
An Efficient Mixed-Mode Representation of Sparse Tensors
Israt Nisa

Ohio State University
nisa.1@osu.edu

Jiajia Li
Pacific Northwest National

Laboratory
Jiajia.Li@pnnl.gov

Aravind Sukumaran-Rajam
Ohio State University

sukumaranrajam.1@osu.edu

Prasant Singh Rawat
Ohio State University
rawat.15@osu.edu

Sriram Krishnamoorthy
Pacific Northwest National

Laboratory
sriram@pnnl.gov

P. Sadayappan
University of Utah
saday@cs.utah.edu

ABSTRACT
The Compressed Sparse Fiber (CSF) representation for sparse ten-
sors is a generalization of the Compressed Sparse Row (CSR) format
for sparse matrices. For a tensor with d modes, typical tensor meth-
ods such as CANDECOMP/PARAFAC decomposition (CPD) require
a sequence of d tensor computations, where efficient memory ac-
cess with respect to different modes is required for each of them.
The straightforward solution is to use d distinct representations of
the tensor, with each one being efficient for one of the d computa-
tions. However, a d-fold space overhead is often unacceptable in
practice, especially with memory-constrained GPUs. In this paper,
we present a mixed-mode tensor representation that partitions the
tensor’s nonzero elements into disjoint sections, each of which
is compressed to create fibers along a different mode. Experimen-
tal results demonstrate that better performance can be achieved
while utilizing only a small fraction of the space required to keep d
distinct CSF representations.

CCS CONCEPTS
• Theory of computation → Parallel algorithms;

KEYWORDS
Sparse tensors, MTTKRP, GPU, CANDECOMP/PARAFAC decom-
position

ACM Reference Format:
Israt Nisa, Jiajia Li, Aravind Sukumaran-Rajam, Prasant Singh Rawat, Sri-
ram Krishnamoorthy, and P. Sadayappan. 2019. An Efficient Mixed-Mode
Representation of Sparse Tensors. In The International Conference for High
Performance Computing, Networking, Storage, and Analysis (SC ’19), No-
vember 17–22, 2019, Denver, CO, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3295500.3356216

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SC ’19, November 17–22, 2019, Denver, CO, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6229-0/19/11. . . $15.00
https://doi.org/10.1145/3295500.3356216

1 INTRODUCTION
Tensors are multidimensional data commonly used in machine
learning [2], text analysis [4], healthcare analytics [16], [17], telecom-
munications [36], [37], and numerous other applications. Tensors
are useful because they provide a generalization of storing data for
arbitrary number of dimensions, where each dimension is termed
a mode. Real world tensors are extremely large and sparse, with
high irregularity in shape and distribution of nonzeros. Unlike
their dense counterparts, sparse tensors need a compressed storage
format to be space efficient.

There exists a vast research history on efficiently representing
sparse matrices, which are special tensors with two modes. A natu-
ral way of representing sparse matrices is to just store the indices
for the non-zero elements, along with its value. One can further
optimize the storage by reusing the same row pointer for all the
non-zeros in the same row. This format is called Compressed Sparse
Row (CSR), and is universally regarded as the de facto represen-
tation for sparse matrices. For hyper-sparse matrices with many
empty rows, Doubly Compressed Sparse Row (DCSR) format [10]
further compresses CSR by storing the row pointers for only the
non-empty rows. Compressed Sparse Fiber (CSF) is a generalization
of CSR (or DCSR) for higher dimensional tensors.

A full iteration of CANDECOMP/PARAFACdecomposition (CPD)
or Tucker Decomposition requires performing Matricized Tensor
Times Khatri-Rao Products (MTTKRP), or Tensor-Times-Matrix
products (TTM) on every mode. Therefore, many state-of-the-art
tensor factorization frameworks create a compact representation of
a tensor at each mode to achieve an overall high performance. For
illustration, consider an application that performs sparse matrix-
vector multiplication (SpMV),y = Ax , in tandemwith sparsematrix-
transpose-vector multiplication (SpMTV), z = AT x . If A is stored
in CSR format, then parallelism can be achieved across rows while
computing y = Ax . However, computing z = AT x with CSR would
require explicit locks or atomic operations to update z. Similarly,
storing A in Compressed Sparse Column (CSC) format will achieve
parallelism for z = AT x , but introduce atomics for y = Ax . Explicit
synchronization is usually prohibitively expensive on multiple ar-
chitectures, including GPUs. A naïve solution to this conundrum is
to store A in both CSR and CSC formats. The same logic extends
to tensors: to achieve parallelism and efficient accesses across d
modes, d representations of the tensor are maintained. Clearly, the
storage overhead will increase with the number of modes, making
this solution impractical for higher order tensors.

https://doi.org/10.1145/3295500.3356216
https://doi.org/10.1145/3295500.3356216
https://www.acm.org/publications/policies/artifact-review-badging/#available

SC ’19, November 17–22, 2019, Denver, CO, USA Nisa et al.

This paper attempts to reconcile two conflicting objectives: re-
ducing the overall storage overhead for tensors by using a single
representation for all the modes, and achieving equal or better
performance compared to the naïve approach of storing d repre-
sentations. A previous effort in this direction by Smith et al. was
proposed in the SPLATT library [32] – given d CSF representations
for d modes, their implementation selects the CSF where the short-
est dimension is at the outermost level as the only representative.
Computation on all the modes will use the same representative
CSF. We term this storage method SPLATT-ONE, in contrast to
SPLATT-ALL, which represents the strategy of creating a different
CSF representation for each mode. Even though selecting one out
of d CSF representations is an easy technique to reduce storage
overhead, often further analysis in identifying the sparsity structure
of the real-world tensors can further improve both parallelism and
compression.

In this paper, we propose a novel mixed-mode format termed
MM-CSF, where long fibers1 on each mode are first identified and
then stored on their most suitable modes. Doing so achieves bet-
ter compression, which not only reduces space requirement, but
also provides performance improvement. Revisiting the illustrative
example, while performing SpMV (SpMTV) with the mixed-mode
format, the nonzeros in the CSR (CSC) representation can exploit
the parallelism and compression in the long rows (columns), and the
rest of the nonzeros in the CSC (CSR) representation will require
atomics. Figure 1 further elucidates our insight behind mixed-mode.
The matrix in the figure is sparse, with only one non-empty row
and column. Using either CSR or CSC representation would require
storing 38 elements in row pointers, column indices, and nonzeros;
simultaneously maintaining both CSR and CSC representations for
efficient computationwould require storing 76 elements. In contrast,
the mixed-mode format will store the dense row in CSR format, and
the dense column in CSC format, reducing the overall storage to 32
elements. Furthermore, as illustrated later in the paper, mixed-mode
storage incurs fewer global memory transactions due to better com-
pression when compared to SPLATT-ONE, and uncovers a scope
for finer grained parallelism when compared to SPLATT-ALL. In
summary, this work makes the following contributions.
• It proposes MM-CSF, a novel storage format that exploits
the underlying sparsity structure of real-world tensors, and
provides compact storage without compromising on compu-
tational efficiency of tensor operations.
• It provides experimental data demonstrating that compared
to the storage formats used in the state-of-the-art CPU frame-
works, MM-CSF can save up to 75% space, while improving
MTTKRP performance by up to 63×.
• On a NVIDIA Volta GPU, it demonstrates that MM-CSF out-
performs the state-of-the-art GPU storage format, BCSF [26],
by up to a factor of 2× in computing MTTKRP, and reduces
up to 85% of the space requirement.

The rest of the paper is organized as follows. Section 2 describes
the tensor notations and gives an overview of tensor decomposition.
Section 3 gives a brief overview of the sparse tensor storage for-
mats used by the state-of-the-art tensor factorization frameworks.

1Generalization of matrix rows and columns, created by holding all but one index
constant.

Figure 1: Scope of compression using mixed-mode represen-
tation in a matrix

Terminologies Description
X Tensor
d Tensor order
M Number of nonzeros in X
Sn Number of slices in X on mode-n
Fn Number of fibers in X on mode-n

FB−n Number of fibers in BCSF on mode-n
A,B ,C Factor matrices
R Tensor rank

CSF-n CSF representation of X on mode-n
*-ALL Implementation with d different CSF representations of X
*-ONE Implementation with one CSF representation of X
MM-CSF Mixed-mode single CSF representation of X

Table 1: Tensor notations

Sections 4 and 5 discuss our proposed MM-CSF representation in
detail and describe the acceleration of MTTKRP computation on
GPUs with the MM-CSF representation. Section 6 presents experi-
mental evaluation, Section 7 discusses the related work, and Section
8 concludes.

2 TENSOR BACKGROUND
2.1 Tensor Notation
The tensor notations used in this paper are adapted from Kolda
and Sun [21]. We represent tensors as X. Let us assume that X is a
third-order tensor of dimension I × J ×K , and the rank of the tensor
is R. The dimensions of a tensor are also known as modes. This
third-order tensor X can be decomposed into three factor matrices,
A ∈ RI×R ,B ∈ RJ×R , and C ∈ RK×R . The nonzero elements of X
can be represented as a list of coordinates, ⟨i,j,k,vals⟩. Individual
elements of X are expressed as Xi jk .

Fibers are vectors generated by fixing all but one index con-
stant.X:, j,k ,Xi, :,k .,Xi, j, : are the examples of fibers. Similarly, slices
are generated by fixing all but two indices constant, e.g., X:, :,k ,
X:, j, :, and Xi, :, :. Throughout the paper, we append ‘-ONE’ (or ‘-
ALL’) to the names of current state-of-the-art tensor factorization
frameworks/implementations that maintain one (or d) CSF repre-
sentation(s) of the input tensor. Table 1 summarizes the rest of the
terminologies used throughout the paper.

An Efficient Mixed-Mode Representation of Sparse Tensors SC ’19, November 17–22, 2019, Denver, CO, USA

Algorithm 1: CPD-ALS for third-order tensors
Input :X ∈ RI×J×K
Output :A ∈ RI×R , B ∈ RJ×R , C ∈ RK×R

1 for iter = 1 to outer iters or convergence do
2 ▷ MTTKRP on mode-0
3 Y1 ← X (1) (C ⊙ B)
4 A← Y1 (BT B * CT C)†

5 normalize columns of A
6 ▷ MTTKRP on mode-1
7 Y2 ← X (2) (C ⊙ A)
8 B← Y2 (ATA * CT C)†

9 normalize columns of B
10 ▷ MTTKRP on mode-2
11 Y3 ← X (3) (B ⊙ A)
12 C← Y2 (ATA * BT B)†

13 normalize columns of C
14 return A, B, C

2.2 CANDECOMP/PARAFAC Decomposition
and MTTKRP

CPD is the higher level generalization of Singular Value Decom-
position (SVD), a popular matrix decomposition technique. CPD
decomposes a tensor into a sum of component rank-one tensors.
For example, the third-order tensor X is decomposed to ar ∈ RI ,
br ∈ R

J and cr ∈ R
K , where ar , br , br are the rank-one compo-

nents of the factor matrices A, B and C respectively [21]. We can
express the decomposition as:

X ≈

R∑
r=1

ar ◦ br ◦ cr (1)

We implement the alternating least squares (ALS) algorithm [11],
[15] to perform CPD in this work, which is also known as the
workhorse algorithm of it [21]. ALS aims to approximate X and
minimize | |X − X̃| |. X̃ is the approximated tensor generated from
the factor matrices (refer to Equation (1)). ALS solves one matrix
at a time while holding the others constant. For example, while
updatingA, matrices B andC will be fixed. The update computation
can be described as:

A = X (1) (C ⊙ B) (BT B ∗CTC)†. (2)
The term X (1) (C ⊙ B) represents Khatri-Rao product between X (1) ,
B, and C; the algorithm computing it is known as the MTTKRP
(Matricized Tensor Times Khatri-Rao Product). X (1) is the mode-1
matricization of X. The output of the Khatri-Rao product is then
multiplied with (BT B ∗CTC)†, which is the pseudo-inverse of the
R×R matrix generated by BT B andCTC . Algorithm 1 demonstrates
the steps to update each matrix using the ALS algorithm. Line 3,
Line 7, and Line 11 show the MTTKRP operations to update A, B,
andC respectively. MTTKRP is the performance bottleneck in CPD,
primarily due to the access to the large, sparse tensor X, and the
scattered access to the factor matrices directed from X.

2.3 The Optimized MTTKRP Algorithm
In theMTTKRP computation, if (C⊙B) is computed separately, then
the resulting dense JK × R matrix could cause memory overflow.

Figure 2: Storage formats of an illustrative sparse tensor

One way to avoid this issue is proposed by Kang et al. [19], which
uses operator distributivity to compute the Hadamard products
between B and X, and C and X. Based on this algorithm, Smith et
al. [31] provide an optimized formulation to save flops and memory
accesses, as shown below:

Y1 (i, :) =
K−1∑
k=0

J−1∑
j=0

X (i, j,k) (B (j, :) ∗C (k, :)) (3)

=

K−1∑
k=0

C (k, :) ∗
J−1∑
j=0

X (i, j,k) ∗ (B (j, :)) (4)

In Equation (4), each X(i, :,k) fiber has a scope to save R (J − 1)
multiplications.

3 SPARSE TENSOR FORMATS
There are two primary families of sparse tensor formats: coordinate-
based and tree-based. A straightforward approach to represent a
sparse tensor is to store, for each nonzero, its indices along each
dimension and the value. This storage format is called COO (Coor-
dinate) format. Recently, Li et al. [23] proposed Hierarchical COO
(HiCOO) format based on COO, which further compresses indices
by multi-level blocking. Flagged-COO format [25] also belongs to
the coordinate family. The tree-based format family compresses
the sparse tensor indices into a “tree structure”. CSF, proposed by
Smith et al. [35], and BCSF, proposed by Nisa et al. [26], belong to
this family. Since the tree-based formats are the focus of this work,
we now analyze CSF and BCSF formats in terms of storage, float-
ing point operations, memory access, and the number of required
representations.

3.1 Storage and Floating Point Operations
Figure 2 shows the data structures of COO, CSF, and BCSF for a
third-order tensor. COO requires 3 × 4 ×M bytes to store the in-
dices, where M is the total number of nonzeros, and each index is
a 4-byte integer. CSF organizes the dimension of the tensor in a
hierarchical manner and compresses repetitive indices. As shown
in the CSF tree in Figure 2(b), the leaves at the lowest level store the
indices of theM nonzeros at K dimension. The nonzeros sharing
the same indices at J dimension are compressed to F fibers, and the
fibers sharing the same indices at I dimension are grouped into S
slices/roots. This particular hierarchical organization can be repre-
sented as I → J → K . In general, such hierarchical organizations
are called mode orientation. Thus, a tensor with S slices, F fibers,
andM nonzeros requires 4 × (2S + 2F +M) bytes to represent its
indices. For slices and fibers, two arrays are maintained to store

SC ’19, November 17–22, 2019, Denver, CO, USA Nisa et al.

Algorithm 2: slice-alg: MTTKRP using BCSF for third-order
tensors on GPUs [26]
Input : slicePtr[S], sliceInds[S], fiberPtr[FB], fiberInds[FB], indK[M],

vals[M], dense matrices B[J][R], C[K][R]
Output : dense matrix Ã[I][R]

1 ▷ slices-parallel across thread-blocks
2 for slice = 0 to S do
3 i = sliceInds[slice]
4 ▷ fibers-parallel across warps
5 for fiber = slicePtr[slice] to slicePtr[slice + 1] do
6 j = f iber Inds[fiber]
7 ▷ nonzeros-cyclically processed by warps
8 for z = fiberPtr[fiber] to fiberPtrB [fiber + 1] do
9 k = indK[z]

10 ▷ rank-parallel across threads
11 for r = 0 to R do
12 tmp[r]+ = vals[z] ∗C[k][r] ▷ register accumulation
13 for r = 0 to R do
14 tmp_2[r]+ = tmp[r] ∗ B[j][r] ▷ register accumulation
15 for r = 0 to R do
16 Ã[i][r]+ = tmp_2[r] ▷ Atomic writes
17 return Ã

Algorithm 3: MTTKRP using d representations on d modes
for an order-d tensor
Input : indI [M], indJ[M], indK[M], vals[M]
Output : Ã[I][R], B̃[J][R], C̃[K][R]

1 ▷ create CSFs
2 for mode = 0 to d − 1 do
3 CSF[mode] = create_CSF (mode)
4 ▷ execute MTTKRP
5 for mode = 0 to d − 1 do
6 slice-alg (CSF[mode])

their pointers and indices. SPLATT [35] library provides a highly
optimized MTTKRP implementation using CSF data structures on
the CPU. Figure 2(c) shows the balanced CSF structure. BCSF [26]
extends CSF to GPU platforms, and provides a balanced data struc-
ture to store the CSF. The nonzero elements per fiber and per slice
might vary significantly across a tensor. BCSF splits the heavy fibers
into sub-fibers and creates FB fibers, where FB ≥ F . The slices are
grouped into multiple bins based on their length; each bin will have
a different number of thread blocks assigned to one slice. BCSF in-
creases GPU occupancy significantly with load balancing and other
relevant optimizations [26]. Algorithm 2 shows the computation
of MTTKRP on mode-0 to update A using BCSF. The first for loop
as shown in Line 2 will iterate over all the slices; each slice will in
turn iterate over its fibers in Line 2. Each nonzero element of the
fibers will perform a multiplication with the corresponding row of
C . The product will then be multiplied with the corresponding row
of B (Line 10) and written back to the row of A (Line 16).

