 4.3 × 10−15
Vast 5 165𝐾 × 11𝐾 × 2 × 100 × 89 26M 8 × 10−7

325

Sparta: High-Performance, Element-Wise Sparse Tensor Contraction on Heterogeneous Memory PPoPP ’21, 2/27 – 3/3, 2021, Republic of Korea

5 Evaluation
5.1 Evaluation Setup
Platforms. The experiments in Sections 5.2, 5.3 and 5.4 are
run on a Linux server consisting of 96 GB DDR4memory and
Intel Xeon Gold 6126 CPU including 12 physical cores at 2.6
GHz frequency on a socket. The experiments in Section 5.5
are run on an Intel Optane Linux server containing Intel Xeon
Cascade-Lake CPU including 24 physical cores at 2.3 GHz
frequency. The socket has 6× 16 GB of DRAM and 6× 128 GB
Intel Optane DIMMs. All implementations (Sparta and other
approaches) are compiled by gcc-7.5 and OpenMP 4.5 with
-O3 optimization option. All experiments were conducted on
a single socket with one thread per physical core. Similar to
recent work ([25], [72], [75]), we use a one-socket evaluation
to highlight the data movement across DRAM and Optane.
Each workload is run 10 times and we report the average
execution time.
Datasets and expression. We use sparse tensors summa-
rized in Table 3 and ordered by modes and non-zero density.
Those tensors are derived from real-world applications. The
tensors are included in FROSTT [62]. Tensor Uracil [4, 14]
is from a real-world CCSD model in quantum chemistry,
formed by cutting off values smaller than 1 × 10−8 verified
by chemists.
For some SpTC, the memory requirement is larger than

the system memory capacity. We do not evaluate the per-
formance of those SpTC. For a tensor with different expres-
sions, we use a “∗” to distinguish. For example, Chicago and
Chicago∗ are the same tensors with different expressions.

5.2 Overall Performance
Figure 4 shows the performance of using HtY+HtA (i.e.,
Sparta), COOY+HtA and COOY+SPA (i.e., SpTC-SPA) on the
tensors Chicago, NIPS, Uber, Vast and Uracll with 1-mode,
2-mode and 3-mode SpTC respectively. In Figure 4, we ob-
serve that HtY+HtA significantly outperforms COOY+HtA
by 1.4 − 565×. The results show that 𝐻𝑡𝑌 is more efficient
than COOY. Also, we found that COOY+HtA significantly
outperforms COOY+SPA by 1% − 42×. The results demon-
strate that 𝐻𝑡𝐴 is more efficient than SPA.

We observe that the performance improvement of Sparta
over COOY-SPA on Uracil with 3-mode is larger than others.
This is because the execution time of the index search stage
dominates the total execution time (99.3%) and the total exe-
cution time of this case is larger (1072 seconds) than that of
others. Because of the time complexity difference between
HtY and COOY in the index search stage, the larger execu-
tion time SpTC spends, the larger performance improvement
Sparta can achieve. In Figure 2, the total execution time is
dominated by the index search and accumulation stages in
COOY-SPA (99.6%). Since the execution time of the index
search and accumulation is significantly reduced by Sparta,
the execution time of the index search and accumulation

7.1 7.3
6.6 7.2

8.0
6.3

7.1 6.9 6.8
7.5

0.0

2.0

4.0

6.0

8.0

10.0

SpTC1 SpTC2 SpTC3 SpTC4 SpTC5 SpTC6 SpTC7 SpTC8 SpTC9 SpTC10

Sp
ee
du

p

Sparta ITensor

Figure 5. Speedups of Sparta over ITensor on Hubbard-2D
model using different SpTC expressions with different sparse
input tensors.

161

82

44
23 16

0

2

4

6

8

10

12

0

30

60

90

120

150

180

1 2 4 8 12

Ex
ec

ut
io

n
Ti

m
e

(s
)

of Threads

555

289

162
89

52

0

2

4

6

8

10

12

0

100

200

300

400

500

600

1 2 4 8 12

Sp
ee

du
p

of Threads

671

359

197
108

72

0

2

4

6

8

10

12

0

120

240

360

480

600

720

1 2 4 8 12
of Threads

1-Mode 2-Mode 3-Mode

Figure 6. Thread scalability of parallel Sparta on SpTCs on
NIPS with 1-mode, Vast with 2-mode and NIPS with 3-mode.

stages might not be the bottleneck of an SpTC. In our ex-
periments with Sparta, the time in the index search stage
accounts for 4.7%; the time of the accumulation stage is 61.6%;
the time of the writeback stage is 9.6%; the input processing
stage accounts for 3.3% and the output sorting stage is 20.8%.

5.3 Performance Comparison to ITensor
In this experiment, we compare the performance of Sparta
and ITensor. ITensor [18] is a state-of-the-art library for
multi-threading, block-sparse tensor contraction on a single
machine, which is the most related to Sparta among other
works. ITensor is configured with its best configurations
described in its repository [17]. SpTC expressions with dif-
ferent tensors (SpTC1 to SpTC10) are from a well-known
quantum physics model (Hubbard-2D) [16] in ITensor [17],
and those tensors are formed by cutting off 3 values smaller
than 1 × 10−8. More details of those tensors are shown in
Table 4 in Appendix. We choose ITensor as a representative
for comparison rather than others (such as libtensor [45],
TiledArray [53], CTF [66] and TACO [30]), because libten-
sor only supports sequential block-wise SpTC [45], while
TiledArray and CTF are distributed, and TACO does not sup-
port high-order SpTC yet. Figure 5 shows the performance
comparison between Sparta and ITensor. We observe that
Sparta significantly outperforms ITensor with 7.1× perfor-
mance improvement on average. We also demonstrate that
Sparta can be employed for applications featured with block-
wise SpTC.

