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Abstract—This paper proposes a new storage format for sparse
tensors, called Hierarchical COOrdinate (HICOO; pronounced:
“haiku”). It derives from coordinate (COO) format, arguably
the de facto standard for general sparse tensor storage. HICOO
improves upon COO by compressing the indices in units of sparse
tensor blocks, with the goals of preserving the “mode-agnostic”
simplicity of COO while reducing the bytes needed to represent
the tensor and promoting data locality. We evaluate HICOO
by implementing a single-node, multicore-parallel version of
the matricized tensor-times-Khatri-Rao product (MTTKRP) op-
eration, which is the most expensive computational core in
the widely used CANDECOMP/PARAFAC decomposition (CPD)
algorithm. This MTTKRP implementation achieves up to 23.0×
(6.8× on average) speedup over COO format and up to 15.6×
(3.1× on average) speedup over another state-of-the-art format,
compressed sparse fiber (CSF), by using less or comparable
storage of them. When used within CPD, we also observe
speedups against COO- and CSF-based implementations.

I. INTRODUCTION

A central problem in tensor-oriented data analysis is what
data structure to use to organize the tensor—the natural
multiway generalization of a matrix—in a way that is compact,
locality-enhancing, and easy to integrate into applications. (For
a brief applications survey, see Section II.) Data tensors are
usually sparse, meaning consisting of mostly zero entries that
need not be explicitly stored or operated on. Thus, the problem
of picking a sparse tensor data structure is similar to the
classical one of how to choose a sparse matrix format. There
are many options for sparse matrices that tradeoff size, speed,
and “fit” to the nonzero structure of a given input matrix and
requirements of the application [1–17]. Similarly, there are
several proposals for sparse tensor storage [18–22].

Two critical issues that affect one’s choice of format are
compactness and mode orientation. Compactness refers to
keeping the total bytes small. Mode orientation is the idea that
a format favors iteration of the tensor modes in a particular
order or not, as we explain next.

First consider the simpler case of mode orientation for
sparse matrices. We say that a matrix has two modes, or
“axes”, namely, its rows and its columns. Let us number the
modes, referring to the rows as the first mode, or “mode 1,”
and the columns as “mode 2”. If the matrix is sparse, one
might store it in compressed sparse row (CSR) format [1],
where each row is a sparse vector and rows are packed
contiguously one after the other. One can randomly access any
row i from only its index in O(1) time; however, to find an
(i, j) element, you must search the sparse vector representing

row i’s nonzeros to find j. If one wishes simply to iterate
over all nonzeros, as a sparse matrix-vector multiply might
do, it is the most efficient to have an outer-loop over rows
and an inner-loop over the sparse nonzeros within the row.
Therefore, we say CSR is oriented first toward mode 1, then
mode 2; its mode orientation may be denoted by 1 ≺ 2 (1
precedes 2), reflecting this loop-order structure. A compressed
sparse column (CSC) matrix orients modes as 2 ≺ 1. Per the
terminology of Baskaran et al., we say CSR and CSC formats
are mode-specific [20].

The idea of mode orientation generalizes for tensors. Con-
sider an N th-order tensor to be an N -way array, meaning
it has N modes. (A matrix, with its two modes, is a 2-
way tensor.) CSR generalizes to N modes naturally; in the
literature, this format is known as compressed sparse fiber
(CSF) [19], which, like CSR, is mode-specific. For instance,
a CSF-1 tensor orients as 1 ≺ 2 ≺ 3 ≺ · · · ≺ N , with some
ordering convention for other cases, CSF-k.

Mode orientation matters because sparse tensor analysis
methods may require iterating over the modes in several
orientations during the same computation [18]. Thus, for a
fixed storage format, iteration might be fast in one orientation
but slow when the orientation switches. For a low-order (small-
N ) tensor, e.g., a matrix, it might be feasible to store multiple
copies of the matrix to mitigate this effect. For example, one
might store the matrix in both CSR and CSC formats and use
the appropriate one when it applies, so the order no longer
matters. But for tensors, as the order N grows, a multiple-
copy strategy can become infeasible.

A format needs not be mode-specific. The simplest, and
arguably most popular storage format for sparse tensors is
COOrdinate (COO) format [18, 23, 24]. COO records each
nonzero as a tuple, (i1, i2, . . . , iN ; v), where ik, k = 1, . . . , N
is an index coordinate and v is the nonzero value. Rather than
being mode-specific, it is mode-generic [20].1 However, the
price is that it is less compact than formats like CSF, which
exploit mode-specificity to reduce the average amount of index
metadata (i.e., the ik values) per nonzero.