In real-world tensors, S ≪ M and F ≪ M . Hence, CSF-based
structures have a potential to reduce the floating point operations
as well. As shown in Equation (4), and also in Algorithm 2, R (J − 1)
flops can be saved by factoringC out; doing so reduces the required
flops to R (S + 2 × (F +M)). In contrast, the flops requirement of
COO-based formats is 3 ×M × R.

fiber length of the selected mode fiber length of a candidate mode
0 ∼100 100∼5K 5K∼10K >10K 0 ∼100 100∼5K 5K∼10K >10K

deli 37M 76K 17 6 47M 3K 5 0
nell1 17M 136K 233 77 113M 11K 4 0
nell2 46K 291K 5 0 16M 66K 0 0
flick 13M 166K 70 11 28M 1K 1 0
fr_m 61M 19.4K 42 32 60M 19.6K 48 50
fr_s 91M 28K 90 59 86M 30K 119 105
darpa 54K 22K 164 277 28M 0 0 0

Table 2: Comparison of fiber lengths (nonzeros per
fiber) between the selected mode by SPLATT-ONE and
a candidate/non-selected mode

3.2 Number of Representations
CSF based representations are compressed with respect to a certain
mode. Therefore, one may need to maintain d distinct representa-
tions to exploit the compression at each mode. For example, the
third-order tensor shown in Figure 3(a) would require three CSF
representations: CSF-0, CSF-1, and CSF-2; they are shown in Fig-
ure 3(b). Algorithm 2 (slice-alg) shows the computation of MTTKRP
on mode-0 to update A using CSF-0, where i indices are at the slice
mode. The intermediate modes in this case can either be mode-1
or mode-2. Similarly, to perform MTTKRP on mode-1 to update
B, CSF-1 will be used and the j indices will be at the slice mode.
A similar analogy can be drawn for mode-2. Both SPLATT and
BCSF by default use d representations for an order-d tensor. In both
the frameworks, the mode orientation are such that, at mode-n,
dimension n will be at the root, and the rest of the modes will be
sorted according to their dimension length to achieve the most com-
pressed representation. Algorithm 3 shows the steps to perform
MTTKRP at d modes. At Line 3, d number of CSFs are created, and
at Line 6, MTTKRP operations are performed at each mode.

COO on the other hand is invariable to mode orientation, and
uses a single representation to compute MTTKRP at all d modes.
SPLATT library also supports SPLATT-ONE, i.e., using a single
representation to perform MTTKRP on d modes [31]. For example,
since the tensor in Figure 3(a) is of dimension 3 × 5 × 6, CSF-0 will
be selected as the SPLATT-ONE representation – the shortest mode,
I , is slice mode, J is the fiber mode, and the longest mode, K , is
the nonzero mode. Although in this case, MTTKRP computation
at only one mode (e.g., mode-0 in CSF-0) will benefit from the
compression at both fiber- and slice-level. At the other modes (e.g.,
mode-1 and mode-2 in CSF-0), MTTKRP will be computed using
fiber-alg (Algorithm 7) exploiting compression only at the fiber-
level, and using nonzero-alg at the nonzero-level (Algorithm 8) with
no possible compression. We describe these algorithms in details
in the next section. Algorithm 4 shows MTTKRP computation on
d modes using a single representation. At Line 1, the dimension
for the slice-, fiber-, and nonzero-level is chosen according to the
length of the dimensions. MTTKRP on mode-0/mode-1/mode-2 is
performed at Line 6/Line 8/Line 10. Using the 2D matrix analogy,
computing MTTKRP at mode 1 using CSF-0 is similar to performing
SpMTV using a CSR representation instead of CSC.

4 MM-CSF: A MIXED-MODE CSF
SPLATT-ALL and BCSF-ALL iteratively update the matrices which
correspond to the mode at its root/slice level. For a third-order

An Efficient Mixed-Mode Representation of Sparse Tensors SC ’19, November 17–22, 2019, Denver, CO, USA

Figure 3: Construction of MM-CSF

Algorithm 4: MTTKRP using one CSF representation on d
modes for a third-order tensor (d = 3)
Input : indI [M], indJ[M], indK[M], vals[M], dims[d]
Output : Ã[I][R], B̃[J][R], C̃[K][R]

1 sMode = argmin(dims[0],dims[1],dims[2]) ▷ find the mode to create CSF
2 CSF = create_CSF (sMode); ▷ create CSF
3 ▷ execute MTTKRP
4 for mode = 0 to d − 1 do
5 if mode == sMode then
6 slice-alg (CSF)
7 else if mode == fMode then
8 fiber-alg (CSF) ▷ Refer to Algorithm 7
9 else if mode == nMode then

10 nonzero-alg (CSF) ▷ Refer to Algorithm 8

tensor X, matrix A, B and C are updated sequentially using CSF-0,
CSF-1, and CSF-2 respectively, when mode-0, mode-1, and mode-2
are at the slice level. In the case of SPLATT-ONE representation,
one of these three matrices will use the mode at slice-level to update
itself, and the remaining two matrices will update the matrix at
fiber-level and nonzero-level respectively. For SPLATT-ONE, the
shortest dimension is selected as the slice (root) nodes, and the
longest as the nonzero (leaf) nodes; the intermediate modes are
sorted accordingly. The selected CSF thus has the highest average
slice length, which leads to a high slice compression compared to
other CSFs. However, the compression in the next fiber level is
not always guaranteed. As shown in Table 2, for tensors fr_s and
fr_m, instead of the CSF representation selected as SPLATT-ONE,
other CSF representations can have higher average fiber length,
and a higher number of fibers with length >10K. This phenome-
non can be more severe for higher order tensors. To incorporate
multi-level compression, we propose MM-CSF, a Mixed-Mode CSF
representation, where heavy fibers and slices are stored at their
most suitable modes. For a 2D matrix, this would imply storing the
dense rows in CSR format, and the dense columns in CSC format.
While performing y = Ax , the CSR part can efficiently parallelize

across rows. Similarly, while performing y = AT x , the CSC part
can efficiently parallelize across columns.

4.1 Partitioning of Nonzeros
The first step in forming MM-CSF is to create d disjoint partitions of
the nonzero elements of an order-d tensor X, where each partition
will have a different mode orientation. This aims to ensure that each
nonzero goes to a partition where it has the potential to achieve
the maximum compression. Thus, the resulting tensor partitions
should jointly be more compressed, a.k.a. have fewer, but longer
fibers. Figure 3(d) shows the construction of MM-CSF.

A nonzero element Xi, j,k of a 3D tensor belongs to three2 possi-
ble fibers: fiber-0 of CSF-0, fiber-1 of CSF-1, and fiber-2 of CSF-2. Let
us assume that the lengths of fiber-0, fiber-1, and fiber-2 are l0, l1,
and l2, respectively, and l0 > l1 > l2. As fiber-0 is the longest fiber,
Xi, j,k will be assigned to the partition P0 orientated in mode-0.
When multiple fibers that the nonzero belongs to have same length,
to break the tie, we assign the nonzero to the partition where av-
erage fiber length is higher. Partitions P1 and P2 will be similarly
constructed.

In Figure 4, we demonstrate this strategy using fibers X:, j,k and
Xi, j, : in the columns under static strategy. All the nonzeros ex-
cept X0,1,2 are assigned to partition P0. However, this partitioning
scheme creates an additional fiber by splitting fiber X0,1, : into two
partitions. This shortens the length of fiber X0,1, : but increases
the total number of fibers, leading to inefficient compression. The
main reason is that the partitioning decision is based on statically
pre-calculated fiber lengths at each mode orientation. We propose
a dynamic strategy by incrementally updating the fiber length.
Continuing with the aforementioned example, once the nonzero
Xi, j,k is assigned to partition P0 since the length of fiber-0 (l0) is
the largest, the lengths of fiber-1 and fiber-2 will be reduced by
2For ease of explanation, we use natural mode orientations, i.e., I→J→K for CSF-0,
J→K→I for CSF-1, and K→I→J for CSF-2. In reality, d !mode orientations are possible,
and the actual mode orientations of each CSF may differ from natural ones.

SC ’19, November 17–22, 2019, Denver, CO, USA Nisa et al.

Algorithm 5: MTTKRP using MM-CSF representation on d
modes for a third-order tensor (d = 3).
Input : indI [M], indJ[M], indK[M], vals[M], A[I][R], B[J][R], C[K][R]
Output : Ã[I][R], B̃[J][R], C̃[K][R]

1 ▷ select partition for each nonzero
2 for z = 0 to M do
3 i = indI [z]; j = indJ[z]; k = indK[z];
4 if fiberLen(i,j,:) >= max(fiberLen(i,:,k), fiberLen(:,j,k)) then
5 partition = 0
6 fiberLen(i,:,k) -= 1, fiberLen(:,j,k) -= 1
7 else if fiberLen(i,:,k) >= max(fiberLen(i,j,:), fiberLen(:,j,k)) then
8 partition = 1
9 fiberLen(i,j,:) -= 1, fiberLen(:,j,k) -= 1

10 else if fiberLen(:,j,k) >= max(fiberLen(i,:,k), fiberLen(i,j,:)) then
11 partition = 2
12 fiberLen(i,:,k) -= 1, fiberLen(i,j,:) -= 1
13 MM-COO[partition] ∪ = z ▷ Add z to the selected partition
14 ▷ create CSF for partitions
15 for partition = 0 to noOfPartition do
16 MM-CSF[partition]=create_CSF(MM-COO[partition])
17 ▷ execute MTTKRP using MM-CSF
18 for mode = 0 to nModes do
19 for partition = 0 to numPartitions do
20 sMode = MM-CSF[partition].modeOrder[0]
21 fMode = MM-CSF[partition].modeOrder[1]
22 nMode = MM-CSF[partition].modeOrder[2]
23 if mode == sMode then
24 slice-alg (MM-CSF[partition])
25 else if mode == fMode then
26 fiber-alg (MM-CSF[partition])
27 else if mode == nMode then
28 nonzero-alg (MM-CSF[partition])

1 to record the processed nonzero. This is illustrated under the
Figure 4 dynamic strategy columns. The pre-calculated length of
fiber X1,2, : is 3. Under static partitioning strategy, nonzero X0,1,2
will be assigned to partition 1, which creates a fiber in partition 1
with only one nonzero. This is not an efficient compression. On the
other hand, fiber X0,1, : with its length 2 can provide a compression
of 2 nonzeros. Compared to static partitioning, we have one less
fiber and better compression after dynamic partitioning. Therefore,
dynamic partitioning strategy reduces storage requirement, pro-
vides better compression, and consequently improves performance.

Algorithm 5 demonstrates the construction of MM-CSF parti-
tions. The construction scheme and the algorithms shown in this
paper are for 3D tensors. The extension to arbitrary dimensions is
straightforward. The for loop (Line 2) determines the partitions of
all nonzeros. A nonzero is assigned to the one with the longest fiber
length among fiber-0, fiber-1 and fiber-2, shown in Line 4 to 13.
After all the nonzeros have been processed, MM-CSF is constructed
by creating one CSF representation for each partition, like CSF-p0,
CSF-p1 in Figure 3(d). To perform MTTKRP on a particular mode,
each partition needs to perform its role by using either slice-, fiber-,
or nonzero-centric algorithms. For example, to perform MTTKRP
on mode-0, CSF-p0 will use the (optimized) slice-alg (Algorithm 6),
CSF-p1 will use the fiber-alg (Algorithm 7) and finally, CSF−p2
will use the nonzero-alg (Algorithm 8). These algorithms will be
described in Section 5.

Figure 4: Adjusting fiber lengths during partitioning

Formats FLOPS
Reads on
matrices

Writes on
matrices

Storage of X
in words

COO 3*3MR 3*2MR 3*MR 3*M
SPLATT-ALL 3*(S+2F+2M)R 3*(F+M)R 3*SR 3*2(S+F)+M
SPLATT-ONE (S+4F+5M)R1 3*(F+M)R (S+F+M)R2 2(S+F)+M

MM-CSF
(SP0+4FP0+5MP0)R
+(SP1+4FP1+5MP1)R
+(SP2+4FP2+5MP2)R

3
(FP0+MP0)R
+(FP1+MP1)R
+(FP2+MP2)R

(2FP0+MP0)R
+(2FP1+MP1)R
+(2FP2+MP2)R

3(FP0+FP1+FP2)
+MP0+MP1+MP2

1 (S+4F+5M)R = slice-mode: (S+2F+2M)R, fiber-mode: 2(F+M)R, nonzero-mode: 3MR
2 (S+F+M)R = slice-mode: SR, fiber-mode: FR, nonzero-mode: 3MR
3 SPx : S in partition x, FPx : F in partition x, MPx : M in partition x

Table 3: Theoretical comparison between formats in terms
of storage, flop computation, read and write transactions.

5 BALANCED MTTKRP ALGORITHMS USING
MM-CSF

The current state-of-the-art, BCSF-ALL [26], only performs slice-alg
for MTTKRP on GPUs. We propose balanced fiber-alg and nonzero-
alg for GPUs, and furthermore optimize the slice-alg of BCSF-ALL.
BCSF-ALL can take advantage of our optimized slice-alg. However,
the data structure to support these new algorithms consumes (3F +
M) space rather than (2S +2F +M) in other formats; usually F ≫ S .
For MM-CSF, the number of fibers, F , can be significantly reduced
(e.g., a 2× reduction in tensors fr_s and fr_m) by applying the
partitioning scheme described in Section 4. Reduced fiber count not
only improves space efficiency, but also improves the performance,
as less fibers lead to reduced memory accesses. Table 3 shows a
theoretical comparison of the read transactions, write transactions,
floating-point operations (flop) etc., among COO, SPLATT-ALL,
SPLATT-ONE and MM-CSF.

5.1 MTTKRP on Slice mode
Details of BCSF-ALL. Updating the matrix corresponding to the

slice-level incurs a minimum number of global write operations,
since the number of slices is traditionally less than the number of
fibers or non-zeros for tensors. The BCSF-ALL scheme shown in
Algorithm 2 comprises two steps. In the first step, all the nonzeros
are reduced to the corresponding fiber (Line 14). The second step
involves a subsequent reduction across all the fibers to the parent
slice (Line 12). These two steps are collectively termed as slice-mode
operation. The reductions are performed in registers since they have
the lowest access latency in the GPU memory hierarchy. However,
the indices of the nonzeros, the fibers and the slices must be read
from the global memory, so that corresponding rows can be fetched
from the factor matrices (Lines 6,8).

We use an illustrative example to demonstrate the total read-
/write computations involved in performing MTTKRP on mode-0

An Efficient Mixed-Mode Representation of Sparse Tensors SC ’19, November 17–22, 2019, Denver, CO, USA

Algorithm 6: opt-slice-alg(): MTTKRP at slice level using
MM-CSF for third-order tensors on GPUs (d = 3).
Input :fiberPtr[F], sliceInds[F], fiberInds[F], indK[M], vals[M], dense

matrices B[J][R], C[K][R]
Output : dense matrix Ã[I][R]

1 fibersGrp = number of fibers in a group
2 ▷ parallel across thread-blocks
3 for fiber = 0 to F/fibersGrp do
4 for fiberInGrp = 0 to fibersGrp do
5 localFiber = fiber + fiberInGrp;
6 i = sliceInds[localFiber]
7 j = fiberInds[localFiber]
8 ▷ nonzeros-cyclically processed by warps
9 for z = fiberPtr[localFiber] to fiberPtr[localFiber + 1] do

10 k = indK[z]
11 ▷ rank-parallel across threads
12 for r = 0 to R do
13 tmp[r]+ = vals[z] ∗C[k][r] ▷ register accumulation
14 for r = 0 to R do
15 tmp_2[r]+ = tmp[r] ∗ B[j][r] ▷ register accumulation
16 ▷ fibers from different slices write back to DRAM
17 if sliceInds[localFiber] != sliceInds[localFiber+1] then
18 for r = 0 to R do
19 Ã[i][r]+ = tmp_2[r] ▷ Atomic writes
20 return Ã

(i.e., MTTKRP at Line 2 of Algorithm 1) using the CSF-0 represen-
tation. Assume that the tensor X has only one slice, Xi, :, :, and the
slice has exactly two fibers, Xi,x, :, and Xi,y, :. Further, assume that
each fiber has only three nonzeros, Xi,x,p , Xi,x,q and Xi,x,r for
fiberXi,x, :, andXi,y,p ,Xi,y,q andXi,y,r for fiberXi,y, :. In the slice-
mode scheme, each nonzero will read the rows with indicesp,q, and
r from the dense matrixC , use these to perform the computation at
Line 12 of Algorithm 2, and accumulate the result in registers (tmp).
Then, each fiber will read the rows with indices x and y from the
dense matrix B, use these to perform the computation at Line 14 of
Algorithm 2, and accumulate the result in registers (tmp_2). Finally,
the slice will perform a read-modify-write to the row i of A. In
general, the total number of reads is F (number of fibers) and M
(number of nonzeros); the number of read-modify-write is S (num-
ber of slices) as shown in Table 3. The flop count varies from 2MR
to 5MR.