5.4 Thread Scalability
Figure 6 shows the performance of parallel Sparta over the
sequential version. Sparta achieves 10.2×, 9.3× and 10.7×
speedup on NIPS with 1-mode, Vast with 2-mode, and NIPS

3Other truncating methods will be considered in the future.

326

PPoPP ’21, 2/27 – 3/3, 2021, Republic of Korea Jiawen Liu, Jie Ren, Roberto Gioiosa, Dong Li, and Jiajia Li

1.48

1.02

1.24
1.09 1.04 1.03

1.26

1.02 1.08

1.65

1.03
1.12

1.22

1.02

1.31

0.8

1.0

1.2

1.4

1.6

1.8

Chicago* NIPS* Vast* Flickr Chicago* NIPS* Vast* Flickr Delicious Nell-2 Chicago* NIPS* Vast* Flickr Delicious

1-Mode 2-Mode 3-Mode

Sp
ee

du
p

Sparta IAL Memory mode Optane-only DRAM-only

O
O
M

O
O
M

O
O
M

O
O
M

O
O
M

O
O
M

O
O
M

Figure 7. Speedups of Sparta, IAL, Memory mode and Dram-only over Optane-only for SpTCs on Chicago∗, NIPS∗, Vast∗,
Flickr, Delicious and Nell-2 with 1-mode, 2-mode and 3-mode.

0

5

10

15

20

25

30

35

1 10 19 28 37 46 55 64 73 82 91 10
0

10
9

11
8

12
7

13
6

14
5

15
4

16
3

17
2

18
1

19
0

19
9

20
8

21
7

22
6

23
5

24
4

25
3

26
2

27
1

28
0

28
9

29
8

30
7

31
6

32
5

33
4

34
3

35
2

36
1

37
0

37
9

38
8

M
em

or
y

Ba
nd

w
di

th
 (

GB
/s

) Sparta-DRAM IAL-DRAM Memory Mode-DRAM Optane-Only-DRAM

0
5

10

15
20
25
30
35

1 10 19 28 37 46 55 64 73 82 91 10
0

10
9

11
8

12
7

13
6

14
5

15
4

16
3

17
2

18
1

19
0

19
9

20
8

21
7

22
6

23
5

24
4

25
3

26
2

27
1

28
0

28
9

29
8

30
7

31
6

32
5

33
4

34
3

35
2

36
1

37
0

37
9

38
8

M
em

or
y

Ba
nd

w
id

th
 (

GB
/s

)

Execution Time (s)

Sparta-PMM IAL-PMM Memory Mode-PMM Optane-Only-PMM

Figure 8.Memory bandwidth of Sparta, IAL, PMM Memory
mode and Optane-only on Vast with 1-mode SpTC.

0

200

400

600

800

Ch
ic

ag
o*

N
IP

S*

Va
st

*

Fl
ic

kr

Ch
ic

ag
o*

N
IP

S*

Va
st

*

Fl
ic

kr

D
el

ic
io

us

N
el

l-2

Ch
ic

ag
o*

N
IP

S*

Va
st

*

Fl
ic

kr

D
el

ic
io

us

1-Mode 2-Mode 3-Mode

Pe
ak

 M
em

or
y

Co
ns

um
pt

io
n

(G
B)

Figure 9. Peak memory consumption of SpTCs on Chicago∗,
NIPS∗, Vast∗, Flickr, Delicious and Nell-2 with 1-mode, 2-
mode and 3-mode.

with 3-mode using 12 threads. Different stages have different
thread scalability. Evaluation with 15 datasets using Sparta
shows that the average speedup of parallel execution over
sequential execution is: 10.4 × in the index search stage; 10.9
× in the accumulation stage; 9.5 × in the writeback stage; 6.8
× in the input processing stage and 6.2× in the output sorting
stage. The thread scalability in the stages of input processing
and output sorting is not as good as that of the computation
stages (i.e., index search, accumulation and writeback stages).
However, the SpTC is always dominated by the computation
stages. Thus, Sparta achieves high thread scalability overall.

5.5 Sparta on Heterogeneous Memory Systems
We study the performance of Sparta on HM, compared with
a state-of-the-art solution for HM management (i.e., IAL
(Improved Active List) [77]), the hardware-managed cache
approach (i,e, PMM Memory mode), Optane-only (i.e., the
AppDirect mode assigning all data objects to Optane) and

DRAM-only (i.e., assign all data objects to DRAM). IAL is
configured with its best configurations based on the IAL
repository [78]. Figure 9 shows the peak memory consump-
tion of SpTCs in the experiment.
As shown in Figure 7, Sparta outperforms IAL by 30.7%

on average (up to 98.5%). Also, Sparta achieves 10.7% (up to
28.3%) and 17% (up to 65.1%) performance improvement on
average than PMM Memory mode and Optane-only respec-
tively. Furthermore, Sparta is comparable to the DRAM-only
approach with only 6% performance difference. For some
SpTC (e.g., Chicago∗ with 3-mode), because the memory
bandwidth requirement is small, the performance difference
between Sparta and Optane-only is small. For example, with
the Chicago∗ with 3-mode, if we place all data objects to
DRAM (i.e., DRAM-only), the performance improvement is
only 6%, compared to Optane-only.
In Figure 8, we observe that the average PMM memory

bandwidth of IAL is larger than that of Sparta. This is be-
cause IAL causes undesirable data movement and such data
movement consumes higher PMM memory bandwidth. The
average DRAM memory bandwidth of PMM memory mode
is larger than that of Sparta, because PMM Memory mode
manages DRAM as a hardware cache for PMM and unneces-
sarily migrates data objects to DRAM for high performance
without being able to be aware of access patterns of data
objects.