We wish to propose a new format that tries, heuristically, to
be both compact and mode-generic. We refer to it as hierarchi-
cal coordinate format, or HICOO (pronounced “haiku”). By

1Baskaran et al. use the terms “mode-specific” and “mode-generic” to refer
both to the general types of mode orientation and to their particular proposal
for two formats to exploit dense tensor substructure. In our paper, we use
these terms as general concepts.
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contrast, essentially all proposed formats for general sparse
tensors [18, 19, 22] can achieve compactness but not, si-
multaneously, mode-generic orientation, at least not without
paying a performance penalty. This situation includes CSF [19]
from above, as well as the more recent flagged-coordinate (F-
COO) format, which is also mode-specific [22]. For example,
consider the commonly occuring tensor operation known as
the “MTTKRP” (Section II). Performing it in a given mode
using the CSF representation oriented toward a different mode
can suffer a 3× slowdown for tensor choa in mode 2.

Our claimed contributions of HICOO and the present study
may be summarized as follows.
• We first compare and analyze COO, CSF, and F-COO

formats, along the criteria of compactness and mode
orientation, as well as their expected behavior on real
tensor computations, such as the matricized tensor-times-
Khatri-Rao product (MTTKRP), which motivates this
work (Section III).

• We describe HICOO, which compresses tensor indices in
units of sparse tensor blocks and exploits shorter integer
types to express offsets within the blocks. Since HICOO
has a mode-generic orientation, only one HICOO repre-
sentation is needed (Section IV).

• We accelerate MTTKRP on multicore CPU architectures
based on HICOO. Using a superblock scheduler and two
parallelization strategies, our parallel HICOO-MTTKRP
exhibits better thread scalability than COO- and CSF-
based MTTKRPs (Section V).

• Overall, HICOO achieves up to 23.0× (6.8× on average)
speedup over COO and 15.6× (3.1× on average) speedup
over CSF for a single MTTKRP operation; it can also
use up to 2.5× less storage than COO format and
comparable storage with only one CSF representation.
When MTTKRP is integrated into a complete tensor de-
composition algorithm (known as “CPD”), the HICOO-
based implementation is also faster than COO- and CSF-
based implementations (Section VI).

II. BACKGROUND

In applications of tensor-based analysis and mining, an input
dataset is represented as a tensor, and the primary computa-
tional task is to factorize it in some way, analogous to matrix
factorization [25]. These factors may then be interpreted to
discover some property of the underlying data, or perhaps ex-
ploit it for some task (such as compression [26, 27]). One most
commonly used factorization is the CANDECOMP/PARAFAC
decomposition (CPD), which is, roughly speaking, analogous
to the singular value decomposition (SVD) for matrices in
that it seeks to uncover global low-rank structure. The most
expensive computational kernel of CPD is the matricized
tensor-times-Khatri-Rao product (MTTKRP) [20, 22, 28–32].
Thus, the context of this paper is to speed up sparse MTTKRP
and then CPD. Symbols and notation used in this paper are
summarized in Table I.

Regard a tensor as a multi-way array. Its order, N , is the
number of its dimensions or modes. We follow the notation in

TABLE I
LIST OF SYMBOLS AND NOTATION.

Symbols Description

X A sparse tensor
inds indices of COO, βint bits
val nonzero value array of COO and HICOO, βfloat bits

X(n) Matricized tensor X in mode-n
A,B,C, Ã Dense matrices
ar,br, cr Dense vectors

λ Weight vector

� Khatri-Rao product between two matrices
◦ Outer product between two vectors
∗ Hadamard or element-wise product between two vectors

N Tensor order
I, J,K, In Tensor mode sizes

M #Nonzeros of the input tensor X
Ml #Nodes at level l of a CSF tree of tensor X
R Approximate tensor rank (usually a small value)
P #CPU threads

Scache Cache size

βint Bit-length of an integer
βlong Bit-length of a long integer
βbyte Bit-length of a byte or character
βfloat Bit-length of a single-precision floating point value