Improvement over BCSF-ALL. BCSF-ALL splits the exceptionally
large slices into sub-slices, and assigns multiple thread-blocks to
process each slice. In a similar spirit, multiple smaller slices can be
assigned to the same thread-block. To select these assignments, ex-
tra pre-processing time and a separate data structure aremaintained.
The warps within a thread-block process the fibers (sub-fiber) in
the respective slice. Each warp reduces the nonzeros of its fiber, and
stores the accumulated result in a register. Figure 5(a) pictorially
represents the slice-mode algorithm using BCSF-ALL. The scope of
parallelism can be increased significantly by offering a finer-grained
parallelism. In the proposed format (Figure 5(b)), we assign thread-
blocks to fibers instead of slices and warps to nonzeros instead of
fibers. One limitation of this scheme is the increased number of
global writes. Previously, fibers from the same slice would have
accumulated the results in the register, and write back to global
memory at the end. To incorporate this compression benefit, we
group fibers into smaller chunks and assign one thread-block to

Figure 5: MTTKRP algorithm variants

process a chunk. Fibers at each chunk check whether their parent
slice is the same one or not. As long as they share the same slice,
it keeps accumulating in the register, otherwise, writes back to
global memory. Algorithm 6 demonstrates this optimized version
of slice-alg. Line 3 iterates over the chunks and Line 4 iterates over
the fibers at each chunk. Line 17 shows the comparison between
the parent slices before writing back to global memory. Note that,
this scheme might increase the number of atomic writes. Multiple
chunks of fibers can share the same slice, and the number of atomics
would increase with the number of chunks. To avoid race condition,
atomic operations are used to accumulate the values from sub-slices
of a slice.

In the original BCSF-ALL data structure, a fiber location was
accessed via slice pointers. In matrix terminology, it would imply
accessing the start point of the column indices using the row pointer.
If we parallelize across the fibers, we need to directly access the fiber
indices without fetching the start location from the slice pointers.
One expensive way to achieve this is to perform a search to find
parent slice of the fiber. Instead, we maintain an array of size F to
store the corresponding slice indices in lieu of two arrays (pointers
and indices) of size S . Now, each thread-block can directly access
the slice and fiber indices. This scheme outperforms BCSF-ALL by
increasing parallelism while preserving the compression, as we
demonstrate through evaluation in Section 6.

5.2 MTTKRP on Fiber Mode
We now describe the algorithm to compute MTTKRP on mode-1
(i.e., MTTKRP at Line 3 of Algorithm 1) to update matrix B using
CSF-0 representation. Algorithm 7 demonstrates the steps of the
algorithm. We continue with the illustrative example of Section
5.1. This time, instead of updating matrix A via the slice indices,
we will update B via the fiber indices. The indices of interest for B
are x and y. Recall that the fibers are Xi,x, : and Xi,y, :; these fibers
will read the row i from A, and rows p,q, and r from C . Therefore,
the number of read-modify-writes (i.e., atomics) is F (number of
fibers), instead of S (number of slices) in the previous slice-mode

SC ’19, November 17–22, 2019, Denver, CO, USA Nisa et al.

Algorithm 7: fiber-alg(): MTTKRP at fiber level usingMM-CSF
for third-order tensors on GPUs (d = 3)
Input :fiberPtr[F], sliceInds[F], fiberInds[F], indK[M], vals[M],

dense matrices A[I][R], C[K][R]
Output : dense matrix B̃[J][R]

1 ▷ fibers-parallel across thread-blocks
2 for fiber = 0 to F do
3 i = sliceInds[fiber]
4 j = fiberInds[fiber]
5 ▷ nonzeros-parallel across warps
6 for z = fiberPtr[fiber] to fiberPtr[fiber + 1] do
7 k = indK[z]
8 ▷ rank-parallel across threads
9 for r = 0 to R do

10 tmp[r]+ = vals[z] ∗C[k][r] ▷ accumulation in registers
11 for r = 0 to R do
12 B̃[j][r]+ = tmp[r] ∗ A[i][r]
13 return Ã

algorithm. The total number of reads decreases from (F +M)R of
the slice-mode algorithm to (S +M)R.

Some tensors inherently show good sparsity structure, for ex-
ample, a low standard deviation in fiber length and slice length,
clustered nonzeros in one mode, etc.; and a totally different struc-
ture in another mode, like power law structure. A mode offering a
low number of writes with an imbalanced structure might under-
perform compared to a mode with a higher number of writes and
better workload balance. A good example of such case is tensor
Darpa. Darpa has 28 million nonzeros with the density of 2.37E − 9.
Both CSF-0 and CSF-1 have 22K slices and 281K fibers after splitting
the long fibers. But the standard deviation of nonzero per slice is
60K for mode 1 and 26K for mode0. So, in terms of sparsity struc-
ture, CSF-0 is more balanced. If we use slice-mode on CSF-1 to
compute MTTKRP on mode-1, the total number of reads and writes
are 28.7M and 22K respectively. Applying fiber-mode on CSF-0 will
result in 28.5M reads and 281K writes. Interestingly, 70% improve-
ment is achieved by using fiber-mode than slice-mode on mode1.
We verified our intuition by collecting metrics from NVPROF [1]
profiler provided by NVIDIA. The metric achieved_occupancy, de-
fined as the ratio of the average active warps per active cycle to the
maximum number of warps supported on an SM, increase to 60%
with fiber-mode from 40% for slice-mode on NVIDIA P100.

This algorithm exposes an opportunity for finer grained paral-
lelism and reduction in memory latency by allowing similar paral-
lelization strategy like the slice-mode algorithm. Figure 5(c) demon-
strates the parallelization techniques. Here, warps can still use
registers to reduce the nonzeros, but not to accumulate the sum
from fibers. This is because the write locations are now the fiber in-
dices, and fibers from other slices might write to the same location.
Hence, we need to use atomic operations to guarantee correctness.
But increased parallelism often mitigates the shortcoming of having
high atomic operations and achieves comparable performance.

5.3 MTTKRP on nonzero mode
In the nonzero-mode algorithm presented in Algorithm 8, the write
locations are fetched from the nonzero locations to update matrixC .
Referring back to the illustrative example of Section 5.1, the three
nonzeros are Xi,x,p , Xi,x,q and Xi,x,r and the update locations are

Algorithm 8: nonzero-alg(): MTTKRP at nonzero level using
MM-CSF for third-order tensors on GPUs (d = 3)
Input :fiberPtr[F], sliceInds[F], fiberInds[F], indK[M], vals[M],

dense matrices A[I][R], B[J][R]
Output : dense matrix C̃[K][R]

1 ▷ fibers-parallel across thread-blocks
2 for fiber = 0 to F do
3 i = sliceInds[fiber]
4 j = fiberInds[fiber]
5 ▷ nonzeros-parallel across warps
6 for z = fiberPtr[fiber] to fiberPtr[fiber + 1] do
7 k = indK[z]
8 ▷ rank-parallel across threads
9 for r = 0 to R do

10 C̃[k][r]+ = vals[z] ∗ B[j][r] ∗ A[i][r]
11 return Ã

p, q and r . Each nonzero reads row i row of A and, rows x and
y of B. We adopt a similar parallelization strategy as fiber-mode.
The total number of reads are further reduced to (S + F)R, and
the number of writes increases toM . Figure 5(d) demonstrates the
parallelization of this technique. Just like fiber-mode algorithm,
the performance of this algorithm also depends on the sparsity
structure of the tensor and the ratio between read and write. For
example, Nell-1 dataset shows 11% improvement using nonzero-
mode algorithm on mode-2 with CSF-0. Nell-1 has 140M nonzeros
with a density of 9.05E − 13. CSF-0 representation for Nell-1 has
2M slices and 17M fibers, and CSF-2 has 25M slices and 113M fibers.
If we use CSF-2 to compute mode-2 using slice-mode, the number
of reads and writes are 253M and 25M respectively. On the other
hand, if we use CSF-0, the number of reads and writes are 157M
and 140M.

6 EXPERIMENTAL EVALUATION
6.1 Evaluation Setup
We evaluate the performance of MM-CSF3 in computing MTTKRP,
the computational kernel of a popular CANDECOMP/PARAFAC de-
composition (CPD), against five publicly available state-of-the-art
frameworks: SPLATT4 [35], BCSF5 [26], F-COO6 [25], and ParTI7
[22] which provides HiCOO [23] and COO implementations. We
used the latest updated code in the SPLATT git repository in-
stead of the release version, as suggested by the authors. Of these
frameworks, HiCOO and SPLATT are CPU-based implementations;
ParTI-COO8, BCSF [26], and F-COO [25] are GPU-based frame-
works. SPLATT, BCSF, and F-COO each create d representations
for an order-d tensor by default. Additionally, SPLATT provides
extensions to select the number of representations for a tensor
[31]. Therefore, we present comparisons against both d represen-
tations (SPLATT-ALL), and single representation (SPLATT-ONE)
for SPLATT. Tiling is enabled for SPLATT while collecting the
performance data. For a fair comparison, we modify the default

3https://github.com/isratnisa/MM-CSF
4https://github.com/ShadenSmith/splatt
5https://github.com/isratnisa/B-CSF
6https://github.com/kobeliu85/mttkrp-gpu
7https://github.com/hpcgarage/ParTI
8Since the COOCPU of ParTI is significantly outperformed byHiCOO,we only evaluate
HiCOO for CPU. All references to ParTI-COO refer to the GPU implementation.

An Efficient Mixed-Mode Representation of Sparse Tensors SC ’19, November 17–22, 2019, Denver, CO, USA

Tensors order Dimensions #Nonzeros Density
deli 3 533K × 17M × 2M 140M 6.14E-12
nell1 3 3M × 2M × 25M 144M 9.05E-13
nell2 3 12K × 9K × 29K 77M 9.05E-13
flick 3 320K × 28M × 2M 113M 7.80E-12
fr_m 3 23M × 23M × 166 99M 1.10E-09
fr_s 3 39M × 39M × 532 140M 1.73E-10
darpa 3 22K × 22K × 23M 28M 2.37E-09
nips 4 2K × 3K × 14K × 17 3M 3.85E-04
enron 4 6K × 6K × 244K × 1K 5M 1.83E-06
ch-cr 4 6K × 24 × 77 × 32 54M 1.48E-01
flick 4 320K × 28M × 2M × 731 113M 1.07E-14
uber 4 183 × 24 × 1K × 2K 3M 5.37E-10

Table 4: Sparse tensor datasets

BCSF-ALL implementation of [26] to support BCSF-ONE (i.e., use
a single BCSF representation for all modes). We extend the fiber
splitting and binning concept used in BCSF-ALL to implement
well-optimized fiber- and nonzero-mode algorithms for BCSF-ONE.
HiCOO and ParTI-COO use a single representation HiCOO and
COO respectively.

The GPU data is collected on an NVIDIA Volta V100 GPU with
16GB memory. It has 80 SMs and a 6144 KB L2 cache. The CPU data
is collected on a Dell PowerEdge R740: a two-socket server with
40-core Intel Xeon 6148. It has 384GB memory with 2.40GHz clock
frequency. The CUDA code is compiled with NVCC-9.2, and the
CPU code is compiled with GCC-7.3.0. The execution on CPU is
parallelized over 40 threads. The results are collected using single-
precision data type and tensor rank, R, is set to 32.

The benchmarks comprise 3D and 4D sparse tensors collected
from real-world applications. Datasets like deli (delicious), nell1 and
nell2 (Never Ending Language Learner knowledge), flick (Flickr) are
from The Formidable Repository of Open Sparse Tensors and Tools,
FROSTT [30]. Darpa, fr_m (freebase-music) and fr_s (freebase-
sampled) are from the dataset used in HaTen2 [18]. Table 4 lists the
tensor order, dimensions, number of nonzeros (#Nonzeros), and the
density of these tensors.

6.2 Reduction in Fibers Using MM-CSF
Table 5 shows the reduction in fibers with MM-CSF for 3D tensors,
compared to BCSF-ALL and BCSF-ONE representation. To provide
better work balance on GPU, long fibers are split into sub-fibers,
which increases the number of fibers when compared to SPLATT-
ALL. This trend can be observed for some tensors in Table 5, e.g., a
5% increase in fiber count for nell-2. However, compared to BCSF-
ALL, MM-CSF achieves an average of 80% reduction in the total
fiber count. For most of the benchmarks, we observe a reduction
in fiber count with MM-CSF compared to BCSF-ONE as well. For
fr_m and fr_s dataset, a reduction of 55% (61M to 27M) and 50%
(91M to 45M) respectively in fiber count is observed. The primary
reason behind such drastic reduction in fiber count for fr_m and
fr_s is the presence of long fibers in mode-2 and mode-0, as noted
in Table 2 of Section 4.

#Fibers (millions) Reduction %
BCSF-
ALL

BCSF-
ONE

MM-
CSF

BCSF-
ALL

BCSF-
ONE

MM-
CSF

deli 122 38 26 0 69 78
nell1 149 18 18 0 88 88
nell2 18 1 1 -5 96 95
flick 55 14 9 -1 75 83
fr_m 183 62 28 0 66 85
fr_s 269 92 45 0 66 83
darpa 29 0.28 0.28 -1 99 99

Table 5: Reduction in number of fibers using MM-CSF com-
pared to other GPU based CSF formats. Reduction (%) is
shown compared to SPLATT-ALL.

(a) fr_m (b) fr_s

Figure 6: Achieved GFLOPS by assigning all elements to any
single-mode vs. using a mixed-mode (MM).

6.3 Impact of Partitioning
We use the partitioning described in Section 4.1 for efficient com-
pression. To evaluate the impact of the implemented partitioning
scheme, we compare the results by assigning all elements of the
tensor to a single partition against the mixed-mode partitioning,
where nonzeros are assigned to multiple partitions. Both variations
use the same underlying data structure for a fair comparison. Fig-
ure 6a and Figure 6b demonstrate the benefit of partitioning on
two representative tensors, fr_s, and fr_m. In both cases, the mixed
mode partitioning creates two partitions and assigns nearly 50%
nonzeros to each one. In both the tensors, we observe that perform-
ing mixed mode partitioning provides a significant performance
improvement. On our evaluation over all 3D and 4D tensors, we
consistently observe an improvement with partitioning over using
an arbitrarily selected single representation.

6.4 Improvement in GPU Occupancy and
DRAM Transactions

The kernels for MM-CSF increase GPU occupancy by applying fine-
grained parallelism. Table 6 documents the achieved occupancy for
3D tensors, measured via NVPROF. As evident, MM-CSF improves
the device occupancy by 45% on average compared to BCSF-ALL.
For fr_s dataset, the achieved occupancy improves by almost 2×.
Additionally, MM-CSF consistently reduces the global load trans-
actions for all, and DRAM read transactions for majority of the
tensors. In cases like deli, where the occupancy improvement is
insignificant, the performance improvement can be attributed to a
reduction in DRAM reads. However, MM-CSF incurs more DRAM

SC ’19, November 17–22, 2019, Denver, CO, USA Nisa et al.

GFLOPS occup. in % glb. loads in GiB DRAM in GiB
BCSF
-ALL

MM-
CSF

BCSF
-ALL

MM-
CSF

BCSF
-ALL

MM-
CSF

BCSF
-ALL

MM-
CSF

deli 333 382 73 80 104 86 43 34
nell1 270 285 68 77 112 80 55 55
nell2 607 763 58 76 45 35 4 4
flick 327 435 50 79 76 59 33 27
fr_m 194 235 42 83 97 69 48 50
fr_s 203 228 53 84 140 102 70 73
darpa 209 327 35 52 28 13 12 11

Table 6: Improved occupancy, global loads, and DRAM read
transactions using MM-CSF compared to BCSF-ALL (Data
collected using NVPROF profiler on V100).

Figure 7: Speedup using MM-CSF compared to BCSF-ALL at
d modes on Tesla V100 GPU

transactions for fr_m and fr_s. This can be explained by the dimen-
sionalities of these two tensors. For example, fr_m has dimensions
23M × 23M × 166, which implies that A and B matrices are signifi-
cantly large, C matrix is small enough to be cached entirely in L2
cache of the Volta GPU. We compute the volume of data (in GiB)
read from DRAM from the metrics collected by NVPROF. MM-CSF
reads 17, 16 and 16 GiB data from DRAM in mode-0, mode-1 and
mode-2 respectively, whereas BCSF-ALL reads 14, 14, and 20 GiB
data from DRAM. BCSF-ALL for fr_m has 60M fibers in each mode
(refer to Table 5). Therefore, while updating A and B in mode-0 and
mode-1, the 60M accesses to the fibers come from C , which will
likely to be cached in L2. However, while updating C in mode-2,
the fiber accesses come from A, resulting in a dramatic increase in
DRAM reads. In contrast, with MM-CSF, all A,B,C matrices will
potentially be accessed at each mode due to the mixed-mode rep-
resentation. This results in a consistent DRAM read in all modes,
but slightly elevated DRAM reads in the first two modes compared
to BCSF-ALL. However, the increase in DRAM transactions with
MM-CSF in these two cases is compensated by an overall reduc-
tion in global memory transactions and the improved occupancy,
resulting in performance enhancement over BCSF-ALL.

6.5 Performance Comparison with BCSF-ALL
An important metric to demonstrate the utility of MM-CSF is to
show that by using it, one can match the performance achieved by
the current state-of-the-art frameworks in computing MTTKRP,
while simultaneously reducing the space requirement. To the best

Figure 8: Achieved GFLOPS by MM-CSF compared to theo-
retically achievable GFLOPS in V100

MM-
CSF

BCSF-
ALL

BCSF-
ONE

PARTI
COO

Hi-
COO

SPLATT
ALL

SPLATT
ONE

deli 106 121 125 149 5,403 5,342 3,284
nell1 145 153 152 235 8,683 2,184 1,969
nell2 29 37 37 71 262 140 94
flick 75 99 92 110 8,374 3,753 1,175
fr_m 122 148 208 225 5,136 5,021 6,897
fr_s 177 199 259 - 7,853 9,344 9,591
darpa 25 39 29 82 1,124 1,078 705
uber 3.72 2.6 4.05 - 298 93 109
nips 2.09 3.2 3.27 - 64 32 18

chicago 3.26 6.4 7.98 - 38 49 10
flickr-4d 130 176 183 - 5,632 9,392 2,076
enron 29 57 38 - 1,085 1,101 1,393

Table 7: Time (ms) to runMTTKRP usingMM-CSF and state-
of-the-art benchmarks

of our knowledge, BCSF-ALL on GPU offers the maximum per-
formance compared to the other existing frameworks. Figure 7
presents the speedup achieved by MM-CSF compared to BCSF-ALL
for 3D tensors. On darpa and fr_m dataset, we outperform BCSF-
ALL by a factor of 1.8×. Consistent speedup is observed for the rest
of the tensors. For the cases where BCSF-ALL already provides high
occupancy, we do not observe any further speedup.