6 Related Work
Tensor contraction. Tensor contraction has a long history
in scientific computing in chemistry, physics, and mechanics.
Dense tensor contraction has been studied for decades on
diverse hardware platforms [5, 21, 23, 28, 29, 32, 33, 40, 46,
60, 66, 67]. The state-of-the-art sparse tensor contractions
emphasize on block-sparse tensor contractions, between two
tensors with non-zero dense blocks. The general approaches
extract dense block-pairs of the two input tensors, and then
do multiplication by calling dense BLAS linear algebra and
have the output tensor pre-allocated using domain knowl-
edge or a symbolic phase [22, 26, 52, 53, 61], such as libten-
sor [15, 45], TiledArray [53], and Cyclops Tensor Frame-
work [34]. Our work proposes an efficient element-sparse
tensor contraction and shows its performance advantages if
a practical cutoff value gets quantum chemistry or physics

327

Sparta: High-Performance, Element-Wise Sparse Tensor Contraction on Heterogeneous Memory PPoPP ’21, 2/27 – 3/3, 2021, Republic of Korea

data below 5% of non-zero density. Our work is also valuable
for deep learning when the sparsity is introduced because
of model or data compression.
Sparse tensor formats. Researchers are making continu-
ous effort on developing sparse tensor formats for high-order
data, including compressed sparse fiber (CSF) [65], balanced
and mixed-mode CSF (BCSF, MM-CSF) [50, 51], flagged COO
(F-COO) [41], and hierarchical coordinate (HiCOO) [37] for
general sparse tensors, and mode-generic and -specific for-
mats for structured sparse tensors [8]. We choose COO for-
mat in this work as a start because CSF format needs ex-
pensive search to locate Y due to multi-dimensionality. Our
hashtable-represented Y is a new approach to compress a
sparse tensor customized to the tensor contraction. This
work is orthogonal to the tensor format works and will adopt
a more compressed format for the sparse tensorX according
to SpTC operations.
Sparsematrix-matrixmultiplication. Sparsematrix-matrix
multiplication (SpGEMM) has been well-studied [2, 3, 6, 12,
20, 30, 43, 47–49]. Our hash table implementations can be im-
proved by using more advanced algorithms in [3, 44, 48, 49].
Datamanagement onheterogeneousmemory systems
attracts a lot of attention recently. Many research efforts [1,
13, 24, 25, 72, 74, 76, 81] use a software-based solution to track
data objects or page hotness to decide data placement on HM;
Many research efforts [42, 55, 70, 80] use a hardware-based
solution to profile memory accesses and decide data place-
ment on HM. All of those solutions use dynamic migration
and are application-agnostic. Sparta is different from them
in terms of static data placement and application awareness.

7 Conclusions
SpTC plays an important role in many applications. However,
how to efficiently implement SpTC faces multiple challenges,
such as unpredictable output size, time-consuming process
to handle irregular memory accesses, and massive memory
consumption. In this paper, we introduce Sparta, a high per-
formance SpTC algorithm to address the above challenges
based on the innovation of leveraging new data representa-
tion, data structures, and emerging HM architecture. Sparta
shows superior performance: evaluating with 15 datasets,
we show that Sparta brings 28 − 576× speedup over the
traditional sparse tensor contraction; With our algorithm-
and memory heterogeneity-aware data management, Sparta
brings extra performance improvement on HM built with
DRAM and PMM over a state-of-the-art software-based data
management solution, a hardware-based data management
solution and PMM-only by 30.7% (up to 98.5%), 10.7% (up to
28.3%) and 17% (up to 65.1%) respectively.

Acknowledgment
We thank Dr. Miles Stoudenmire and Dr. Matthew Fishman’s
help for using ITensor software and Dr. Ajay Panyala for
helping us obtain the Uracil tensor and cutoff information.

This research is partially funded by US National Science
Foundation (CNS-1617967, CCF-1553645 and CCF-1718194).
This research is also partially funded by the US Department
of Energy, Office for Advanced Scientific Computing (ASCR)
under Award No. 66150: "CENATE: The Center for Advanced
Technology Evaluation" and the Laboratory Directed Re-
search and Development program at PNNL under contract
No. ND8577. The Pacific Northwest National Laboratory
(PNNL) is a multiprogram national laboratory operated for
DOE by BattelleMemorial Institute under Contract DE-AC05-
76RL01830.

References
[1] Neha Agarwal and Thomas F. Wenisch. Thermostat: Application-

transparent page management for two-tiered main memory. In Pro-
ceedings of the Twenty-Second International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
2017, Xi’an, China, April 8-12, 2017, pages 631–644, 2017.

[2] Rasmus Resen Amossen, Andrea Campagna, and Rasmus Pagh. Better
size estimation for sparse matrix products. In Approximation, Random-
ization, and Combinatorial Optimization. Algorithms and Techniques,
pages 406–419. Springer, 2010.

[3] Pham Nguyen Quang Anh, Rui Fan, and Yonggang Wen. Balanced
hashing and efficient gpu sparse general matrix-matrix multiplication.
In Proceedings of the 2016 International Conference on Supercomputing,
pages 1–12, 2016.

[4] Edoardo Apra, Eric J Bylaska, Wibe A De Jong, Niranjan Govind, Karol
Kowalski, Tjerk P Straatsma, Marat Valiev, HJJ van Dam, Yuri Alexeev,
James Anchell, et al. Nwchem: Past, present, and future. The Journal
of chemical physics, 152(18):184102, 2020.