L Tensor superblock size
B Tensor block size, B � L

einds Element indices of HICOO, βbyte bits
binds Block indices of HICOO, βint bits
bptr Block pointers of HICOO, βlong bits
lptr Superblock pointers of HICOO, βlong bits
lschr Superblock scheduler of HICOO, βint bits

c Average slice size, c = M
In

nl #Nonzero tensor superblocks
nb #Nonzero tensor blocks
αb Block ratio, αb =

nb
M

Mb Geometric mean of #Nonzeros per tensor block

cb Average slice size per tensor block, cb =
Mb
B

Kolda and Bader’s survey [25]. A first-order tensor (N = 1)
is a vector, denoted by a boldface lowercase letter, e.g., v;
A second-order tensor (N = 2) is a matrix, denoted by a
boldface capital letter, e.g., A. Higher-order tensors (N ≥ 3)
are denoted by bold capital calligraphic letters, e.g., X . We
show an example of a sparse third-order tensor, X ∈ RI×J×K ,
in Figure 1. In this example, a scalar entry of X at position
(i, j, k) is xijk.

i = 1,…,I

j = 1,…,J k =
 1,

…,K

Fig. 1. A third-order tensor X ∈ RI×J×K .
CPD decomposes a tensor into a sum of component rank-

one tensors [25]. It approximates an N th-order tensor X ∈
RI1×···×IN as

X ≈
R∑
r=1

λra
(1)
r ◦ · · · ◦ a(N)

r ≡ Jλ;A(1), . . . ,A(N)K, (1)

where R is the canonical rank of tensor X , taken as the number
of component rank-one tensors [25]. In a low-rank approxi-
mation, R is usually chosen to be a small number less than
100. The outer product of the vectors a

(1)
r , . . . ,a

(N)
r produces



R rank-one tensors, and A(n) ∈ RIn×R, n = 1, . . . , N are the
factor matrices, each one formed by taking the corresponding
vectors as its columns, i.e., A(n) = [a

(n)
1 a

(n)
2 . . .a

(n)
R ]. We

normalize these vectors to unit magnitude and store the factor
weights in the vector λ = {λ1, . . . , λr}.

The bottleneck in CPD is the matricized tensor-times-
Khatri-Rao product (MTTKRP). Given an N th-order tensor
X and matrices A(1), . . . ,A(N), the mode-n MTTKRP is
Ã(n) ← X(n)

(
A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1)

)
, (2)

where X(n) is the mode-n matricization (or unfolding) of
tensor X , � is the Khatri-Rao product.

Mode-n matricization reshapes a tensor into an equivalent
matrix by arranging all mode-n fibers to be the columns of the
matrix. For example, mode-1 matricization of a tensor X ∈
R3×4×5 would result in a matrix X(1) ∈ R3×20.

The Khatri-Rao product is a “matching column-wise” Kro-
necker product between two matrices. Given matrices A ∈
RI×R and B ∈ RJ×R, their Khatri-Rao product is denoted by
C = A�B where C ∈ R(IJ)×R,

C = A�B = [a1 ◦ b1,a2 ◦ b2, . . . ,aR ◦ bR] , (3)
where ar and br, r = 1, . . . , R are columns of A and B, ◦
is the outer product of vectors, a special case of Kronecker
product. Detailed description can be found in Kolda and
Bader’s survey [25].

In this paper, sparse MTTKRP will mean an MTTKRP
between a sparse tensor and dense matrices. We can com-
pute it without explicit matricization, as will be explained in
Section III.

Lastly, in addition to sparsity we will sometimes refer to
the concept of hypersparsity [33]. We will regard a tensor as
hypersparse if its average number of nonzeros per mode is
less than one. (For instance, a matrix is hypersparse if there
are fewer than one nonzeros per row or column.)

III. FORMAT COMPARISON

Let us regard COO as the baseline storage format and com-
pare it analytically to two state-of-the-art formats: CSF [19]
and F-COO [22]. We consider general unstructured sparse
tensors and assess the formats in terms of their storage
and behavior for the MTTKRP operation, e.g., floating-point
operations or flops, memory traffic, and arithmetic intensity.
The results motivate the present work on HICOO.

For simplicity, this analysis assumes an N th-order sparse
tensor X ∈ RI1×···×IN with M nonzeros. We assume an
integer index needs βint bits and a nonzero floating-point value
takes βfloat bits. Lastly, we use βlong bits for a pointer to
index all nonzeros in a very large tensor. The summarized
comparison of Table II substitutes values for them that reflect
typical choices based on standard primitive types.

A. Summary

We begin with an overall summary of our observations,
followed by the detailed analysis.
• Observation 1: CSF generally achieves the best com-

pression for a single representation, but it is worse than
COO by storing multiple representations for all modes.