6.6 Performance Model
Figure 8 plots the achieved performance versus the theoretically
achievable performance in computingMTTKRP on 3D tensors using
MM-CSF representation. The theoretically achievable GFLOPS is
computed by multiplying the operational intensity (OI) of MTTKRP
kernel with the peak bandwidth of V100 GPU device. The gap
between realized and theoretical peak performance of GPUs is
challenging to bridge, even for compute-bound GEMM kernels. For
MTTKRP, the significant gap can primarily be attributed to the
poor data locality due to the sparsity of the input tensors. The
performance gap is less pronounced for nell-2 dataset. This can be
explained by the fact that it is the smallest among all evaluated
tensors, with a dimension of 12K × 9K × 29K , and consequently
has the highest L2 hit rate (82%).

6.7 Overall Performance
Figure 9 shows the performance achieved by using MM-CSF as
the representation to compute MTTKRP, against other state-of-the-
art representations/frameworks on both CPU and GPU platforms.

An Efficient Mixed-Mode Representation of Sparse Tensors SC ’19, November 17–22, 2019, Denver, CO, USA

(a) GFLOPS comparison on an NVIDIA V100 GPU
(b) GFLOPS comparison between MM-CSF (on GPU) and CPU-
based framework on an Intel 40-core CPU.

Figure 9: Achieved performance of MM-CSF compared to other frameworks.

SPLATT
-ALL

SPLATT
-ONE

BCSF
-ALL

ParTI
-COO

Hi
COO F-COO MM-

CSF
deli 2690 824 2691 1604 2955 3260 838
nell1 3006 697 3010 1643 3062 3341 759
nell2 1012 296 1019 880 250 1789 303
flick 1940 535 1943 1292 1309 2627 539
fr_m 2893 849 2894 1139 1040 2316 700
fr_s 4249 1232 4250 1601 1566 3256 1051
darpa 723 109 726 325 200 662 112

Table 8: Storage comparison in MiB

For a uniform comparison, the floating-point operations of COO-
MTTKRP are used as a baseline in computing the GFLOPS for
all the frameworks. MM-CSF achieves 510 GFLOPS on average,
outperforming BCSF-ONE by a factor of 1.4×, and ParTI-COO by a
factor of 2× (Figure 9a). Note that the missing data for F-COO in
Figure 9a is due to the failure of successful completion of MTTKRP
computation at all modes. For nell2 dataset, MM-CSF achieves the
highest performance of 966 GFLOPS.

Figure 9b presents the performance comparison of MM-CSF with
CPU-based formats. MM-CSF outperforms SPLATT-ALL by 35×
on average. Recently published state-of-the-art COO-based format,
HiCOO, is 47× slower than MM-CSF. We also present the execution
time of the CPU- and GPU-based benchmarks in Table 7.

6.8 Overall Storage
We present a comparison in space requirements of MM-CSF against
state-of-the-art frameworks based on both CSR and COO format
families in Table 8. We only use the indices to compute storage of
the tensors, as storing the values of each nonzero needs the same
space regardless of formats. MM-CSF significantly reduces the space
requirement compared to SPLATT-ALL and BCSF-ALL. We now
explain the slight increase observed in the storage requirement for
MM-CSF compared to SPLATT-ONE. Apart from the fiber splitting
for load balancing, MM-CSF also creates an extra data structure
of size of F to trace the slice indices along with the fiber indices.
Despite these factors that can cause an increase in MM-CSF storage
when compared to SPLATT-ONE, we observe an improvement in
storage for fr_m and fr_s dataset with MM-CSF in Table 8.

GPU-based F-COO stores d representations of the tensor in COO
format. MM-CSF consumes 50% lower space than COO-based frame-
works, and 40% lower space than HiCOO. A 3× space reduction
is achieved for nell2 and darpa. This is expected as both of these
tensors have long fibers and slices, providing good compression
that only a CSF based format can exploit.

6.9 Format Conversion to MM-CSF
We compare the pre-processing time involved in constructing MM-
CSF vs. BCSF-ALL. While constructing BCSF-ALL, sorting is per-
formed at each mode to identify the nonzeros belonging to the same
fiber and same slice. CSF is then constructed on the sorted tensor.
Load balancing is achieved via binning [3], where slices with similar
lengths are binned together. To construct MM-CSF, we first collect
the fiber lengths of ≥ d modes, then create p disjoint partitions of
nonzeros, and finally, construct CSF for each partition. There is no
binning required for MM-CSF. The available BCSF-ALL implemen-
tation of [26] uses an unoptimized sort in its preprocessing step. For
an unbiased comparison, we replaced it with an optimized version
that is used in MM-CSF preprocessing step. Figure 10 presents the
normalized time to construct BCSF-ALL and MM-CSF for 3D ten-
sors, including memory copy time for one iteration (i.e., time taken
to copy the data from host to GPU device). We observe that on
average, MM-CSF incurs merely 15% extra preprocessing overhead
over BCSF-ALL. Additionally, MM-CSF consumes significantly less
space than BCSF-ALL to store the tensor. Since one might need to
perform memory copy with each CPD iteration depending on the
size of the tensor, MM-CSF will have a significant advantage over
BCSF-ALL in such cases.

6.10 Application speedup
Figure 11 demonstrates the speedup achieved in CPD computation
of 3D tensors by using MM-CSF as the storage format in conjunc-
tion with the optimized MTTKRP kernels. The reported time is an
average of ten iterations. Apart from MTTKRP, all the remaining
kernels in the application are invocations of CPU BLAS functions.
After each MTTKRP iteration, the updated matrix is copied back
to the CPU, where it is used as an input by the BLAS kernels,

SC ’19, November 17–22, 2019, Denver, CO, USA Nisa et al.

Figure 10: Pre-processing time of BCSF-ALL and MM-CSF

Figure 11: Speedup in CP decomposition using MM-CSF and
SPLATT-ONE compared to SPLATT-ALL

followed by a normalization on the column vectors (Line 5 in Algo-
rithm 1). This normalized matrix needs to copied back to GPU to be
used in the next MTTKRP computation. Despite the GPU memory
copy overhead at each iteration, we outperform SPLATT-ALL from
SPLATT by a factor of 1.8× on average. One of our future endeavor
involves replacing the CPU BLAS functions with cuBLAS routines
to avoid the back-and-forth memory copy time.

7 RELATEDWORK
Sparse tensor decompositions and their related operations have
attracted attention of researchers to improve their performance
and storage. Like matrix factorization [40], [39], [27], tensor fac-
torization is also gaining significant popularity. We briefly discuss
prior performance optimization work of MTTKRP operation and
CANDECOMP/PARAFAC decomposition (CPD) for sparse tensors.

Tensor Toolbox [5] and Tensorlab [38] packages implement CPD
and MTTKRP based on COO format, where an MTTKRP operation
is computed as a series of sparse tensor-times-vector. DFacTo [13]
performs an MTTKRP by computing multiple sparse matrix-vector
multiplication (SpMV) routines which can be computed efficiently
through existing high performance libraries. However, the inter-
mediate storage of it could be very large by saving the outputs
of SpMV. Smith et al. [29, 35] proposed the CSF storage format,
an extension of Compressed Sparse Row (CSR) format for sparse
matrices, and optimized the performance and memory access of
MTTKRP in the SPLATT library along with the support of different
tensor decompositions and completion algorithms [33]. Choi et al.
[12] employed two blocking strategies to further optimize MTTKRP
using the CSF format. A new Hierarchical COOrdinate (HiCOO)
format, derived from the COO format, was recently proposed by
Li et al. [23]. HiCOO compresses tensor indices as units of sparse
blocks, to save storage and to reduce a sparse tensor algorithm’s

memory footprint. However, HiCOO does not work well for hyper-
sparse tensors, a.k.a. tensors with extreme low density, sometimes
even after reordering [24], thus the other formats like CSF and
COO still play important roles. Baskaran et al. proposed multiple
optimization techniques to address load imbalance, sparsity, etc. of
sparse tensor computation in [6–8].

Some research targeted on other platforms. GigaTensor [19] tar-
gets on large-scale sparse tensors by providing a scalable framework
using the MapReduce paradigm. Blanco et al. [9] accelerated tensor
decompositions using a queuing strategy to exploit the dependency
and data reuse using Spark engine on distributed platforms. Kaya et
al. [20] scaled CPD on distributed memory systems using message
passing interface (MPI), the implementation of which is also based
on COO format. Smith et al. [34] improved MTTKRP performance
on Intel Xeon Phi Knights Landing manycore processor. A Paral-
lel Tensor Infrastructure (ParTI!) supports COO stored tensors to
do MTTKRP on NVIDIA GPUs by parallelizing nonzeros and us-
ing atomic operations. Liu et al. [25] proposed a more compressed
Flagged COO (F-COO) format uses a fast parallel scan routine on
GPUs to reduce write conflicts. However, F-COO closely depends
on a particular MTTKRP operation, which affects its flexibility.
Nisa et al. [26] optimized MTTKRP performance by proposing load-
balanced data structure (BCSF) and parallel strategies, which makes
CSF variant MTTKRPP being efficient on GPUs. Phipps et al. [28]
leverages the Kokkos framework [14] to optimize MTTKRP on
CPUs and GPUs using a single code implementation. Our work
further improves MTTKRP by making CSF and BCSF formats more
adaptable and efficient to MTTKRP and CPD.
8 CONCLUSION
In recent years, tensors have becomemainstream in high-performance
computing. Several frameworks and libraries are being developed to
optimize operations on sparse tensors. Efficient and compact repre-
sentations of high-order sparse tensors are crucial on architectures
with limited global memory and low energy footprint, like GPUs.
In this paper, we devise MM-CSF, a mixed-mode storage format for
sparse tensors of arbitrary dimensions. Through extensive evalu-
ation on an NVIDIA Volta GPU, we demonstrate the efficacy of
MM-CSF in (a) reducing the storage requirement for sparse tensors,
and (b) improving the performance of computations like tensor
factorizations.
ACKNOWLEDGMENTS
We thank the reviewers for the valuable feedback and the Ohio
Supercomputer Center for use of their GPU resources. This material
is based upon work supported by the National Science Foundation
under Grant No. 1816793 and 1513120. This research is also par-
tially funded by the US Department of Energy, Office for Advanced
Scientific Computing (ASCR) under Award No. 66150: "CENATE:
The Center for Advanced Technology Evaluation" and the Lab-
oratory Directed Research and Development program at PNNL
under contract No. ND8577. Pacific Northwest National Laboratory
(PNNL) is a multiprogram national laboratory operated for DOE by
Battelle Memorial Institute under Contract DE-AC05-76RL01830.
This research was partially supported by the Exascale Comput-
ing Project (ECP), Project Number: 17-SC-20-SC, a collaborative
effort of two DOE organizations âĂŞ the Office of Science and the
National Nuclear Security Administration.

An Efficient Mixed-Mode Representation of Sparse Tensors SC ’19, November 17–22, 2019, Denver, CO, USA

REFERENCES
[1] [n. d.]. nvprof-metrics. https://docs.nvidia.com/cuda/profiler-users-guide/index.

html. Accessed: 2018-09-30.
[2] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
2016. Tensorflow: Large-scale machine learning on heterogeneous distributed
systems. arXiv preprint arXiv:1603.04467 (2016).

[3] Arash Ashari, Naser Sedaghati, John Eisenlohr, Srinivasan Parthasarathy, and P
Sadayappan. 2014. Fast sparse matrix-vector multiplication on GPUs for graph
applications. In Proceedings of the international conference for high performance
computing, networking, storage and analysis. IEEE Press, 781–792.

[4] Brett W Bader, Michael W Berry, and Murray Browne. 2008. Discussion tracking
in Enron email using PARAFAC. In Survey of Text Mining II. Springer, 147–163.

[5] Brett W. Bader, Tamara G. Kolda, et al. 2015. MATLAB Tensor Toolbox Version
2.6. Available online. http://www.sandia.gov/~tgkolda/TensorToolbox/

[6] M. Baskaran, T. Henretty, B. Pradelle, M. H. Langston, D. Bruns-Smith, J. Ezick,
and R. Lethin. 2017. Memory-efficient parallel tensor decompositions. In 2017
IEEE High Performance Extreme Computing Conference (HPEC). 1–7. https://doi.
org/10.1109/HPEC.2017.8091026

[7] Muthu Baskaran, Benoit Meister, and Richard Lethin. 2014. Low-overhead Load-
balanced Scheduling for Sparse Tensor Computations. In IEEE High Performance
Extreme Computing Conference. Waltham, MA.

[8] Muthu Baskaran, Benoit Meister, Nicolas Vasilache, and Richard Lethin. 2012. Ef-
ficient and Scalable Computations with Sparse Tensors. In IEEE High Performance
Extreme Computing Conference. Waltham, MA.

[9] Zachary Blanco, Bangtian Liu, and Maryam Mehri Dehnavi. 2018. CSTF: Large-
Scale Sparse Tensor Factorizations on Distributed Platforms. In Proceedings of
the 47th International Conference on Parallel Processing (ICPP 2018). ACM, New
York, NY, USA, Article 21, 10 pages. https://doi.org/10.1145/3225058.3225133

[10] Aydin Buluc and John R Gilbert. 2008. On the representation and multiplication
of hypersparse matrices. In Parallel and Distributed Processing, 2008. IPDPS 2008.
IEEE International Symposium on. IEEE, 1–11.

[11] J Douglas Carroll and Jih-Jie Chang. 1970. Analysis of individual differences in
multidimensional scaling via an N-way generalization of âĂĲEckart-YoungâĂİ
decomposition. Psychometrika 35, 3 (1970), 283–319.

[12] Jee Choi, Xing Liu, Shaden Smith, and Tyler Simon. 2018. Blocking Optimization
Techniques for Sparse Tensor Computation. In 2018 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). IEEE, 568–577.

[13] Joon Hee Choi and S Vishwanathan. 2014. DFacTo: Distributed factorization of
tensors. In Advances in Neural Information Processing Systems. 1296–1304.

[14] H Carter Edwards, Christian R Trott, and Daniel Sunderland. 2014. Kokkos:
Enablingmanycore performance portability through polymorphicmemory access
patterns. J. Parallel and Distrib. Comput. 74, 12 (2014), 3202–3216.

[15] Richard A Harshman. 1970. Foundations of the PARAFAC procedure: Models
and conditions for an" explanatory" multimodal factor analysis. (1970).

[16] Joyce C Ho, Joydeep Ghosh, Steve R Steinhubl, Walter F Stewart, Joshua C Denny,
Bradley A Malin, and Jimeng Sun. 2014. Limestone: High-throughput candidate
phenotype generation via tensor factorization. Journal of biomedical informatics
52 (2014), 199–211.

[17] Joyce C Ho, Joydeep Ghosh, and Jimeng Sun. 2014. Marble: high-throughput
phenotyping from electronic health records via sparse nonnegative tensor fac-
torization. In Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 115–124.

[18] Inah Jeon, Evangelos E Papalexakis, U Kang, and Christos Faloutsos. 2015. Haten2:
Billion-scale tensor decompositions. In Data Engineering (ICDE), 2015 IEEE 31st
International Conference on. IEEE, 1047–1058.

[19] U Kang, Evangelos Papalexakis, Abhay Harpale, and Christos Faloutsos. 2012.
Gigatensor: scaling tensor analysis up by 100 times-algorithms and discoveries.
In Proceedings of the 18th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 316–324.

[20] O. Kaya and B. UÃğar. 2015. Scalable Sparse Tensor Decompositions in Dis-
tributed Memory Systems. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. ACM, 77:1–77:11.

https://doi.org/10.1145/2807591.2807624
[21] Tamara GKolda and BrettWBader. 2009. Tensor decompositions and applications.

SIAM review 51, 3 (2009), 455–500.
[22] Jiajia Li, Yuchen Ma, and Richard Vuduc. 2017. ParTI!: A Parallel Tensor In-

frastructure for Multicore CPU and GPUs. Available from https://github.com/
hpcgarage/ParTI.

[23] Jiajia Li, Jimeng Sun, and Richard Vuduc. 2018. HiCOO: Hierarchical Storage of
Sparse Tensors. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC ’18). ACM, New York, NY, USA.

[24] Jiajia Li, Bora Uçar, Ümit V. Çatalyürek, Jimeng Sun, Kevin Barker, and Richard
Vuduc. 2019. Efficient and Effective Sparse Tensor Reordering. In Proceedings of
the ACM International Conference on Supercomputing (ICS ’19). ACM, New York,
NY, USA, 227–237. https://doi.org/10.1145/3330345.3330366

[25] Bangtian Liu, Chengyao Wen, Anand D Sarwate, and Maryam Mehri Dehnavi.
2017. A Unified Optimization Approach for Sparse Tensor Operations on GPUs.
In Cluster Computing (CLUSTER), 2017 IEEE International Conference on. IEEE,
47–57.