[5] Alexander A Auer, Gerald Baumgartner, David E Bernholdt, Alina
Bibireata, Venkatesh Choppella, Daniel Cociorva, Xiaoyang Gao,
Robert Harrison, Sriram Krishnamoorthy, Sandhya Krishnan, et al.
Automatic code generation for many-body electronic structure meth-
ods: the tensor contraction engine. Molecular Physics, 104(2):211–228,
2006.

[6] Ariful Azad, Grey Ballard, Aydin Buluc, James Demmel, Laura Grigori,
Oded Schwartz, Sivan Toledo, and Samuel Williams. Exploiting multi-
ple levels of parallelism in sparse matrix-matrix multiplication. SIAM
Journal on Scientific Computing, 38(6):C624–C651, 2016.

[7] Brett W. Bader, Tamara G. Kolda, et al. Matlab tensor toolbox version
3.1. Available online, June 2019.

[8] M. Baskaran, B. Meister, N. Vasilache, and R. Lethin. Efficient and scal-
able computations with sparse tensors. In High Performance Extreme
Computing (HPEC), 2012 IEEE Conference on, pages 1–6, Sept 2012.

[9] Venkatesan T. Chakaravarthy, Jee W. Choi, Douglas J. Joseph, Prakash
Murali, Shivmaran S. Pandian, Yogish Sabharwal, and Dheeraj Sreed-
har. On optimizing distributed Tucker decomposition for sparse ten-
sors. In Proceedings of the 32nd ACM International Conference on
Supercomputing, ICS ’18, 2018.

[10] Andrzej Cichocki. Era of big data processing: A new approach via
tensor networks and tensor decompositions. CoRR, abs/1403.2048,
2014.

[11] Edith Cohen. On optimizing multiplications of sparse matrices. In
International Conference on Integer Programming and Combinatorial
Optimization, pages 219–233. Springer, 1996.

[12] Mehmet Deveci, Christian Trott, and Sivasankaran Rajamanickam.
Performance-portable sparse matrix-matrix multiplication for many-
core architectures. In 2017 IEEE International Parallel and Distributed
Processing SymposiumWorkshops (IPDPSW), pages 693–702. IEEE, 2017.

[13] Subramanya R. Dulloor, Amitabha Roy, Zheguang Zhao, Narayanan
Sundaram, Nadathur Satish, Rajesh Sankaran, Jeff Jackson, and Karsten

328

PPoPP ’21, 2/27 – 3/3, 2021, Republic of Korea Jiawen Liu, Jie Ren, Roberto Gioiosa, Dong Li, and Jiajia Li

Schwan. Data Tiering in HeterogeneousMemory Systems. In European
Conference on Computer Systems, 2016.

[14] Evgeny Epifanovsky, Karol Kowalski, Peng-Dong Fan, Marat Valiev,
Spiridoula Matsika, and Anna I Krylov. On the electronically excited
states of uracil. The Journal of Physical Chemistry A, 112(40):9983–9992,
2008.

[15] Evgeny Epifanovsky, Michael Wormit, Tomasz Kuś, Arie Landau,
Dmitry Zuev, Kirill Khistyaev, Prashant Manohar, Ilya Kaliman, An-
dreas Dreuw, and Anna I Krylov. New implementation of high-level
correlated methods using a general block tensor library for high-
performance electronic structure calculations. Journal of computational
chemistry, 34(26):2293–2309, 2013.

[16] Tilman Esslinger. Fermi-hubbard physics with atoms in an optical
lattice. 2010.

[17] Matthew Fishman, Steven R.White, and E. Miles Stoudenmire. ITensor:
A C++ library for efficient tensor network calculations. Available from
https://github.com/ITensor/ITensor, August 2020.

[18] Matthew Fishman, Steven R White, and E Miles Stoudenmire. The
ITensor software library for tensor network calculations. arXiv preprint
arXiv:2007.14822, 2020.

[19] John R Gilbert, Cleve Moler, and Robert Schreiber. Sparse matrices in
matlab: Design and implementation. SIAM Journal on Matrix Analysis
and Applications, 13(1):333–356, 1992.

[20] Fred G Gustavson. Two fast algorithms for sparse matrices: Multiplica-
tion and permuted transposition. ACM Transactions on Mathematical
Software (TOMS), 4(3):250–269, 1978.

[21] Albert Hartono, Qingda Lu, Thomas Henretty, Sriram Krishnamoor-
thy, Huaijian Zhang, Gerald Baumgartner, David E Bernholdt, Marcel
Nooijen, Russell Pitzer, J Ramanujam, et al. Performance optimization
of tensor contraction expressions for many-body methods in quantum
chemistry. The Journal of Physical Chemistry A, 113(45):12715–12723,
2009.

[22] Thomas Hérault, Yves Robert, George Bosilca, Robert Harrison, Can-
nada Lewis, and Edward Valeev. Distributed-memory multi-GPU block-
sparse tensor contraction for electronic structure. PhD thesis, Inria-
Research Centre Grenoble–Rhône-Alpes, 2020.

[23] So Hirata. Tensor contraction engine: Abstraction and automated par-
allel implementation of configuration-interaction, coupled-cluster, and
many-body perturbation theories. The Journal of Physical Chemistry
A, 107(46):9887–9897, 2003.

[24] Takahiro Hirofuchi and Ryousei Takano. Raminate: Hypervisor-based
virtualization for hybrid main memory systems. In Proceedings of
the Seventh ACM Symposium on Cloud Computing, SoCC ’16, pages
112–125, New York, NY, USA, 2016. ACM.

[25] S. Kannan, A. Gavrilovska, V. Gupta, and K. Schwan. Heteroos —
os design for heterogeneous memory management in datacenter. In
2017 ACM/IEEE 44th Annual International Symposium on Computer
Architecture (ISCA), pages 521–534, June 2017.