However, using only one CSF representation could suffer
a performance penalty. (Table II, column “Index Space”)

• Observation 2: CSF and F-COO need extra time and
space to construct another representation for the same
tensor operation but in a different mode. That is, neither
format is, on its own, mode-generic. (See Table II,
“Update Needed?”)

• Observation 3: MTTKRP implementations based on
COO, CSF, and F-COO formats are expected to have
arithmetic intensities of approximately 0.25 flops per
byte, which means they will be memory-bound on most
platforms. Reducing memory traffic by enhancing data
locality could be beneficial for MTTKRP. (See Table II,
“Arithmetic Intensity”)

(a) COO
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(c) F-COO

bf j k val

1 0 0 1

0 1 0 2

1 0 0 3

0 0 2 4

1 1 0 5

0 2 2 6

1 0 1

0 3 2

7

8

sf[0]=1

sf[1]=1

Fig. 2. COO, CSF, and F-COO formats for an example third-order tensor.
This CSF tree and F-COO representation are both for mode-1 MTTKRP.

B. COO Format

The COOrdinate (COO) format is the simplest yet arguably
most popular format. It stores each nonzero value along
with all of its position indices. A COO representation for a
third-order example appears in Figure 2(a). As mentioned in
Section I, COO does not favor any mode over the others, which
gives it a mode-generic orientation.

a) COO format analysis: Storing all the indices uses
Scoo = N ·M · βint (4)

bits.
b) COO-MTTKRP: For illustration purposes, the pseu-

docode of COO-MTTKRP for third-order tensors appears
in Algorithm 1 in Appendix A. MTTKRP multiplies every
nonzero entry at position (i, j, k) with row-j of B and row-k
of C, then reduces the rows to row-i of Ã. The three rows
may be irregularly distributed in the matrices depending on
the sparsity pattern of X .

For a general N , a rank-R COO-MTTKRP performs
Flopscoo = N ·M ·R (5)

flops, where N operations per nonzero for a matrix column
consist of (N − 1) multiplications and one addition. Assume
no reuse exists in Ã, B, and C,2 its memory traffic is

Bytescoo =
M

8
(Nβint︸ ︷︷ ︸

indices

+βfloat︸ ︷︷ ︸
values

+NRβfloat︸ ︷︷ ︸
matrices

) (6)

bytes, by counting the instant read and write operations of
Ã as a one-time memory access. Therefore, its arithmetic

2Even though this is the worst case of memory traffic, it is reasonable as
an approximation of real sparse tensors which typically have a very small
degree of data reuse in MTTKRP. Similar assumption is also made for the
following CSF and F-COO analysis.



TABLE II
THE ANALYSIS OF TENSOR FORMATS AND THEIR MTTKRP ALGORITHMS FOR A THIRD-ORDER TENSOR (N = 3) WITH M NONZERO ENTRIES. THE

WORD SIZE PARAMETERS ARE βINT = 32, βLONG = 64, βBYTE = 8, AND βFLOAT = 32 BITS FOR SINGLE-PRECISION FLOATING-POINT VALUES AND
DISCARDING INSIGNIFICANT ITEMS.

Data Structure MTTKRP Behavior

Format
Index Update Work Memory Arithmetic

Space (Bits) Needed? (Flops) Access (Bytes) Intensity (AI)

COO 96M NO 3MR 12MR 1/4
F-COO 65M YES 3MR 12MR 1/4

CSF [32M, 128M ] YES1 [2MR, 4MR] [8MR, 16MR] 1/4

HICOO [24M, 184M ] NO 3MR min{ 12
cb
, 12}MR max{ 1

4
, cb

4
}

1 MTTKRPs in all tensor modes can use less CSF representations than tensor order or even only one CSF representation with performance payoff.

intensity (AI), or ratio of the number of flops to the number
of memory accesses, is about 1/4 when βint, βfloat = 32 bits
(as listed in Table II).

C. CSF Format

CSF (compressed sparse fiber) is a hierarchical, fiber-centric
format that effectively generalizes the CSR matrix format to
tensors, and is implemented in the SPLATT package [34]. An
example of its structure appears in Figure 2(b). Conceptually,
CSF organizes nonzero values into a tree. Each level corre-
sponds to a tensor mode, and each nonzero is a path from the
root to a leaf. Because the path implies a mode ordering for
enumeration of nonzeros, CSF has a strong mode-specificity.