[26] Israt Nisa, Jiajia Li, Aravind Sukumaran-Rajam, RichardW. Vuduc, and P. Sadayap-
pan. 2019. Load-Balanced Sparse MTTKRP on GPUs. In 2019 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), Vol. abs/1904.03329.

[27] Israt Nisa, Aravind Sukumaran-Rajam, Rakshith Kunchum, and P Sadayappan.
2017. Parallel ccd++ on gpu for matrix factorization. In Proceedings of the General
Purpose GPUs. ACM, 73–83.

[28] Eric T Phipps and Tamara G Kolda. 2019. Software for Sparse Tensor Decom-
position on Emerging Computing Architectures. SIAM Journal on Scientific
Computing 41, 3 (2019), C269–C290.

[29] Shaden Smith. 2019. Algorithms for Large-Scale Sparse Tensor Factorization. Ph.D.
Dissertation. University of Minnesota, Minneapolis, MN, USA. http://hdl.handle.
net/11299/206375

[30] Shaden Smith, Jee W. Choi, Jiajia Li, Richard Vuduc, Jongsoo Park, Xing Liu,
and George Karypis. 2017. FROSTT: The Formidable Repository of Open Sparse
Tensors and Tools. http://frostt.io/

[31] Shaden Smith and George Karypis. 2015. Tensor-matrix products with a com-
pressed sparse tensor. In Proceedings of the 5th Workshop on Irregular Applications:
Architectures and Algorithms. ACM, 5.

[32] Shaden Smith and George Karypis. 2016. A medium-grained algorithm for sparse
tensor factorization. In Parallel and Distributed Processing Symposium, 2016 IEEE
International. IEEE, 902–911.

[33] Shaden Smith, Jongsoo Park, and George Karypis. 2016. An Exploration of
Optimization Algorithms for High Performance Tensor Completion. Proceedings
of the 2016 ACM/IEEE conference on Supercomputing (2016).

[34] Shaden Smith, Jongsoo Park, and George Karypis. 2017. Sparse Tensor Factor-
ization on Many-Core Processors with High-Bandwidth Memory. 31st IEEE
International Parallel & Distributed Processing Symposium (IPDPS’17) (2017).

[35] Shaden Smith, Niranjay Ravindran, Nicholas D Sidiropoulos, and George Karypis.
2015. SPLATT: Efficient and parallel sparse tensor-matrix multiplication. In
Parallel and Distributed Processing Symposium (IPDPS), 2015 IEEE International.
IEEE, 61–70.

[36] Jimeng Sun, Spiros Papadimitriou, and S Yu Philip. 2006. Window-based Tensor
Analysis on High-dimensional and Multi-aspect Streams.. In ICDM, Vol. 6. 1076–
1080.

[37] Jimeng Sun, Dacheng Tao, and Christos Faloutsos. 2006. Beyond streams and
graphs: dynamic tensor analysis. In Proceedings of the 12th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining. ACM, 374–383.

[38] Nico Vervliet, Otto Debals, and Lieven De Lathauwer. 2016. Tensorlab 3.0âĂŤNu-
merical optimization strategies for large-scale constrained and coupled ma-
trix/tensor factorization. In Signals, Systems and Computers, 2016 50th Asilomar
Conference on. IEEE, 1733–1738.

[39] Hsiang-Fu Yu, Cho-Jui Hsieh, Si Si, and Inderjit S Dhillon. 2014. Parallel matrix
factorization for recommender systems. Knowledge and Information Systems 41,
3 (2014), 793–819.

[40] Yunhong Zhou, Dennis Wilkinson, Robert Schreiber, and Rong Pan. 2008. Large-
scale parallel collaborative filtering for the netflix prize. In International conference
on algorithmic applications in management. Springer, 337–348.

https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
http://www.sandia.gov/~tgkolda/TensorToolbox/
https://doi.org/10.1109/HPEC.2017.8091026
https://doi.org/10.1109/HPEC.2017.8091026
https://doi.org/10.1145/3225058.3225133
https://doi.org/10.1145/2807591.2807624
https://github.com/hpcgarage/ParTI
https://github.com/hpcgarage/ParTI
https://doi.org/10.1145/3330345.3330366
http://hdl.handle.net/11299/206375
http://hdl.handle.net/11299/206375
http://frostt.io/

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
The results for GPU are collected on an NVIDIA Volta V100 GPU
with 16GB memory. The results for CPU are collected using a Dell
PowerEdge R740 two-socket servers with Intel Xeon 6148. For the
GPU codes, NVCC-9.2 compiler is used, and for the CPU code gcc
(GCC) 7.3.0 is used with the OpenMP flag. Number of threads is set
to 40.

ARTIFACT AVAILABILITY
Software Artifact Availability: All author-created software arti-

facts are maintained in a public repository under an OSI-approved
license.

Hardware Artifact Availability: There are no author-created hard-
ware artifacts.

Data Artifact Availability: All author-created data artifacts are
maintained in a public repository under an OSI-approved license.

Proprietary Artifacts: None of the associated artifacts, author-
created or otherwise, are proprietary.

List of URLs and/or DOIs where artifacts are available:

10.5281/zenodo.3379102
https://github.com/isratnisa/MM-CSF

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: Volta V100 GPU, Intel(R) Xeon(R) Gold
6148 CPU

Operating systems and versions: Red Hat Enterprise Linux Server
VERSION=7.5

Compilers and versions: NVCC 9.2, gcc (GCC) 7.3.0

Libraries and versions: boost 1.67, OpenBLAS-3.6, openMP

Key algorithms: MTTKRP, CPD

Input datasets and versions: http://frostt.io

Output from scripts that gathers execution environment informa-
tion.

LMOD_FAMILY_COMPILER_VERSION=18.0.3
MKLROOT=/opt/intel/18.0.3/compilers_and_libraries_20 ⌋

18/linux/mkl↪→

MANPATH=/opt/mvapich2/intel/18.0/2.3/share/man:/opt/ ⌋

intel/18.0.3/itac_latest/man:/opt/intel/18.0.3/d ⌋

ocumentation_2018/en/debugger/gdb-igfx/man:/opt/ ⌋

intel/18.0.3/inspector_2018/man:/opt/intel/18.0. ⌋

3/compilers_and_libraries_2018/linux/man/common: ⌋

/opt/torque/share/man:/opt/moab/man:/apps/lmod/l ⌋

mod/share/man:/usr/share/man/overrides:/usr/shar ⌋

e/man:/usr/local/share/man:/opt/ibutils/share/ma ⌋

n:/opt/ddn/ime/share/man:/opt/puppetlabs/puppet/ ⌋

share/man:/opt/intel/18.0.3/vtune_amplifier/man: ⌋

/opt/intel/18.0.3/advisor/man

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

__LMOD_REF_COUNT_FPATH=/opt/intel/18.0.3/compilers_a ⌋

nd_libraries_2018/linux/mkl/include:1↪→

XALT_ETC_DIR=/apps/xalt/etc
ModuleTable003=ZE9yZGVyIl09NCxwcm9wVD17fSxbInN0YWN ⌋

rRGVwdGgiXT0xLFsic3RhdHVzIl09ImFjdGl2ZSIsWyJ1c2V ⌋

yTmFtZSJdPSJtdmFwaWNoMiIsfSx4YWx0PXtbImZuIl09Ii9 ⌋

hcHBzL2xtb2RmaWxlcy9Db3JlL3hhbHQvbGF0ZXN0Lmx1YSI ⌋

sWyJmdWxsTmFtZSJdPSJ4YWx0L2xhdGVzdCIsWyJsb2FkT3J ⌋

kZXIiXT0xLHByb3BUPXt9LFsic3RhY2tEZXB0aCJdPTEsWyJ ⌋

zdGF0dXMiXT0iYWN0aXZlIixbInVzZXJOYW1lIl09InhhbHQ ⌋

iLH0sfSxtcGF0aEE9eyIvYXBwcy9sbW9kZmlsZXMvTVBJL2l ⌋

udGVsLzE4LjAvbXZhcGljaDIvMi4zIiwiL2FwcHMvbG1vZGZ ⌋

pbGVzL0NvbXBpbGVyL2ludGVsLzE4LjAiLCIvYXBwcy9sbW9 ⌋

kZmlsZXMvTGludXgiLCIvYXBwcy9sbW9kZmlsZXMvQ29y

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

PBS_VERSION=TORQUE-6.1.2
MPI_FFLAGS=-I/opt/mvapich2/intel/18.0/2.3/include
IPPROOT=/opt/intel/18.0.3/compilers_and_libraries_20 ⌋

18/linux/ipp↪→

MPICH_HOME=/opt/mvapich2/intel/18.0/2.3
MPI_F90FLAGS=-I/opt/mvapich2/intel/18.0/2.3/include
F90=ifort
SHELL=/bin/bash
TERM=xterm-256color
__LMOD_REF_COUNT_MODULEPATH=/apps/lmodfiles/MPI/inte ⌋

l/18.0/mvapich2/2.3:1;/apps/lmodfiles/Compiler/i ⌋

ntel/18.0:1;/apps/lmodfiles/Linux:1;/apps/lmodfi ⌋

les/Core:1;/apps/lmod/lmod/modulefiles/Core:1

↪→

↪→

↪→

HISTSIZE=1000
PBS_JOBNAME=STDIN
MODULEPATH_ROOT=/apps/lmodfiles
TMPDIR=/tmp/pbstmp.472725
LMOD_SYSTEM_DEFAULT_MODULES=modules
XALT_EXECUTABLE_TRACKING=yes
LMOD_PACKAGE_PATH=/apps/lmodfiles/site

Nisa, et al.

LIBRARY_PATH=/opt/intel/18.0.3/compilers_and_librari ⌋

es_2018/linux/linux/lib/intel64_lin:/opt/intel/1 ⌋

8.0.3/compilers_and_libraries_2018/linux/daal/li ⌋

b/intel64_lin:/opt/intel/18.0.3/compilers_and_li ⌋

braries_2018/linux/ipp/lib/intel64_lin:/opt/inte ⌋

l/18.0.3/compilers_and_libraries_2018/linux/mkl/ ⌋

lib/intel64_lin:/opt/intel/18.0.3/compilers_and_ ⌋

libraries_2018/linux/tbb/lib/intel64_lin/gcc4.4

↪→

↪→

↪→

↪→

↪→

↪→

↪→

__LMOD_REF_COUNT_COMPILER_PATH=/apps/xalt/xalt/bin:1
LD_PRELOAD=/apps/xalt/xalt/lib64/libxalt_init.so
PBS_ENVIRONMENT=PBS_INTERACTIVE
LMOD_PKG=/apps/lmod/lmod
FPATH=/opt/intel/18.0.3/compilers_and_libraries_2018 ⌋

/linux/mkl/include↪→

COMPILER=intel
QTDIR=/usr/lib64/qt-3.3
IMEDIR=
LMOD_VERSION=7.8
QTINC=/usr/lib64/qt-3.3/include
PBS_HOME=/var/spool/torque

CC=icc
__LMOD_REF_COUNT_LOADEDMODULES=xalt/latest:1;cxx17/7 ⌋

.3.0:1;intel/18.0.3:1;mvapich2/2.3:1;modules/au2 ⌋

018:1
↪→

↪→

QT_GRAPHICSSYSTEM_CHECKED=1
INTEL_DIR=/opt/intel/18.0.3
USER=USER
PBS_TASKNUM=1
MV2_CPU_BINDING_POLICY=hybrid
COMPILER_MINOR=0

LS_COLORS=rs=0:di=38;5;27:ln=38;5;51:mh=44;38;5;15:p ⌋

i=40;38;5;11:so=38;5;13:do=38;5;5:bd=48;5;232;38 ⌋

;5;11:cd=48;5;232;38;5;3:or=48;5;232;38;5;9:mi=0 ⌋

5;48;5;232;38;5;15:su=48;5;196;38;5;15:sg=48;5;1 ⌋

1;38;5;16:ca=48;5;196;38;5;226:tw=48;5;10;38;5;1 ⌋

6:ow=48;5;10;38;5;21:st=48;5;21;38;5;15:ex=38;5; ⌋

34:*.tar=38;5;9:*.tgz=38;5;9:*.arc=38;5;9:*.arj= ⌋

38;5;9:*.taz=38;5;9:*.lha=38;5;9:*.lz4=38;5;9:*. ⌋

lzh=38;5;9:*.lzma=38;5;9:*.tlz=38;5;9:*.txz=38;5 ⌋

;9:*.tzo=38;5;9:*.t7z=38;5;9:*.zip=38;5;9:*.z=38 ⌋

;5;9:*.Z=38;5;9:*.dz=38;5;9:*.gz=38;5;9:*.lrz=38 ⌋

;5;9:*.lz=38;5;9:*.lzo=38;5;9:*.xz=38;5;9:*.bz2= ⌋

38;5;9:*.bz=38;5;9:*.tbz=38;5;9:*.tbz2=38;5;9:*. ⌋

tz=38;5;9:*.deb=38;5;9:*.rpm=38;5;9:*.jar=38;5;9 ⌋

:*.war=38;5;9:*.ear=38;5;9:*.sar=38;5;9:*.rar=38 ⌋

;5;9:*.alz=38;5;9:*.ace=38;5;9:*.zoo=38;5;9:*.cp ⌋

io=38;5;9:*.7z=38;5;9:*.rz=38;5;9:*.cab=38;5;9:* ⌋

.jpg=38;5;13:*.jpeg=38;5;13:*.gif=38;5;13:*.bmp= ⌋

38;5;13:*.pbm=38;5;13:*.pgm=38;5;13:*.ppm=38;5;1 ⌋

3:*.tga=38;5;13:*.xbm=38;5;13:*.xpm=38;5;13:*.ti ⌋

f=38;5;13:*.tiff=38;5;13:*.png=38;5;13:*.svg=38; ⌋

5;13:*.svgz=38;5;13:*.mng=38;5;13:*.pcx=38;5;13: ⌋

.mov=38;5;13:.mpg=38;5;13:*.mpeg=38;5;13:*.m2v ⌋

=38;5;13:*.mkv=38;5;13:*.webm=38;5;13:*.ogm=38;5 ⌋

;13:*.mp4=38;5;13:*.m4v=38;5;13:*.mp4v=38;5;13:* ⌋

.vob=38;5;13:*.qt=38;5;13:*.nuv=38;5;13:*.wmv=38 ⌋

;5;13:*.asf=38;5;13:*.rm=38;5;13:*.rmvb=38;5;13: ⌋

.flc=38;5;13:.avi=38;5;13:*.fli=38;5;13:*.flv= ⌋

38;5;13:*.gl=38;5;13:*.dl=38;5;13:*.xcf=38;5;13: ⌋

.xwd=38;5;13:.yuv=38;5;13:*.cgm=38;5;13:*.emf= ⌋

38;5;13:*.axv=38;5;13:*.anx=38;5;13:*.ogv=38;5;1 ⌋

3:*.ogx=38;5;13:*.aac=38;5;45:*.au=38;5;45:*.fla ⌋

c=38;5;45:*.mid=38;5;45:*.midi=38;5;45:*.mka=38; ⌋

5;45:*.mp3=38;5;45:*.mpc=38;5;45:*.ogg=38;5;45:* ⌋

.ra=38;5;45:*.wav=38;5;45:*.axa=38;5;45:*.oga=38 ⌋

;5;45:*.spx=38;5;45:*.xspf=38;5;45:

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

LMOD_sys=Linux
LD_LIBRARY_PATH=/opt/mvapich2/intel/18.0/2.3/lib:/ap ⌋

ps/gnu/7.3.0/lib64:/apps/gnu/7.3.0/lib:/opt/inte ⌋

l/18.0.3/debugger_2018/libipt/intel64/lib:/opt/i ⌋

ntel/18.0.3/compilers_and_libraries_2018/linux/l ⌋

ib/intel64_lin:/opt/intel/18.0.3/compilers_and_l ⌋

ibraries_2018/linux/daal/lib/intel64_lin:/opt/in ⌋

tel/18.0.3/compilers_and_libraries_2018/linux/ip ⌋

p/lib/intel64_lin:/opt/intel/18.0.3/compilers_an ⌋

d_libraries_2018/linux/mkl/lib/intel64_lin:/opt/ ⌋

intel/18.0.3/compilers_and_libraries_2018/linux/ ⌋

tbb/lib/intel64_lin/gcc4.4:/opt/torque/lib64:/op ⌋

t/torque/lib::

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

XXX_COMPILER_MAJOR=18
XXX_FAMILY_MPI=mvapich2
PBSCOREDUMP=""
CPATH=/opt/intel/18.0.3/compilers_and_libraries_2018 ⌋

/linux/mkl/include:/opt/intel/18.0.3/compilers_a ⌋

nd_libraries_2018/linux/tbb/include
↪→

↪→

An Efficient Mixed-Mode Representation of Sparse Tensors

ModuleTable004=ZSIsIi9hcHBzL2xtb2QvbG1vZC9tb2R1bGV ⌋

maWxlcy9Db3JlIix9LFsic3lzdGVtQmFzZU1QQVRIIl09Ii9 ⌋

hcHBzL2xtb2RmaWxlcy9MaW51eDovYXBwcy9sbW9kZmlsZXM ⌋

vQ29yZTovYXBwcy9sbW9kL2xtb2QvbW9kdWxlZmlsZXMvQ29 ⌋

yZSIsfQ==

↪→

↪→

↪→

↪→

PBS_WALLTIME=10740
XXX_CXX=icpc
__LMOD_REF_COUNT__LMFILES_=/apps/lmodfiles/Core/xalt ⌋