[26] Daniel Kats and Frederick R Manby. Sparse tensor framework for
implementation of general local correlation methods. The Journal of
Chemical Physics, 138(14):144101, 2013.

[27] O. Kaya and B. Uçar. Parallel Candecomp/Parafac decomposition
of sparse tensors using dimension trees. SIAM Journal on Scientific
Computing, 40(1):C99–C130, 2018.

[28] Jinsung Kim, Aravind Sukumaran-Rajam, Changwan Hong, Ajay Pa-
nyala, Rohit Kumar Srivastava, Sriram Krishnamoorthy, and Pon-
nuswamy Sadayappan. Optimizing tensor contractions in ccsd (t)
for efficient execution on gpus. In Proceedings of the 2018 International
Conference on Supercomputing, pages 96–106, 2018.

[29] Jinsung Kim, Aravind Sukumaran-Rajam, Vineeth Thumma, Sriram Kr-
ishnamoorthy, Ajay Panyala, Louis-Noël Pouchet, Atanas Rountev, and
Ponnuswamy Sadayappan. A code generator for high-performance
tensor contractions on gpus. In 2019 IEEE/ACM International Sympo-
sium on Code Generation and Optimization (CGO), pages 85–95. IEEE,

2019.
[30] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and

Saman Amarasinghe. The tensor algebra compiler. Proc. ACM Program.
Lang., 1(OOPSLA):77:1–77:29, October 2017.

[31] Christoph Koppl and Hans-Joachim Werner. Parallel and low-order
scaling implementation of hartree–fock exchange using local density
fitting. Journal of chemical theory and computation, 12(7):3122–3134,
2016.

[32] Jean Kossaifi, Yannis Panagakis, Anima Anandkumar, and Maja Pantic.
TensorLy: Tensor learning in Python. CoRR, abs/1610.09555, 2018.

[33] Pai-Wei Lai, Kevin Stock, Samyam Rajbhandari, Sriram Krishnamoor-
thy, and Ponnuswamy Sadayappan. A framework for load balancing
of tensor contraction expressions via dynamic task partitioning. In
Proceedings of the International Conference on High Performance Com-
puting, Networking, Storage and Analysis, pages 1–10, 2013.

[34] Ryan Levy, Edgar Solomonik, and Bryan K Clark. Distributed-memory
dmrg via sparse and dense parallel tensor contractions. arXiv preprint
arXiv:2007.05540, 2020.

[35] Jiajia Li, Jee Choi, Ioakeim Perros, Jimeng Sun, and Richard Vuduc.
Model-driven sparse cp decomposition for higher-order tensors. In
2017 IEEE international parallel and distributed processing symposium
(IPDPS), pages 1048–1057. IEEE, 2017.

[36] Jiajia Li, Yuchen Ma, Chenggang Yan, and Richard Vuduc. Optimizing
sparse tensor times matrix on multi-core and many-core architectures.
In Proceedings of the Sixth Workshop on Irregular Applications: Archi-
tectures and Algorithms, IAˆ3 ’16, pages 26–33, Piscataway, NJ, USA,
2016. IEEE Press.

[37] Jiajia Li, Jimeng Sun, and Richard Vuduc. HiCOO: Hierarchical stor-
age of sparse tensors. In Proceedings of the ACM/IEEE International
Conference on High Performance Computing, Networking, Storage and
Analysis (SC), Dallas, TX, USA, November 2018.

[38] Jiajia Li, Bora Uçar, Ümit V. Çatalyürek, Jimeng Sun, Kevin Barker, and
Richard Vuduc. Efficient and effective sparse tensor reordering. In
Proceedings of the ACM International Conference on Supercomputing,
ICS ’19, pages 227–237, New York, NY, USA, 2019. ACM.

[39] Lingjie Li, Wenjian Yu, and Kim Batselier. Faster tensor train decom-
position for sparse data. arXiv preprint arXiv:1908.02721, 2019.

[40] Rui Li, Aravind Sukumaran-Rajam, Richard Veras, Tze Meng Low,
Fabrice Rastello, Atanas Rountev, and P Sadayappan. Analytical cache
modeling and tilesize optimization for tensor contractions. In Proceed-
ings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–13, 2019.

[41] Bangtian Liu, Chengyao Wen, Anand D Sarwate, and Maryam Mehri
Dehnavi. A unified optimization approach for sparse tensor operations
on gpus. In 2017 IEEE international conference on cluster computing
(CLUSTER), pages 47–57. IEEE, 2017.

[42] Jiawen Liu, Hengyu Zhao, Matheus A Ogleari, Dong Li, and Jishen
Zhao. Processing-in-memory for energy-efficient neural network
training: A heterogeneous approach. In 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 655–668.
IEEE, 2018.

[43] Weifeng Liu and Brian Vinter. An efficient gpu general sparse matrix-
matrix multiplication for irregular data. In 2014 IEEE 28th International
Parallel and Distributed Processing Symposium, pages 370–381. IEEE,
2014.

[44] Baotong Lu, Xiangpeng Hao, Tianzheng Wang, and Eric Lo. Dash:
scalable hashing on persistentmemory. arXiv preprint arXiv:2003.07302,
2020.

[45] Samuel Manzer, Evgeny Epifanovsky, Anna I Krylov, and Martin Head-
Gordon. A general sparse tensor framework for electronic structure
theory. Journal of chemical theory and computation, 13(3):1108–1116,
2017.

[46] Devin Matthews. High-performance tensor contraction without BLAS.
CoRR, abs/1607.00291, 2016.