For an N th-order tensor, N CSF trees would be needed for
the best performance if the tensor operation of interest needs
to be iterated over the tensor multiple times, once in each
mode, as stated in [35]. An analogy would be a computation
that needed both parallel matrix-vector and matrix-transpose-
vector multiplies without write conflicts; a simple and fast
approach would be to store the matrix in both CSR and CSC
formats at the cost of doubling the space as suggested in [36].
However, storing multiple CSF trees consumes a large extra
storage space (as will be shown in Table IV).

a) CSF format analysis: The CSF format uses

Scsf =

N−1∑
l=1

(Ml + 1) · βlong︸ ︷︷ ︸
pointers

+
N∑
l=1

Ml · βint︸ ︷︷ ︸
indices

(7)

bits for a single CSF tree, where Ml represents the number
of nodes at level l in Figure 2(b). Ml = M when l = N ,
and Ml = In when l = 1. Besides indices for all N levels,
CSF stores pointers at non-leaf levels to index the beginning
locations of every sub-tree, i.e., sub-tensor. These pointers are
analogous to the row pointers in CSR for sparse matrices.
If a tensor has Ml � M, l = 1, . . . , N − 1, CSF achieves
good compression; otherwise, if Ml ≈ M , it may need even
more storage than COO because of the overhead of storing
additional pointers with more bits (βlong instead of βint).
These two extreme cases are shown in Table II as lower and
upper bounds. When maintaining multiple CSF trees for higher
MTTKRP performance, the total storage will be their sum.

b) CSF-MTTKRP: CSF-MTTKRP performs

Flopscsf = 2R
N∑
l=2

Ml (8)

flops [28]. It incurs

Bytescsf =
1

8
[βlong

N−1∑
l=1

Ml︸ ︷︷ ︸
pointers

+βint

N∑
l=1

Ml︸ ︷︷ ︸
indices

+Mβfloat︸ ︷︷ ︸
values

+(2R
N∑
l=2

Ml)βfloat︸ ︷︷ ︸
matrices

]

(9)
bytes of memory accesses 3 [19, 28]. Therefore, its arithmetic
intensity (AI) is also about 1/4 when βint, βfloat = 32 bits,
βlong = 64 bits.

D. F-COO Format

Flagged-COOrdinate (F-COO) format, recently proposed in
[22], stores the indices of the mode(s) needed by a given
product operation while replacing all remaining modes with
two bit-arrays, a “bit-flag” (bf) and a “start-flag” (sf). Fig-
ure 2(c) shows an example of a mode-1 F-COO representation
which can be used to compute the MTTKRP oriented toward
mode 1 only, i.e., Ã ← X(1)(C � B). The indices j and
k are unchanged, and i is replaced by bf and sf bit-arrays,
thereby reducing storage space. Intuitively, bf and sf indicate
any changes in the index mode(s), then FCOO-MTTKRP uses
segmented scan primitive to avoid locks or atomic operations.

a) F-COO format analysis: We only analyze F-COO
for the MTTKRP operation in this work, interested readers
could refer to [22] for other scenarios, e.g., tensor-times-matrix
multiplication (TTM). The F-COO format uses

Sfcoo =M [(N − 1)βint︸ ︷︷ ︸
indices

+ 1︸︷︷︸
bit-flag

+
1

Mthread︸ ︷︷ ︸
start-flag

] (10)

bits to hold the indices, where Mthread is the number of
nonzeros assigned to a thread. It is strongly mode-specific,
thus an F-COO representation is required for every mode of
a tensor operation.

b) F-COO MTTKRP: MTTKRP based on F-COO per-
forms

Flopsfcoo = N ·M ·R (11)
flops, which is the same as COO-MTTKRP. It moves

Bytesfcoo =
M

8

(N − 1) · βint + 1 +
1

Mthread︸ ︷︷ ︸
indices and flags

+ N ·R · βfloat︸ ︷︷ ︸
matrices


(12)

3CSF-MTTKRP in SPLATT uses a R-array to accumulate intermediate
results of inter-nodes. Since this small R-array could be easily cached between
two adjacent node levels, only one of the two reads is counted.



bytes of data to and from memory. Therefore, its AI is about
1/4 when βint, βfloat = 32 bits.

From the above three observations and detailed analysis, we
propose a new sparse tensor format HICOO to overcome the
drawbacks of current formats, maintain mode-generic orien-
tation, meanwhile, pursue higher performance by optimizing
memory locality.