/latest.lua:1;/apps/lmodfiles/Compiler/intel/18. ⌋

0/cxx17/7.3.0.lua:1;/apps/lmodfiles/Core/intel/1 ⌋

8.0.3.lua:1;/apps/lmodfiles/Compiler/intel/18.0/ ⌋

mvapich2/2.3.lua:1;/apps/lmodfiles/Core/modules/ ⌋

au2018.lua:1

↪→

↪→

↪→

↪→

↪→

PBS_MOMPORT=15003
PBS_GPUFILE=/var/spool/torque/aux//472725. gpu
LMOD_SITE_NAME=XXX
MPIEXEC_COMM=pmi
PBS_O_QUEUE=batch
LMOD_PREPEND_BLOCK=normal
LMOD_FAMILY_MPI_VERSION=2.3
MPI_CFLAGS=-I/opt/mvapich2/intel/18.0/2.3/include
MPI_CXXFLAGS=-I/opt/mvapich2/intel/18.0/2.3/include
MPI_LIBS=-L/opt/mvapich2/intel/18.0/2.3/lib -lmpich

-libverbs -lpthread↪→

NLSPATH=/opt/intel/18.0.3/debugger_2018/gdb/intel64/ ⌋

share/locale/%l_%t/%N:/opt/intel/18.0.3/compiler ⌋

s_and_libraries_2018/linux/lib/intel64_lin/local ⌋

e/%l_%t/%N:/opt/intel/18.0.3/compilers_and_libra ⌋

ries_2018/linux/mkl/lib/intel64_lin/locale/%l_%t ⌋

/%N

↪→

↪→

↪→

↪→

↪→

PATH=/apps/xalt/xalt/bin:/opt/mvapich2/intel/18.0/2. ⌋

3/bin:/apps/gnu/7.3.0/bin:/opt/intel/18.0.3/itac ⌋

_latest/bin:/opt/intel/18.0.3/advisor/bin64:/opt ⌋

/intel/18.0.3/vtune_amplifier/bin64:/opt/intel/1 ⌋

8.0.3/inspector_2018/bin64:/opt/intel/18.0.3/com ⌋

pilers_and_libraries_2018/linux/bin/intel64:/app ⌋

s/software_usage:/opt/torque/bin:/usr/lib64/qt-3 ⌋

.3/bin:/opt/XXX/bin:/opt/moab/bin:/bin:/usr/bin: ⌋

/usr/local/bin:/usr/local/sbin:/usr/sbin:/opt/ib ⌋

utils/bin:/opt/ddn/ime/bin:/opt/puppetlabs/bin

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

PBS_O_LOGNAME=USER
MAIL=/var/spool/mail/USER
__LMOD_REF_COUNT_NLSPATH=/opt/intel/18.0.3/debugger_ ⌋

2018/gdb/intel64/share/locale/%l_%t/%N:1;/opt/in ⌋

tel/18.0.3/compilers_and_libraries_2018/linux/li ⌋

b/intel64_lin/locale/%l_%t/%N:1;/opt/intel/18.0. ⌋

3/compilers_and_libraries_2018/linux/mkl/lib/int ⌋

el64_lin/locale/%l_%t/%N:1

↪→

↪→

↪→

↪→

↪→

ModuleTable001=X01vZHVsZVRhYmxlXz17WyJNVHZlcnNpb24 ⌋

iXT0zLFsiY19yZWJ1aWxkVGltZSJdPTg2NDAwLFsiY19zaG9 ⌋

ydFRpbWUiXT1mYWxzZSxkZXB0aFQ9e30sZmFtaWx5PXtbImN ⌋

vbXBpbGVyIl09ImludGVsIixbIm1waSJdPSJtdmFwaWNoMiI ⌋

sfSxtVD17Y3h4MTc9e1siZm4iXT0iL2FwcHMvbG1vZGZpbGV ⌋

zL0NvbXBpbGVyL2ludGVsLzE4LjAvY3h4MTcvNy4zLjAubHV ⌋

hIixbImZ1bGxOYW1lIl09ImN4eDE3LzcuMy4wIixbImxvYWR ⌋

PcmRlciJdPTIscHJvcFQ9e30sWyJzdGFja0RlcHRoIl09Mix ⌋

bInN0YXR1cyJdPSJhY3RpdmUiLFsidXNlck5hbWUiXT0iY3h ⌋

4MTciLH0saW50ZWw9e1siZm4iXT0iL2FwcHMvbG1vZGZpbGV ⌋

zL0NvcmUvaW50ZWwvMTguMC4zLmx1YSIsWyJmdWxsTmFt

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

PBS_O_LANG=en_US.UTF-8
PBS_JOBCOOKIE=8DD3E1D6A361CA28088AEFA814243CC6
LMOD_SETTARG_CMD=:
XXX_FAMILY_COMPILER=intel
XXX_MVAPICH2_DIR=/opt/mvapich2/intel/18.0/2.3
TBBROOT=/opt/intel/18.0.3/compilers_and_libraries_20 ⌋

18/linux/tbb↪→

PDSH_RCMD_TYPE=ssh
LMFILES=/apps/lmodfiles/Core/xalt/latest.lua:/apps ⌋

/lmodfiles/Compiler/intel/18.0/cxx17/7.3.0.lua:/ ⌋

apps/lmodfiles/Core/intel/18.0.3.lua:/apps/lmodf ⌋

iles/Compiler/intel/18.0/mvapich2/2.3.lua:/apps/ ⌋

lmodfiles/Core/modules/au2018.lua

↪→

↪→

↪→

↪→

LANG=en_US.UTF-8
PBS_NODENUM=0
MODULEPATH=/apps/lmodfiles/MPI/intel/18.0/mvapich2/2 ⌋

.3:/apps/lmodfiles/Compiler/intel/18.0:/apps/lmo ⌋

dfiles/Linux:/apps/lmodfiles/Core:/apps/lmod/lmo ⌋

d/modulefiles/Core

↪→

↪→

↪→

MOABHOMEDIR=/var/spool/moab
XXX_FAMILY_COMPILER_VERSION=18.0.3
PBS_NUM_NODES=1
KDEDIRS=/usr

LOADEDMODULES=xalt/latest:cxx17/7.3.0:intel/18.0.3:m ⌋

vapich2/2.3:modules/au2018↪→

_ModuleTable_Sz_=4
PBS_O_SHELL=/bin/bash
XXX_MVAPICH2_LIB=/opt/mvapich2/intel/18.0/2.3/lib
LMOD_CMD=/apps/lmod/lmod/libexec/lmod
XXX_MPI_CC=mpicc
PBS_JOBID=472725.
LMOD_AVAIL_STYLE=system
DAALROOT=/opt/intel/18.0.3/compilers_and_libraries_2 ⌋

018/linux/daal↪→

HISTCONTROL=ignoredups
SSH_ASKPASS=/usr/libexec/openssh/gnome-ssh-askpass
ENVIRONMENT=BATCH
INTEL_PYTHONHOME=/opt/intel/18.0.3/debugger_2018/pyt ⌋

hon/intel64↪→

XXX_F77=ifort

SHLVL=2
XXX_FC=ifort

Nisa, et al.

XXX_MPI_CXX=mpic++
__LMOD_REF_COUNT_PATH=/apps/xalt/xalt/bin:1;/opt/mva ⌋

pich2/intel/18.0/2.3/bin:1;/apps/gnu/7.3.0/bin:1 ⌋

;/opt/intel/18.0.3/itac_latest/bin:1;/opt/intel/ ⌋

18.0.3/advisor/bin64:1;/opt/intel/18.0.3/vtune_a ⌋

mplifier/bin64:1;/opt/intel/18.0.3/inspector_201 ⌋

8/bin64:1;/opt/intel/18.0.3/compilers_and_librar ⌋

ies_2018/linux/bin/intel64:1;/apps/software_usag ⌋

e:1;/opt/torque/bin:1;/usr/lib64/qt-3.3/bin:1;/o ⌋

pt/XXX/bin:1;/opt/moab/bin:1;/bin:1;/usr/bin:1;/ ⌋

usr/local/bin:1;/usr/local/sbin:1;/usr/sbin:1;/o ⌋

pt/ibutils/bin:1;/opt/ddn/ime/bin:1;/opt/puppetl ⌋

abs/bin:1

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

__LMOD_REF_COUNT_CPATH=/opt/intel/18.0.3/compilers_a ⌋

nd_libraries_2018/linux/mkl/include:1;/opt/intel ⌋

/18.0.3/compilers_and_libraries_2018/linux/tbb/i ⌋

nclude:1

↪→

↪→

↪→

ModuleTable002=ZSJdPSJpbnRlbC8xOC4wLjMiLFsibG9hZE9 ⌋

yZGVyIl09Myxwcm9wVD17fSxbInN0YWNrRGVwdGgiXT0xLFs ⌋

ic3RhdHVzIl09ImFjdGl2ZSIsWyJ1c2VyTmFtZSJdPSJpbnR ⌋

lbCIsfSxtb2R1bGVzPXtbImZuIl09Ii9hcHBzL2xtb2RmaWx ⌋

lcy9Db3JlL21vZHVsZXMvYXUyMDE4Lmx1YSIsWyJmdWxsTmF ⌋

tZSJdPSJtb2R1bGVzL2F1MjAxOCIsWyJsb2FkT3JkZXIiXT0 ⌋

1LHByb3BUPXt9LFsic3RhY2tEZXB0aCJdPTAsWyJzdGF0dXM ⌋

iXT0iYWN0aXZlIixbInVzZXJOYW1lIl09Im1vZHVsZXMiLH0 ⌋

sbXZhcGljaDI9e1siZm4iXT0iL2FwcHMvbG1vZGZpbGVzL0N ⌋

vbXBpbGVyL2ludGVsLzE4LjAvbXZhcGljaDIvMi4zLmx1YSI ⌋

sWyJmdWxsTmFtZSJdPSJtdmFwaWNoMi8yLjMiLFsibG9h

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

__LMOD_REF_COUNT_INCLUDE=/opt/intel/18.0.3/compilers ⌋

_and_libraries_2018/linux/daal/include:1;/opt/in ⌋

tel/18.0.3/compilers_and_libraries_2018/linux/ip ⌋

p/include:1;/opt/intel/18.0.3/compilers_and_libr ⌋

aries_2018/linux/mkl/include:1

↪→

↪→

↪→

↪→

XALT_SCALAR_AND_SPSR_SAMPLING=yes
PBS_VNODENUM=0
BASH_ENV=/apps/lmod/lmod/init/bash
XXX_MPI_FC=mpifort
LOGNAME=USER
LMOD_arch=x86_64
MV2_IBA_HCA=mlx5_0
CVS_RSH=ssh
QTLIB=/usr/lib64/qt-3.3/lib
XXX_FAMILY_MPI_VERSION=2.3
PBS_QUEUE=serial
PDSH_SSH_ARGS_APPEND=-oStrictHostKeyChecking=no

-oUserKnownHostsFile=/dev/null -oLogLevel=ERROR↪→

MODULESHOME=/apps/lmod/lmod

__LMOD_REF_COUNT_LIBRARY_PATH=/opt/intel/18.0.3/comp ⌋

ilers_and_libraries_2018/linux/linux/lib/intel64 ⌋

_lin:1;/opt/intel/18.0.3/compilers_and_libraries ⌋

_2018/linux/daal/lib/intel64_lin:1;/opt/intel/18 ⌋

.0.3/compilers_and_libraries_2018/linux/ipp/lib/ ⌋

intel64_lin:1;/opt/intel/18.0.3/compilers_and_li ⌋

braries_2018/linux/mkl/lib/intel64_lin:1;/opt/in ⌋

tel/18.0.3/compilers_and_libraries_2018/linux/tb ⌋

b/lib/intel64_lin/gcc4.4:1

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

PBS_O_MAIL=/var/spool/mail/USER
PBS_O_SUBMIT_FILTER=/usr/local/sbin/torque_submitfil ⌋

ter↪→

LESSOPEN=||/usr/bin/lesspipe.sh %s
LMOD_SETTARG_FULL_SUPPORT=no
COMPILER_PATH=/apps/xalt/xalt/bin
__LMOD_REF_COUNT_LD_LIBRARY_PATH=/opt/mvapich2/intel ⌋

/18.0/2.3/lib:1;/apps/gnu/7.3.0/lib64:1;/apps/gn ⌋

u/7.3.0/lib:1;/opt/intel/18.0.3/debugger_2018/li ⌋

bipt/intel64/lib:1;/opt/intel/18.0.3/compilers_a ⌋

nd_libraries_2018/linux/lib/intel64_lin:1;/opt/i ⌋

ntel/18.0.3/compilers_and_libraries_2018/linux/d ⌋

aal/lib/intel64_lin:1;/opt/intel/18.0.3/compiler ⌋

s_and_libraries_2018/linux/ipp/lib/intel64_lin:1 ⌋

;/opt/intel/18.0.3/compilers_and_libraries_2018/ ⌋

linux/mkl/lib/intel64_lin:1;/opt/intel/18.0.3/co ⌋

mpilers_and_libraries_2018/linux/tbb/lib/intel64 ⌋

_lin/gcc4.4:1;/opt/torque/lib64:1;/opt/torque/li ⌋

b:1

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

MV2_USE_RDMA_CM=0
__Init_Default_Modules=1
LMOD_FULL_SETTARG_SUPPORT=no
__LMOD_REF_COUNT_LD_PRELOAD=/apps/xalt/xalt/lib64/li ⌋

bxalt_init.so:1↪→

LMOD_FAMILY_COMPILER=intel
PBS_NP=28

PBS_NUM_PPN=28
QT_PLUGIN_PATH=/usr/lib64/kde4/plugins:/usr/lib/kde4 ⌋

/plugins↪→

LMOD_CACHED_LOADS=yes
LMOD_DIR=/apps/lmod/lmod/libexec
INCLUDE=/opt/intel/18.0.3/compilers_and_libraries_20 ⌋

18/linux/daal/include:/opt/intel/18.0.3/compiler ⌋

s_and_libraries_2018/linux/ipp/include:/opt/inte ⌋

l/18.0.3/compilers_and_libraries_2018/linux/mkl/ ⌋

include

↪→

↪→

↪→

↪→

An Efficient Mixed-Mode Representation of Sparse Tensors

__LMOD_REF_COUNT_MANPATH=/opt/mvapich2/intel/18.0/2. ⌋

3/share/man:1;/opt/intel/18.0.3/itac_latest/man: ⌋

1;/opt/intel/18.0.3/documentation_2018/en/debugg ⌋

er/gdb-igfx/man:1;/opt/intel/18.0.3/inspector_20 ⌋

18/man:1;/opt/intel/18.0.3/compilers_and_librari ⌋

es_2018/linux/man/common:1;/opt/torque/share/man ⌋

:1;/opt/moab/man:1;/apps/lmod/lmod/share/man:1;/ ⌋

usr/share/man/overrides:1;/usr/share/man:1;/usr/ ⌋

local/share/man:1;/opt/ibutils/share/man:1;/opt/ ⌋

ddn/ime/share/man:2;/opt/puppetlabs/puppet/share ⌋

/man:1;/opt/intel/18.0.3/vtune_amplifier/man:1;/ ⌋

opt/intel/18.0.3/advisor/man:1

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

XXX_XALT_DIR=/apps/xalt/xalt
__LMOD_Priority_PATH=/apps/xalt/xalt/bin:-100
=
LMOD_COLORIZE=yes
LMOD_FAMILY_MPI=mvapich2
PBS_O_PATH=/apps/xalt/xalt/bin:/opt/mvapich2/intel/1 ⌋

8.0/2.3/bin:/apps/gnu/7.3.0/bin:/opt/intel/18.0. ⌋

3/itac_latest/bin:/opt/intel/18.0.3/advisor/bin6 ⌋

4:/opt/intel/18.0.3/vtune_amplifier/bin64:/opt/i ⌋

ntel/18.0.3/inspector_2018/bin64:/opt/intel/18.0 ⌋

.3/compilers_and_libraries_2018/linux/bin/intel6 ⌋

4:/apps/software_usage:/opt/torque/bin:/usr/lib6 ⌋

4/qt-3.3/bin:/opt/XXX/bin:/opt/moab/bin:/usr/loc ⌋

al/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/opt/i ⌋

butils/bin:/opt/ddn/ime/bin:/opt/puppetlabs/bin

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

BASH_FUNC_module()=() { eval $($LMOD_CMD bash "$@")

&& eval $(${LMOD_SETTARG_CMD:-:} -s sh)↪→

}
BASH_FUNC_ml()=() { eval $($LMOD_DIR/ml_cmd "$@")
}
_=/bin/env
++ lsb_release -a
LSB Version: :core-4.1-amd64:core-4.1-noarch: ⌋

cxx-4.1-amd64:cxx-4.1-noarch:desktop-4.1-amd64:d ⌋

esktop-4.1-noarch:languages-4.1-amd64:languages- ⌋

4.1-noarch:printing-4.1-amd64:printing-4.1-noarch

↪→

↪→

↪→

Distributor ID: RedHatEnterpriseServer
Description: Red Hat Enterprise Linux Server

release 7.5 (Maipo)↪→

Release: 7.5
Codename: Maipo
++ uname -a
++ lscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 40
On-line CPU(s) list: 0-39
Thread(s) per core: 1
Core(s) per socket: 20
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6

Model: 85
Model name: Intel(R) Xeon(R) Gold 6148 CPU

@ 2.40GHz↪→

Stepping: 4
CPU MHz: 2400.000
BogoMIPS: 4800.00
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 1024K
L3 cache: 28160K
NUMA node0 CPU(s): 0,2,4,6,8,10,12,14,16,18,20,22 ⌋

,24,26,28,30,32,34,36,38↪→

NUMA node1 CPU(s): 1,3,5,7,9,11,13,15,17,19,21,23 ⌋

,25,27,29,31,33,35,37,39↪→

Flags: fpu vme de pse tsc msr pae mce
cx8 apic sep mtrr pge mca cmov pat pse36 clflush
dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx
pdpe1gb rdtscp lm constant_tsc art arch_perfmon
pebs bts rep_good nopl xtopology nonstop_tsc
aperfmperf eagerfpu pni pclmulqdq dtes64 monitor
ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr
pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt
tsc_deadline_timer aes xsave avx f16c rdrand
lahf_lm abm 3dnowprefetch epb cat_l3 cdp_l3
intel_pt ssbd mba ibrs ibpb stibp tpr_shadow vnmi
flexpriority ept vpid fsgsbase tsc_adjust bmi1
hle avx2 smep bmi2 erms invpcid rtm cqm mpx rdt_a
avx512f avx512dq rdseed adx smap clflushopt clwb
avx512cd avx512bw avx512vl xsaveopt xsavec
xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total
cqm_mbm_local dtherm ida arat pln pts pku ospke
spec_ctrl intel_stibp flush_l1d

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

++ cat /proc/meminfo
MemTotal: 394800924 kB
MemFree: 379435860 kB
MemAvailable: 381470572 kB
Buffers: 208484 kB
Cached: 2844152 kB
SwapCached: 0 kB
Active: 2252220 kB
Inactive: 2267268 kB
Active(anon): 1543664 kB
Inactive(anon): 517340 kB
Active(file): 708556 kB
Inactive(file): 1749928 kB
Unevictable: 4292464 kB
Mlocked: 4292464 kB
SwapTotal: 50331644 kB
SwapFree: 50331644 kB
Dirty: 236 kB
Writeback: 0 kB
AnonPages: 5759336 kB
Mapped: 564880 kB
Shmem: 551848 kB
Slab: 1804840 kB

Nisa, et al.