329

https://github.com/ITensor/ITensor

Sparta: High-Performance, Element-Wise Sparse Tensor Contraction on Heterogeneous Memory PPoPP ’21, 2/27 – 3/3, 2021, Republic of Korea

[47] Yusuke Nagasaka, Satoshi Matsuoka, Ariful Azad, and Aydın Buluç.
High-performance sparse matrix-matrix products on intel knl and mul-
ticore architectures. In Proceedings of the 47th International Conference
on Parallel Processing Companion, pages 1–10, 2018.

[48] Yusuke Nagasaka, Satoshi Matsuoka, Ariful Azad, and Aydın Buluç.
Performance optimization, modeling and analysis of sparse matrix-
matrix products on multi-core and many-core processors. Parallel
Computing, 90:102545, 2019.

[49] Yusuke Nagasaka, Akira Nukada, and Satoshi Matsuoka. High-
performance and memory-saving sparse general matrix-matrix multi-
plication for nvidia pascal gpu. In 2017 46th International Conference
on Parallel Processing (ICPP), pages 101–110. IEEE, 2017.

[50] Israt Nisa, Jiajia Li, Aravind Sukumaran-Rajam, Prasant Singh Rawat,
Sriram Krishnamoorthy, and P. Sadayappan. An efficient mixed-mode
representation of sparse tensors. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’19, pages 49:1–49:25, New York, NY, USA, 2019. ACM.

[51] Israt Nisa, Jiajia Li, Aravind Sukumaran-Rajam, Richard Vuduc, and
P Sadayappan. Load-balanced sparse mttkrp on gpus. In 2019 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
pages 123–133. IEEE, 2019.

[52] David Ozog, Jeff R Hammond, James Dinan, Pavan Balaji, Sameer
Shende, and Allen Malony. Inspector-executor load balancing algo-
rithms for block-sparse tensor contractions. In 2013 42nd International
Conference on Parallel Processing, pages 30–39. IEEE, 2013.

[53] Chong Peng, Justus A Calvin, Fabijan Pavosevic, Jinmei Zhang, and
Edward F Valeev. Massively parallel implementation of explicitly corre-
lated coupled-cluster singles and doubles using tiledarray framework.
The Journal of Physical Chemistry A, 120(51):10231–10244, 2016.

[54] Ioakeim Perros, Evangelos E. Papalexakis, Fei Wang, Richard Vuduc,
Elizabeth Searles, Michael Thompson, and Jimeng Sun. SPARTan:
Scalable PARAFAC2 for large & sparse data. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’17, pages 375–384, New York, NY, USA, 2017. ACM.

[55] Luiz E. Ramos, Eugene Gorbatov, and Ricardo Bianchini. Page Place-
ment in Hybrid Memory Systems. In International Conference on
Supercomputing (ICS), May 2011.

[56] Jie Ren, Jiaolin Luo, Kai Wu, Minjia Zhang, Hyeran Jeon, and Dong Li.
Sentinel: Efficient Tensor Migration and Allocation on Heterogeneous
Memory Systems for Deep Learning. In IEEE International Symposium
on High Performance Computer Architecture, 2021.

[57] Jie Ren, Minjia Zhang, and Dong Li. HM-ANN: Efficient Billion-Point
Nearest Neighbor Search on Heterogeneous Memory. In Neurips, 2020.

[58] Christoph Riplinger, Peter Pinski, Ute Becker, Edward F Valeev, and
Frank Neese. Sparse maps—a systematic infrastructure for reduced-
scaling electronic structure methods. ii. linear scaling domain based
pair natural orbital coupled cluster theory. The Journal of chemical
physics, 144(2):024109, 2016.

[59] Chase Roberts, Ashley Milsted, Martin Ganahl, Adam Zalcman, Bruce
Fontaine, Yijian Zou, Jack Hidary, Guifre Vidal, and Stefan Leichenauer.
Tensornetwork: A library for physics and machine learning. arXiv
preprint arXiv:1905.01330, 2019.

[60] Yang Shi, Uma Naresh Niranjan, Animashree Anandkumar, and Cris
Cecka. Tensor contractions with extended blas kernels on cpu and
gpu. In 2016 IEEE 23rd International Conference on High Performance
Computing (HiPC), pages 193–202. IEEE, 2016.

[61] Ilia Sivkov, Patrick Seewald, Alfio Lazzaro, and Jürg Hutter. DBCSR: A
blocked sparse tensor algebra library. arXiv preprint arXiv:1910.13555,
2019.

[62] Shaden Smith, Jee W Choi, Jiajia Li, Richard Vuduc, Jongsoo Park,
Xing Liu, and George Karypis. Frostt: The formidable repository of
open sparse tensors and tools, 2017.

[63] Shaden Smith and George Karypis. A medium-grained algorithm for
distributed sparse tensor factorization. In Parallel and Distributed

Processing Symposium (IPDPS), 2016 IEEE International. IEEE, 2016.
[64] Shaden Smith and George Karypis. Accelerating the Tucker decom-

position with compressed sparse tensors. In European Conference on
Parallel Processing. Springer, 2017.

[65] Shaden Smith, Niranjay Ravindran, Nicholas Sidiropoulos, and George
Karypis. SPLATT: Efficient and parallel sparse tensor-matrix mul-
tiplication. In Proceedings of the 29th IEEE International Parallel &
Distributed Processing Symposium, IPDPS, 2015.

[66] Edgar Solomonik, DevinMatthews, Jeff Hammond, and James Demmel.
Cyclops tensor framework: Reducing communication and eliminating
load imbalance in massively parallel contractions. In 2013 IEEE 27th
International Symposium on Parallel and Distributed Processing, pages
813–824. IEEE, 2013.

[67] Edgar Solomonik, Devin Matthews, Jeff R Hammond, John F Stanton,
and James Demmel. Amassively parallel tensor contraction framework
for coupled-cluster computations. Journal of Parallel and Distributed
Computing, 74(12):3176–3190, 2014.