SReclaimable: 714332 kB
SUnreclaim: 1090508 kB
KernelStack: 30432 kB
PageTables: 26380 kB
NFS_Unstable: 0 kB
Bounce: 0 kB
WritebackTmp: 0 kB
CommitLimit: 247732104 kB
Committed_AS: 7106576 kB
VmallocTotal: 34359738367 kB
VmallocUsed: 1810776 kB
VmallocChunk: 34156619752 kB
HardwareCorrupted: 0 kB
AnonHugePages: 5318656 kB
CmaTotal: 0 kB
CmaFree: 0 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB
DirectMap4k: 4712256 kB
DirectMap2M: 110243840 kB
DirectMap1G: 288358400 kB
++ inxi -F -c0
./collet_env.sh: line 15: inxi: command not found
++ lsblk -a
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 931.5G 0 disk

sda1 8:1 0 931.5G 0 part

vg0-lv_state 253:0 0 16G 0 lvm

/var/lib/stateless/state↪→

vg0-lv_rw 253:1 0 16G 0 lvm

/var/lib/stateless/writable↪→

vg0-lv_swap 253:2 0 48G 0 lvm [SWAP]

vg0-lv_tmp 253:3 0 851.5G 0 lvm /tmp
++ lsscsi -s
[2:0:0:0] disk ATA HUS722T1TALA600 MU02

/dev/sda 1.00TB↪→

++ module list
+++ /apps/lmod/lmod/libexec/lmod bash list

Currently Loaded Modules:
1) xalt/latest 2) cxx17/7.3.0 3) intel/18.0.3

4) mvapich2/2.3 5) modules/au2018↪→

++ eval 'MODULEPATH=/apps/lmodfiles/MPI/intel/18.0/m ⌋

vapich2/2.3:/apps/lmodfiles/Compiler/intel/18.0: ⌋

/apps/lmodfiles/Linux:/apps/lmodfiles/Core:/apps ⌋

/lmod/lmod/modulefiles/Core;' export
'MODULEPATH;' '_ModuleTable001_=X01vZHVsZVRhYmxl ⌋

Xz17WyJNVHZlcnNpb24iXT0zLFsiY19yZWJ1aWxkVGltZSJd ⌋

PTg2NDAwLFsiY19zaG9ydFRpbWUiXT1mYWxzZSxkZXB0aFQ9 ⌋

e30sZmFtaWx5PXtbImNvbXBpbGVyIl09ImludGVsIixbIm1w ⌋

aSJdPSJtdmFwaWNoMiIsfSxtVD17Y3h4MTc9e1siZm4iXT0i ⌋

L2FwcHMvbG1vZGZpbGVzL0NvbXBpbGVyL2ludGVsLzE4LjAv ⌋

Y3h4MTcvNy4zLjAubHVhIixbImZ1bGxOYW1lIl09ImN4eDE3 ⌋

LzcuMy4wIixbImxvYWRPcmRlciJdPTIscHJvcFQ9e30sWyJz ⌋

dGFja0RlcHRoIl09MixbInN0YXR1cyJdPSJhY3RpdmUiLFsi ⌋

dXNlck5hbWUiXT0iY3h4MTciLH0saW50ZWw9e1siZm4iXT0i ⌋

L2FwcHMvbG1vZGZpbGVzL0NvcmUvaW50ZWwvMTguMC4zLmx1 ⌋

YSIsWyJmdWxsTmFt;' export '_ModuleTable001_;'
'_ModuleTable002_=ZSJdPSJpbnRlbC8xOC4wLjMiLFsibG ⌋

9hZE9yZGVyIl09Myxwcm9wVD17fSxbInN0YWNrRGVwdGgiXT ⌋

0xLFsic3RhdHVzIl09ImFjdGl2ZSIsWyJ1c2VyTmFtZSJdPS ⌋

JpbnRlbCIsfSxtb2R1bGVzPXtbImZuIl09Ii9hcHBzL2xtb2 ⌋

RmaWxlcy9Db3JlL21vZHVsZXMvYXUyMDE4Lmx1YSIsWyJmdW ⌋

xsTmFtZSJdPSJtb2R1bGVzL2F1MjAxOCIsWyJsb2FkT3JkZX ⌋

IiXT01LHByb3BUPXt9LFsic3RhY2tEZXB0aCJdPTAsWyJzdG ⌋

F0dXMiXT0iYWN0aXZlIixbInVzZXJOYW1lIl09Im1vZHVsZX ⌋

MiLH0sbXZhcGljaDI9e1siZm4iXT0iL2FwcHMvbG1vZGZpbG ⌋

VzL0NvbXBpbGVyL2ludGVsLzE4LjAvbXZhcGljaDIvMi4zLm ⌋

x1YSIsWyJmdWxsTmFtZSJdPSJtdmFwaWNoMi8yLjMiLFsibG ⌋

9h;' export '_ModuleTable002_;'
'_ModuleTable003_=ZE9yZGVyIl09NCxwcm9wVD17fSxbIn ⌋

N0YWNrRGVwdGgiXT0xLFsic3RhdHVzIl09ImFjdGl2ZSIsWy ⌋

J1c2VyTmFtZSJdPSJtdmFwaWNoMiIsfSx4YWx0PXtbImZuIl ⌋

09Ii9hcHBzL2xtb2RmaWxlcy9Db3JlL3hhbHQvbGF0ZXN0Lm ⌋

x1YSIsWyJmdWxsTmFtZSJdPSJ4YWx0L2xhdGVzdCIsWyJsb2 ⌋

FkT3JkZXIiXT0xLHByb3BUPXt9LFsic3RhY2tEZXB0aCJdPT ⌋

EsWyJzdGF0dXMiXT0iYWN0aXZlIixbInVzZXJOYW1lIl09In ⌋

hhbHQiLH0sfSxtcGF0aEE9eyIvYXBwcy9sbW9kZmlsZXMvTV ⌋

BJL2ludGVsLzE4LjAvbXZhcGljaDIvMi4zIiwiL2FwcHMvbG ⌋

1vZGZpbGVzL0NvbXBpbGVyL2ludGVsLzE4LjAiLCIvYXBwcy ⌋

9sbW9kZmlsZXMvTGludXgiLCIvYXBwcy9sbW9kZmlsZXMvQ2 ⌋

9y;' export '_ModuleTable003_;'
'_ModuleTable004_=ZSIsIi9hcHBzL2xtb2QvbG1vZC9tb2 ⌋

R1bGVmaWxlcy9Db3JlIix9LFsic3lzdGVtQmFzZU1QQVRIIl ⌋

09Ii9hcHBzL2xtb2RmaWxlcy9MaW51eDovYXBwcy9sbW9kZm ⌋

lsZXMvQ29yZTovYXBwcy9sbW9kL2xtb2QvbW9kdWxlZmlsZX ⌋

MvQ29yZSIsfQ==;' export '_ModuleTable004_;'
'_ModuleTable_Sz_=4;' export '_ModuleTable_Sz_;'

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

+++ MODULEPATH=/apps/lmodfiles/MPI/intel/18.0/mvapic ⌋

h2/2.3:/apps/lmodfiles/Compiler/intel/18.0:/apps ⌋

/lmodfiles/Linux:/apps/lmodfiles/Core:/apps/lmod ⌋

/lmod/modulefiles/Core

↪→

↪→

↪→

+++ export MODULEPATH

An Efficient Mixed-Mode Representation of Sparse Tensors

+++ _ModuleTable001_=X01vZHVsZVRhYmxlXz17WyJNVHZlcnN ⌋

pb24iXT0zLFsiY19yZWJ1aWxkVGltZSJdPTg2NDAwLFsiY19 ⌋

zaG9ydFRpbWUiXT1mYWxzZSxkZXB0aFQ9e30sZmFtaWx5PXt ⌋

bImNvbXBpbGVyIl09ImludGVsIixbIm1waSJdPSJtdmFwaWN ⌋

oMiIsfSxtVD17Y3h4MTc9e1siZm4iXT0iL2FwcHMvbG1vZGZ ⌋

pbGVzL0NvbXBpbGVyL2ludGVsLzE4LjAvY3h4MTcvNy4zLjA ⌋

ubHVhIixbImZ1bGxOYW1lIl09ImN4eDE3LzcuMy4wIixbImx ⌋

vYWRPcmRlciJdPTIscHJvcFQ9e30sWyJzdGFja0RlcHRoIl0 ⌋

9MixbInN0YXR1cyJdPSJhY3RpdmUiLFsidXNlck5hbWUiXT0 ⌋

iY3h4MTciLH0saW50ZWw9e1siZm4iXT0iL2FwcHMvbG1vZGZ ⌋

pbGVzL0NvcmUvaW50ZWwvMTguMC4zLmx1YSIsWyJmdWxsTmFt

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

+++ export _ModuleTable001_
+++ _ModuleTable002_=ZSJdPSJpbnRlbC8xOC4wLjMiLFsibG9 ⌋

hZE9yZGVyIl09Myxwcm9wVD17fSxbInN0YWNrRGVwdGgiXT0 ⌋

xLFsic3RhdHVzIl09ImFjdGl2ZSIsWyJ1c2VyTmFtZSJdPSJ ⌋

pbnRlbCIsfSxtb2R1bGVzPXtbImZuIl09Ii9hcHBzL2xtb2R ⌋

maWxlcy9Db3JlL21vZHVsZXMvYXUyMDE4Lmx1YSIsWyJmdWx ⌋

sTmFtZSJdPSJtb2R1bGVzL2F1MjAxOCIsWyJsb2FkT3JkZXI ⌋

iXT01LHByb3BUPXt9LFsic3RhY2tEZXB0aCJdPTAsWyJzdGF ⌋

0dXMiXT0iYWN0aXZlIixbInVzZXJOYW1lIl09Im1vZHVsZXM ⌋

iLH0sbXZhcGljaDI9e1siZm4iXT0iL2FwcHMvbG1vZGZpbGV ⌋

zL0NvbXBpbGVyL2ludGVsLzE4LjAvbXZhcGljaDIvMi4zLmx ⌋

1YSIsWyJmdWxsTmFtZSJdPSJtdmFwaWNoMi8yLjMiLFsibG9h

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

+++ export _ModuleTable002_
+++ _ModuleTable003_=ZE9yZGVyIl09NCxwcm9wVD17fSxbInN ⌋

0YWNrRGVwdGgiXT0xLFsic3RhdHVzIl09ImFjdGl2ZSIsWyJ ⌋

1c2VyTmFtZSJdPSJtdmFwaWNoMiIsfSx4YWx0PXtbImZuIl0 ⌋

9Ii9hcHBzL2xtb2RmaWxlcy9Db3JlL3hhbHQvbGF0ZXN0Lmx ⌋

1YSIsWyJmdWxsTmFtZSJdPSJ4YWx0L2xhdGVzdCIsWyJsb2F ⌋

kT3JkZXIiXT0xLHByb3BUPXt9LFsic3RhY2tEZXB0aCJdPTE ⌋

sWyJzdGF0dXMiXT0iYWN0aXZlIixbInVzZXJOYW1lIl09Inh ⌋

hbHQiLH0sfSxtcGF0aEE9eyIvYXBwcy9sbW9kZmlsZXMvTVB ⌋

JL2ludGVsLzE4LjAvbXZhcGljaDIvMi4zIiwiL2FwcHMvbG1 ⌋

vZGZpbGVzL0NvbXBpbGVyL2ludGVsLzE4LjAiLCIvYXBwcy9 ⌋

sbW9kZmlsZXMvTGludXgiLCIvYXBwcy9sbW9kZmlsZXMvQ29y

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

+++ export _ModuleTable003_
+++ _ModuleTable004_=ZSIsIi9hcHBzL2xtb2QvbG1vZC9tb2R ⌋

1bGVmaWxlcy9Db3JlIix9LFsic3lzdGVtQmFzZU1QQVRIIl0 ⌋

9Ii9hcHBzL2xtb2RmaWxlcy9MaW51eDovYXBwcy9sbW9kZml ⌋

sZXMvQ29yZTovYXBwcy9sbW9kL2xtb2QvbW9kdWxlZmlsZXM ⌋

vQ29yZSIsfQ==

↪→

↪→

↪→

↪→

+++ export _ModuleTable004_
+++ _ModuleTable_Sz_=4
+++ export _ModuleTable_Sz_
+++ : -s sh
++ eval
++ nvidia-smi
Thu Apr 11 06:33:06 2019
+--- ⌋

--------------------------+↪→

| NVIDIA-SMI 410.79 Driver Version: 410.79

CUDA Version: 10.0 |↪→

|-------------------------------+------------------- ⌋

---+----------------------+↪→

| GPU Name Persistence-M| Bus-Id Disp.A

| Volatile Uncorr. ECC |↪→

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage

| GPU-Util Compute M. |↪→

|===============================+=================== ⌋

===+======================|↪→

| 0 Tesla V100-PCIE... On | 00000000:3B:00.0 Off

| Off |↪→

| N/A 31C P0 43W / 250W | 11MiB / 16130MiB

| 0% E. Process |↪→

+-------------------------------+------------------- ⌋

---+----------------------+↪→

+--- ⌋

--------------------------+↪→

| Processes:

GPU Memory |↪→

| GPU PID Type Process name

Usage |↪→

|=== ⌋

==========================|↪→

| No running processes found

|↪→

+--- ⌋

--------------------------+↪→

++ cat
++ lshw -short -quiet -sanitize
WARNING: you should run this program as super-user.
H/W path Device Class Description
===

system Computer
/0 bus Motherboard
/0/0 memory 382GiB System

memory↪→

/0/1 processor Intel(R)

Xeon(R) Gold 6148 CPU @ 2.40GHz↪→

/0/3 processor Intel(R)

Xeon(R) Gold 6148 CPU @ 2.40GHz↪→

/0/100 bridge Sky Lake-E DMI3

Registers↪→

/0/100/5 generic Sky Lake-E

MM/Vt-d Configuration Registers↪→

/0/100/5.2 generic Intel

Corporation↪→

/0/100/5.4 generic Intel

Corporation↪→

/0/100/8 generic Sky Lake-E Ubox

Registers↪→

/0/100/8.1 generic Sky Lake-E Ubox

Registers↪→

/0/100/8.2 generic Sky Lake-E Ubox

Registers↪→

/0/100/11 generic Intel

Corporation↪→

/0/100/11.5 storage Lewisburg

SSATA Controller [AHCI mode]↪→

Nisa, et al.