[68] N. Vervliet, O. Debals, L. Sorber, M. Van Barel, and L. De Lathauwer.
Tensorlab (Version 3.0). Available from http://www.tensorlab.net,
March 2016.

[69] Richard Wilson Vuduc and James W Demmel. Automatic performance
tuning of sparse matrix kernels, volume 1. University of California,
Berkeley Berkeley, CA, 2003.

[70] Wei Wei, Dejun Jiang, Sally A. McKee, Jin Xiong, and Mingyu Chen.
Exploiting Program Semantics to Place Data in Hybrid Memory. In
PACT, 2015.

[71] Wikipedia. Hash table. https://en.wikipedia.org/wiki/Hash_table, July
2020.

[72] Kai Wu, Yingchao Huang, and Dong Li. Unimem: Runtime data man-
agementon non-volatile memory-based heterogeneous main memory.
In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 1–14, 2017.

[73] Kai Wu, Jie Ren Ivy Peng, and Dong Li. ArchTM: Architecture-Aware,
High Performance Transaction for Persistent Memory. In USENIX
Conference on File and Storage Technologies, 2021.

[74] Kai Wu, Jie Ren, and Dong Li. Runtime Data Management on Non-
Volatile Memory-Based Heterogeneous Memory for Task Parallel Pro-
grams. In ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, 2018.

[75] Kai Wu, Jie Ren, and Dong Li. Runtime data management on non-
volatile memory-based heterogeneous memory for task-parallel pro-
grams. In Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage, and Analysis, page 31. IEEE
Press, 2018.

[76] Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee.
Nimble page management for tiered memory systems. In Proceedings
of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS ’19, pages
331–345, New York, NY, USA, 2019. ACM.

[77] Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee.
Nimble Page Management for Tiered Memory Systems. In ASPLOS,
2019.

[78] Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee.
Repository of Nimble PageManagement for TieredMemory Systems in
ASPLOS2019. Available from https://github.com/ysarch-lab/nimble_
page_management_asplos_2019, July 2020.

[79] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and
Steve Swanson. An empirical guide to the behavior and use of scalable
persistent memory. In 18th USENIX Conference on File and Storage
Technologies (FAST 20), 2020.

[80] HanBin Yoon, Justin Meza, Rachata Ausavarungnirun, Rachael A Hard-
ing, and Onur Mutlu. Row buffer locality aware caching policies for
hybrid memories. In 2012 IEEE 30th International Conference on Com-
puter Design (ICCD), pages 337–344. IEEE, 2012.

330

http://www.tensorlab.net
https://github.com/ysarch-lab/nimble_page_management_asplos_2019
https://github.com/ysarch-lab/nimble_page_management_asplos_2019

PPoPP ’21, 2/27 – 3/3, 2021, Republic of Korea Jiawen Liu, Jie Ren, Roberto Gioiosa, Dong Li, and Jiajia Li

[81] Seongdae Yu, Seongbeom Park, and Woongki Baek. Design and Im-
plementation of Bandwidth-aware Memory Placement and Migration
Policies for Heterogeneous Memory Systems. In International Confer-
ence on Supercomputing (ICS), 2017.

331

Sparta: High-Performance, Element-Wise Sparse Tensor Contraction on Heterogeneous Memory PPoPP ’21, 2/27 – 3/3, 2021, Republic of Korea

A Appendix
The sparse tensors are derived from Hubbard-2D in ITen-
sor and summarized in Table 4 which includes the order,
dimensions, #Non-zeros, density and #Blocks of both input
tensors.

B Artifact Appendix
B.1 Build requirements

• GNU Compiler (GCC) (>=v7.5)
• CMake (>=v3.0)
• OpenBLAS
• NUMA

You may use the following steps to install the required
libraries:

• OpenBLAS
git clone https://github.com/xianyi/OpenBLAS
cd OpenBLAS
make -j
mkdir path/to/OpenBLAS_install
make install PREFIX=path/to/OpenBLAS_install
Append export OpenBLAS_DIR=path/to/OpenBLAS_install
to /.bashrc

• CMake
sudo apt-get install cmake

• NUMA
sudo apt-get install libnuma-dev
sudo apt-get install numactl

B.2 Download and Set Up Projects
Download

git clone https://github.com/pnnl/HiParTI/tree/sparta (Sparta)
git clone https://gitlab.com/jiawenliu64/ial (IAL)
git clone https://gitlab.com/jiawenliu64/tensors (Datasets)

Build
cd sparta & ./build.sh

Set the Path Environments
You can execute the commands, e.g., export SPARTA_DIR=

path/to/sparta, prior to the execution or append these com-
mands to /.bashrc.

SPARTA_DIR (path/to/sparta, e.g., /home/ae/sparta)
IAL_SRC (path/to/IAL, e.g., /home/ae/ial/src)
TENSOR_DIR (path/to/tensors, /home/ae/tensors)
You can execute a command like "export EXPERIMENT_

MODES=x" to set up the environment variable for different
test purposes. (This step has been included in our scripts
below, so you don’t need to explicitly specify it.)

export EXPERIMENT_MODES=0: COOY + SPA
export EXPERIMENT_MODES=1: COOY + HtA
export EXPERIMENT_MODES=3: HtY + HtA
export EXPERIMENT_MODES=4: HtY + HtA on Optane

A Test Run
On a general multicore CPU server with Linux:
./sparta/run/test_run.sh

On a server with Intel Optane DC PMM:
./sparta/run_optane/test_run.sh

B.3 More Support
Tensor Contraction Parameters

You can check the parameters options with path/to/sparta/
build/ttt –help

Options:
-X FIRST INPUT TENSOR
-Y FIRST INPUT TENSOR
-Z OUTPUT TENSOR (Optinal)
-m NUMBER OF CONTRACT MODES
-x CONTRACT MODES FOR TENSOR X (0-based)
-y CONTRACT MODES FOR TENSOR Y (0-based)
-t NTHREADS, –nt=NT (Optinal)
–help

B.4 ITensor Results Generation
We have generated the sparse tensors and performance from
ITensor library and stored them in itensor/results. If you
want to recollect all these tensors, you can use the following
steps.