/0/100/14 bus Lewisburg USB

3.0 xHCI Controller↪→

/0/100/14.2 generic Lewisburg

Thermal Subsystem↪→

/0/100/16 communication Lewisburg

CSME: HECI #1↪→

/0/100/16.1 communication Lewisburg

CSME: HECI #2↪→

/0/100/16.4 communication Lewisburg

CSME: HECI #3↪→

/0/100/17 storage Lewisburg SATA

Controller [AHCI mode]↪→

/0/100/1c bridge Lewisburg PCI

Express Root Port #1↪→

/0/100/1c/0 em3 network I350 Gigabit

Network Connection↪→

/0/100/1c/0.1 em4 network I350 Gigabit

Network Connection↪→

/0/100/1c.4 bridge Lewisburg PCI

Express Root Port #5↪→

/0/100/1c.4/0 bridge PLDA
/0/100/1c.4/0/0 display Integrated

Matrox G200eW3 Graphics Controller↪→

/0/100/1f bridge Lewisburg LPC

Controller↪→

/0/100/1f.2 memory Memory

controller↪→

/0/100/1f.4 bus Lewisburg SMBus
/0/100/1f.5 bus Lewisburg SPI

Controller↪→

/0/2 bridge Sky Lake-E PCI

Express Root Port C↪→

/0/2/0 em1 network Ethernet

Controller X710 for 10GbE SFP+↪→

/0/2/0.1 em2 network Ethernet

Controller X710 for 10GbE SFP+↪→

/0/4 generic Intel Corporation
/0/6 generic Sky Lake-E RAS

Configuration Registers↪→

/0/7 generic Intel Corporation
/0/9 generic Sky Lake-E CHA

Registers↪→

/0/a generic Sky Lake-E CHA

Registers↪→

/0/b generic Sky Lake-E CHA

Registers↪→

/0/c generic Sky Lake-E CHA

Registers↪→

/0/d generic Sky Lake-E CHA

Registers↪→

/0/e generic Sky Lake-E CHA

Registers↪→

/0/f generic Sky Lake-E CHA

Registers↪→

/0/10 generic Sky Lake-E CHA

Registers↪→

/0/11 generic Sky Lake-E CHA

Registers↪→

/0/12 generic Sky Lake-E CHA

Registers↪→

/0/13 generic Sky Lake-E CHA

Registers↪→

/0/14 generic Sky Lake-E CHA

Registers↪→

/0/15 generic Sky Lake-E CHA

Registers↪→

/0/16 generic Sky Lake-E CHA

Registers↪→

/0/17 generic Sky Lake-E CHA

Registers↪→

/0/18 generic Sky Lake-E CHA

Registers↪→

/0/19 generic Sky Lake-E CHA

Registers↪→

/0/1a generic Sky Lake-E CHA

Registers↪→

/0/1b generic Sky Lake-E CHA

Registers↪→

/0/1c generic Sky Lake-E CHA

Registers↪→

/0/1d generic Sky Lake-E CHA

Registers↪→

/0/1e generic Sky Lake-E CHA

Registers↪→

/0/1f generic Sky Lake-E CHA

Registers↪→

/0/20 generic Sky Lake-E CHA

Registers↪→

/0/21 generic Sky Lake-E CHA

Registers↪→

/0/22 generic Sky Lake-E CHA

Registers↪→

/0/23 generic Sky Lake-E CHA

Registers↪→

/0/24 generic Sky Lake-E CHA

Registers↪→

/0/25 generic Sky Lake-E CHA

Registers↪→

/0/26 generic Sky Lake-E CHA

Registers↪→

/0/27 generic Sky Lake-E CHA

Registers↪→

/0/28 generic Sky Lake-E CHA

Registers↪→

/0/29 generic Sky Lake-E CHA

Registers↪→

/0/2a generic Sky Lake-E CHA

Registers↪→

An Efficient Mixed-Mode Representation of Sparse Tensors

/0/2b generic Sky Lake-E CHA

Registers↪→

/0/2c generic Sky Lake-E CHA

Registers↪→

/0/2d generic Sky Lake-E CHA

Registers↪→

/0/2e generic Sky Lake-E CHA

Registers↪→

/0/2f generic Sky Lake-E CHA

Registers↪→

/0/30 generic Sky Lake-E CHA

Registers↪→

/0/31 generic Sky Lake-E CHA

Registers↪→

/0/32 generic Sky Lake-E CHA

Registers↪→

/0/33 generic Sky Lake-E CHA

Registers↪→

/0/34 generic Sky Lake-E CHA

Registers↪→

/0/35 generic Sky Lake-E CHA

Registers↪→

/0/36 generic Sky Lake-E CHA

Registers↪→

/0/37 generic Sky Lake-E CHA

Registers↪→

/0/38 generic Sky Lake-E CHA

Registers↪→

/0/39 generic Sky Lake-E CHA

Registers↪→

/0/3a generic Sky Lake-E CHA

Registers↪→

/0/3b generic Sky Lake-E CHA

Registers↪→

/0/3c generic Sky Lake-E CHA

Registers↪→

/0/3d generic Sky Lake-E CHA

Registers↪→

/0/3e generic Sky Lake-E CHA

Registers↪→

/0/3f generic Sky Lake-E CHA

Registers↪→

/0/40 generic Sky Lake-E CHA

Registers↪→

/0/41 generic Sky Lake-E CHA

Registers↪→

/0/42 generic Sky Lake-E CHA

Registers↪→

/0/43 generic Sky Lake-E CHA

Registers↪→

/0/44 generic Sky Lake-E CHA

Registers↪→

/0/45 generic Sky Lake-E PCU

Registers↪→

/0/46 generic Sky Lake-E PCU

Registers↪→

/0/47 generic Sky Lake-E PCU

Registers↪→

/0/48 generic Sky Lake-E PCU

Registers↪→

/0/49 generic Sky Lake-E PCU

Registers↪→

/0/4a generic Sky Lake-E PCU

Registers↪→

/0/4b generic Sky Lake-E PCU

Registers↪→

/0/101 bridge Sky Lake-E PCI

Express Root Port A↪→

/0/101/0 display GV100GL [Tesla

V100 PCIe]↪→

/0/4c generic Intel Corporation
/0/4d generic Sky Lake-E RAS

Configuration Registers↪→

/0/4e generic Intel Corporation
/0/4f generic Intel Corporation
/0/50 generic Intel Corporation
/0/51 generic Intel Corporation
/0/52 generic Intel Corporation
/0/53 generic Intel Corporation
/0/54 generic Intel Corporation
/0/55 generic Intel Corporation
/0/56 generic Intel Corporation
/0/57 generic Intel Corporation
/0/58 generic Intel Corporation
/0/59 generic Intel Corporation
/0/5a generic Intel Corporation
/0/5b generic Intel Corporation
/0/5c generic Intel Corporation
/0/5d generic Intel Corporation
/0/5e generic Intel Corporation
/0/5f generic Intel Corporation
/0/60 generic Intel Corporation
/0/61 generic Intel Corporation
/0/62 generic Intel Corporation
/0/63 generic Intel Corporation
/0/64 generic Intel Corporation
/0/65 generic Intel Corporation
/0/66 generic Intel Corporation
/0/67 generic Intel Corporation
/0/68 generic Intel Corporation
/0/69 generic Intel Corporation
/0/6a generic Sky Lake-E RAS

Configuration Registers↪→

/0/6b generic Intel Corporation
/0/6c generic Intel Corporation
/0/6d generic Intel Corporation
/0/6e generic Intel Corporation
/0/6f generic Intel Corporation
/0/70 generic Intel Corporation
/0/71 generic Intel Corporation

Nisa, et al.

/0/72 generic Sky Lake-E

M3KTI Registers↪→

/0/73 generic Sky Lake-E

M3KTI Registers↪→

/0/74 generic Sky Lake-E

M3KTI Registers↪→

/0/75 generic Sky Lake-E

M3KTI Registers↪→

/0/76 generic Sky Lake-E

M3KTI Registers↪→

/0/77 generic Sky Lake-E

M2PCI Registers↪→

/0/78 generic Sky Lake-E

M2PCI Registers↪→

/0/79 generic Sky Lake-E

M2PCI Registers↪→

/0/7a generic Sky Lake-E

M2PCI Registers↪→

/0/7b generic Sky Lake-E

MM/Vt-d Configuration Registers↪→

/0/7c generic Intel Corporation
/0/7d generic Intel Corporation
/0/7e generic Sky Lake-E Ubox

Registers↪→

/0/7f generic Sky Lake-E Ubox

Registers↪→

/0/80 generic Sky Lake-E Ubox

Registers↪→

/0/102 bridge Sky Lake-E PCI

Express Root Port A↪→

/0/102/0 ib0 network MT27800 Family

[ConnectX-5]↪→

/0/102/0.1 ib1 network MT27800 Family

[ConnectX-5]↪→

/0/81 generic Intel Corporation
/0/82 generic Sky Lake-E RAS

Configuration Registers↪→

/0/83 generic Intel Corporation
/0/84 generic Sky Lake-E CHA

Registers↪→

/0/8.1 generic Sky Lake-E CHA

Registers↪→

/0/8.2 generic Sky Lake-E CHA

Registers↪→

/0/85 generic Sky Lake-E CHA

Registers↪→

/0/86 generic Sky Lake-E CHA

Registers↪→

/0/87 generic Sky Lake-E CHA

Registers↪→

/0/88 generic Sky Lake-E CHA

Registers↪→

/0/89 generic Sky Lake-E CHA

Registers↪→

/0/8a generic Sky Lake-E CHA

Registers↪→

/0/8b generic Sky Lake-E CHA

Registers↪→

/0/8c generic Sky Lake-E CHA

Registers↪→

/0/8d generic Sky Lake-E CHA

Registers↪→

/0/8e generic Sky Lake-E CHA

Registers↪→

/0/8f generic Sky Lake-E CHA

Registers↪→

/0/90 generic Sky Lake-E CHA

Registers↪→

/0/91 generic Sky Lake-E CHA

Registers↪→

/0/92 generic Sky Lake-E CHA

Registers↪→

/0/93 generic Sky Lake-E CHA

Registers↪→

/0/94 generic Sky Lake-E CHA

Registers↪→

/0/95 generic Sky Lake-E CHA

Registers↪→

/0/96 generic Sky Lake-E CHA

Registers↪→

/0/97 generic Sky Lake-E CHA

Registers↪→

/0/98 generic Sky Lake-E CHA

Registers↪→

/0/99 generic Sky Lake-E CHA

Registers↪→

/0/9a generic Sky Lake-E CHA

Registers↪→

/0/9b generic Sky Lake-E CHA

Registers↪→

/0/9c generic Sky Lake-E CHA

Registers↪→

/0/9d generic Sky Lake-E CHA

Registers↪→

/0/9e generic Sky Lake-E CHA

Registers↪→

/0/9f generic Sky Lake-E CHA

Registers↪→

/0/a0 generic Sky Lake-E CHA

Registers↪→

/0/a1 generic Sky Lake-E CHA

Registers↪→

/0/a2 generic Sky Lake-E CHA

Registers↪→

/0/a3 generic Sky Lake-E CHA

Registers↪→

/0/a4 generic Sky Lake-E CHA

Registers↪→

An Efficient Mixed-Mode Representation of Sparse Tensors

/0/a5 generic Sky Lake-E CHA

Registers↪→

/0/a6 generic Sky Lake-E CHA

Registers↪→

/0/a7 generic Sky Lake-E CHA

Registers↪→

/0/a8 generic Sky Lake-E CHA

Registers↪→

/0/a9 generic Sky Lake-E CHA

Registers↪→

/0/aa generic Sky Lake-E CHA

Registers↪→

/0/ab generic Sky Lake-E CHA

Registers↪→

/0/ac generic Sky Lake-E CHA

Registers↪→

/0/ad generic Sky Lake-E CHA

Registers↪→

/0/ae generic Sky Lake-E CHA

Registers↪→

/0/af generic Sky Lake-E CHA

Registers↪→

/0/b0 generic Sky Lake-E CHA

Registers↪→

/0/b1 generic Sky Lake-E CHA

Registers↪→

/0/b2 generic Sky Lake-E CHA

Registers↪→

/0/b3 generic Sky Lake-E CHA

Registers↪→

/0/b4 generic Sky Lake-E CHA

Registers↪→

/0/b5 generic Sky Lake-E CHA

Registers↪→

/0/b6 generic Sky Lake-E CHA

Registers↪→

/0/b7 generic Sky Lake-E CHA

Registers↪→

/0/b8 generic Sky Lake-E CHA

Registers↪→

/0/b9 generic Sky Lake-E CHA

Registers↪→

/0/ba generic Sky Lake-E CHA

Registers↪→

/0/bb generic Sky Lake-E CHA

Registers↪→

/0/bc generic Sky Lake-E CHA

Registers↪→

/0/bd generic Sky Lake-E CHA

Registers↪→

/0/be generic Sky Lake-E PCU

Registers↪→

/0/bf generic Sky Lake-E PCU

Registers↪→

/0/c0 generic Sky Lake-E PCU

Registers↪→

/0/c1 generic Sky Lake-E PCU

Registers↪→

/0/c2 generic Sky Lake-E PCU

Registers↪→

/0/c3 generic Sky Lake-E PCU

Registers↪→

/0/c4 generic Sky Lake-E PCU

Registers↪→

/0/103 bridge Sky Lake-E PCI

Express Root Port A↪→

/0/103/0 ib2 network MT27800 Family

[ConnectX-5]↪→

/0/103/0.1 ib3 network MT27800 Family

[ConnectX-5]↪→

/0/c5 generic Intel Corporation
/0/c6 generic Sky Lake-E RAS

Configuration Registers↪→

/0/c7 generic Intel Corporation
/0/8 generic Intel Corporation
/0/c8 generic Intel Corporation
/0/c9 generic Intel Corporation
/0/ca generic Intel Corporation
/0/cb generic Intel Corporation
/0/cc generic Intel Corporation
/0/cd generic Intel Corporation
/0/ce generic Intel Corporation
/0/cf generic Intel Corporation
/0/d0 generic Intel Corporation
/0/d1 generic Intel Corporation
/0/d2 generic Intel Corporation
/0/d3 generic Intel Corporation
/0/d4 generic Intel Corporation
/0/d5 generic Intel Corporation
/0/d6 generic Intel Corporation
/0/d7 generic Intel Corporation
/0/d8 generic Intel Corporation
/0/d9 generic Intel Corporation
/0/da generic Intel Corporation
/0/db generic Intel Corporation
/0/dc generic Intel Corporation
/0/dd generic Intel Corporation
/0/de generic Intel Corporation
/0/df generic Intel Corporation
/0/e0 generic Intel Corporation
/0/104 bridge Sky Lake-E PCI

Express Root Port A↪→

/0/104/0 display GV100GL [Tesla

V100 PCIe]↪→

/0/5 generic Intel Corporation
/0/5.2 generic Sky Lake-E RAS

Configuration Registers↪→

/0/5.4 generic Intel

Corporation↪→

Nisa, et al.

/0/e1 generic Intel Corporation
/0/e2 generic Intel Corporation
/0/e3 generic Intel Corporation
/0/e4 generic Intel Corporation
/0/e5 generic Intel Corporation
/0/e6 generic Intel Corporation
/0/e7 generic Sky Lake-E

M3KTI Registers↪→

/0/e8 generic Sky Lake-E

M3KTI Registers↪→

/0/e9 generic Sky Lake-E

M3KTI Registers↪→

/0/ea generic Sky Lake-E

M3KTI Registers↪→

/0/eb generic Sky Lake-E

M3KTI Registers↪→

/0/ec generic Sky Lake-E

M2PCI Registers↪→

/0/ed generic Sky Lake-E

M2PCI Registers↪→

/0/ee generic Sky Lake-E

M2PCI Registers↪→

/0/ef generic Sky Lake-E

M2PCI Registers↪→

/0/f0 system PnP device

PNP0b00↪→

/0/f1 system PnP device

PNP0c02↪→

/0/f2 communication PnP device

PNP0501↪→

/0/f3 communication PnP device

PNP0501↪→

/0/f4 system PnP device

PNP0c02↪→

/0/f5 system PnP device

PNP0c02↪→

WARNING: output may be incomplete or inaccurate, you

should run this program as super-user.↪→

ARTIFACT EVALUATION
Verification and validation studies: We evaluate the performance

of the proposed MM-CSF format against six benchmarks. Among
these six frameworks, BCSF-ALL, ParTI-COO, and FCOO are GPU
based frameworks. HiCOO, SPLATT-ALL and SPLATT-ONE are
CPU based frameworks. We show performance in terms of GFLOPS
on six datasets: deli, nell1, nell2, flick, fr_m, fr_s and darpa. The steps
to collect datasets and the running procedure can be found in the
repository. We expect MM-CSF to outperform all other benchmarks
for all the cases.

Accuracy and precision of timings: The following two tables sum-
marize the GFLOPS achieved by MM-CSF and other state-of-the-art
benchmarks on CPUs and GPUs.The column header represents the
name of the benchmarks. The row header represents the datasets.

GFLOPS of MM-CSF and other GPU based frameworks:

MM-CSF, ALL-BCSF, ParTI-COO, FCOO deli: 364, 333, 271, fails
nell1: 285, 270, 176, fails nell2: 763, 607, 313, fails flick: 435, 327,
295,fails fr_m: 235, 194, 127, fails fr_s: 228, 203, fails, fails darpa:
327, 209, 100, 29

GFLOPS of MM-CSF and other CPU based frameworks:
MM-CSF, HiCOO, SPLATT-ALL, SPLATT-ONE deli: 364, 7, 8, 13

nell1: 285, 5, 17, 18 nell2: 763, 78, 150, 225 flick: 435, 4, 7, 25 fr_m:
235, 5, 5, 4 fr_s: 228, 5, 4, 4 darpa: 327, 7, 7, 1

	Abstract
	1 Introduction
	2 Tensor Background
	2.1 Tensor Notation
	2.2 CANDECOMP/PARAFAC Decomposition and MTTKRP
	2.3 The Optimized MTTKRP Algorithm

	3 Sparse Tensor Formats
	3.1 Storage and Floating Point Operations
	3.2 Number of Representations

	4 MM-CSF: A Mixed-Mode CSF
	4.1 Partitioning of Nonzeros

	5 Balanced MTTKRP algorithms using MM-CSF
	5.1 MTTKRP on Slice mode
	5.2 MTTKRP on Fiber Mode
	5.3 MTTKRP on nonzero mode

	6 Experimental Evaluation
	6.1 Evaluation Setup
	6.2 Reduction in Fibers Using MM-CSF
	6.3 Impact of Partitioning
	6.4 Improvement in GPU Occupancy and DRAM Transactions
	6.5 Performance Comparison with BCSF-ALL
	6.6 Performance Model
	6.7 Overall Performance
	6.8 Overall Storage
	6.9 Format Conversion to MM-CSF
	6.10 Application speedup

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