• git clone https://gitlab.com/jiawenliu64/itensor (forked
from ITensor repo, also provided in the "Artifact down-
load URL" in the PPoPP AE submission.)

• export ITENSOR_DIR=path/to/itensor
• mkdir path/to/itensor_results & export ITENSOR_RES
ULTS=path/to/itensor_results

• cd $ITENSOR_DIR & run.sh
• cd $ITENSOR_DIR/hubbard & OMP_NUM_THREADS
=12 ./main ’parity’ 1. After the execution, all results are
stored in $ITENSOR_RESULTS. The result (execution
time) is included in the second line of each generated
file (e.g., tensor_2137.txt).

If you also want to convert the data to the .bin format
as they are shown in path/to/itensor/results, you can use
the following steps to process data using SPLATT, another
sparse tensor library.

• git clone https://github.com/ShadenSmith/splatt
• ./configure –prefix=SPLATT_DIR & make & make in-
stall

• Replace all Block in tensor A to A-Block. For exam-
ple, in vim, you can execute x,ys/Block/A-Block/g to
replace from line x to line y.

• Replace all Block in tensor B to B-Block. For exam-
ple, in vim, you can execute x,ys/Block/B-Block/g to
replace from line x to line y.

• python path/to/sparta/output_scripts/gen_tns_itensor.py
path/to/itensor_results/tensor_x.txt 0.00000001 for data
tensor_x.

• path/to/splatt/build/Linux-x86_64/bin/splatt convert -
t bin path/to/itensor_results/tensor_x_A.tns path/to/it
ensor_results/tensor_x_A.bin for A in x.

332

https://github.com/pnnl/HiParTI/tree/sparta
https://gitlab.com/jiawenliu64/ial
https://gitlab.com/jiawenliu64/tensors

PPoPP ’21, 2/27 – 3/3, 2021, Republic of Korea Jiawen Liu, Jie Ren, Roberto Gioiosa, Dong Li, and Jiajia Li

Table 4. Characteristics of tensors of ITensor in the evaluation.
SpTC Tensors Order Dimensions #Non-zeros Density #Blocks Tensors Order Dimensions #Non-zeros Density #Blocks

1 X 5 129 × 4 × 184 × 24 × 4 109287 4.8 × 10−3 10453 Y 4 24 × 36 × 4 × 4 360 6.9 × 10−3 218
2 X 5 129 × 4 × 184 × 24 × 4 114877 5.0 × 10−3 12044 Y 4 24 × 36 × 4 × 4 360 6.9 × 10−3 218
3 X 5 4 × 129 × 184 × 24 × 4 114877 5.0 × 10−3 12044 Y 4 24 × 36 × 4 × 4 360 6.9 × 10−3 218
4 X 5 4 × 131 × 4 × 24 × 413 262218 6.3 × 10−3 12345 Y 4 24 × 36 × 4 × 4 360 6.9 × 10−3 218
5 X 5 131 × 4 × 413 × 36 × 4 377629 4.8 × 10−3 17594 Y 4 36 × 24 × 4 × 4 360 5.9 × 10−3 218
6 X 5 4 × 131 × 4 × 24 × 413 268813 6.4 × 10−3 13288 Y 4 24 × 36 × 4 × 4 360 6.9 × 10−3 218
7 X 5 131 × 4 × 413 × 36 × 4 388132 5.2 × 10−3 19367 Y 4 36 × 24 × 4 × 4 360 5.9 × 10−3 218
8 X 5 4 × 4 × 131 × 24 × 413 268813 6.5 × 10−3 13288 Y 4 24 × 36 × 4 × 4 360 6.9 × 10−3 218
9 X 5 4 × 131 × 413 × 36 × 4 388132 5.2 × 10−3 19367 Y 4 36 × 24 × 4 × 4 360 5.9 × 10−3 218
10 X 5 4 × 110 × 4 × 36 × 486 396193 6.4 × 10−3 17152 Y 4 36 × 24 × 4 × 4 360 5.9 × 10−3 218

• path/to/splatt/build/Linux-x86_64/bin/splatt convert
-t bin path/to/itensor_results/tensor_x_B.tns path/to/it
ensor_results/tensor_x_B.bin for B in x.

333

	Abstract
	1 Introduction
	2 Background
	2.1 Sparse Tensors
	2.2 Sparse Tensor Contraction
	2.3 Intel Optane DC Persistent Memory Module

	3 Sparse Tensor Contraction Algorithm
	3.1 Overview
	3.2 Sparse Accumulator for High-order Sparse Tensors
	3.3 Hash Table-Represented Sparse Tensor
	3.4 Hash Table-based Sparse Accumulator
	3.5 Parallelization

	4 Data Placement on PMM-based Heterogeneous Memory Systems
	4.1 Characterization Study
	4.2 Data Placement Strategy

	5 Evaluation
	5.1 Evaluation Setup
	5.2 Overall Performance
	5.3 Performance Comparison to ITensor
	5.4 Thread Scalability
	5.5 Sparta on Heterogeneous Memory Systems

	6 Related Work
	7 Conclusions
	References
	A Appendix
	B Artifact Appendix
	B.1 Build requirements
	B.2 Download and Set Up Projects
	B.3 More Support
	B.4 ITensor Results Generation