IV. HICOO FORMAT

HICOO stores a sparse tensor in a sparse-blocked pattern
with a pre-specified block size B, meaning in B × · · · × B
blocks (only cubical blocks are considered in this work). It
represents every block by compactly storing its nonzero triples
using fewer bits. A tensor is sorted and then partitioned and
compressed by every mode into sized-B chunks, resulting in at
most I1B ×· · ·×

IN
B (assume all Ins are dividable by B) nonzero

tensor blocks. Figure 3 shows the same third-order tensor
example as Figure 2 given 2×2×2 blocks (B = 2). For a third-
order tensor, bi, bj, bk are block indices in βint bits, indexing
tensor blocks, and ei, ej, ek are element indices in βbyte bits,
indexing nonzeros within a tensor block. A bptr array in βlong
bits stores the pointers of every block’s beginning locations,
and val saves all the nonzero values, which is the same with
COO’s val array. HICOO treats every mode equally and does
not assume any mode order, these preserve the mode-generic
orientation of COO.

Fig. 3. The conversion between COO and HICOO formats for an example
third-order tensor. HICOO uses 2 × 2 × 2 blocks (B = 2) with word sizes
marked above.

A. Conversion

Sorting, partitioning, and compression are the three steps to
convert from a COO tensor to a HICOO tensor. We first sort
all nonzeros of a COO tensor in Z-Morton order [37] using
a variation of quick sort. A Morton key is computed from
nonzero indices and is used for the comparison of sorting.
In Figure 3, the sorted COO tensor switches two nonzero
entries (marked in red). We then partition the sorted tensor into
sparse tensor blocks according to the given block size B and
record the block pointers bptr simultaneously. Since we limit
the block size to a power-of-two constant, this partitioning
maintains the sorted Z-order between tensor blocks and among
the nonzeros within a block. Lastly, we compress COO indices
into block and element indices correspondingly. By having a
HICOO tensor, no need to explicitly convert it back to a COO
tensor. The COO indices of a nonzero entry can be calculated
from i = bi ·B + ei, j = bj ·B + ej, and k = bk ·B + ek.

In the HICOO format, Z-Morton sorting contributes better
data locality for tensor algorithms, while compressed indices

save the storage space of a sparse tensor and also reduce the
memory bandwidth of tensor access.

B. Improvement of CSB

Our proposed Hierarchical COOrdinate (HICOO) format
may be viewed as an extension of the Compressed Sparse
Blocks (CSB) format for sparse matrices [33]. One distinction
between HICOO and CSB is that the latter uses relatively
larger matrix blocks. 4 By contrast, we find that smaller blocks
are more suitable for sparse tensors, both for reasons related
to better cache usage and better support for higher-order
tensor operations. However, small blocks pose two issues of
a straightforward extension of CSB, which will be explained
in Appendix B. To solve these challenges, HICOO improves
from the CSB idea in two aspects.
• First, HICOO further compacts block indices, thus re-

quiring even less storage space than CSB. We compact
block indices in coordinate pattern to control their storage
rise for small blocks and also uses fewer bits when
possible.

• Second, for efficient CPU multithreading, HICOO uses a
two-level blocking strategy and a small amount of extra
space to save scheduling information. We group a set
of small blocks into a large yet logical superblock. The
blocks within a superblock are always scheduled together
and assigned to a single thread. Within a superblock, we
physically store nonzeros in the same pattern as shown
in Figure 3. This two-level blocking strategy will be
better explained in Section V since it is more related to
algorithm parallelization.

C. Analysis

Our analysis of HICOO will be expressed in terms of
parameters listed in Table I. We first explain these parameters
and give the format analysis afterwards.

The Average Slice Size (c) is a tensor-dependent parameter.
It is an analogy of “row length” of a sparse matrix. c is the
average slice size in a particular mode n, c = M

In
. c could vary

considerably, from being a constant (c = O(1)) if there are
only a few nonzeros per slice, to being as large as c = O

(
I2
)

for a third-order tensor if its slices are dense. The value c
effectively measures nonzero density, especially for irregularly
shaped sparse tensors.

The Number of Tensor Blocks (nb) depends on the input
tensor and HICOO-specific block size B. The example in
Figure 3 has nb = 4 tensor blocks.

The Block Ratio (αb) is the ratio of the number of tensor
blocks to the number of total nonzero elements, αb = nb

M .
Block ratio directly affects the storage size of HICOO, which
will be shown in Equation (13). For a given sparse tensor with
a fixed M , αb is not solely determined by the block size B,
but also related to nonzero distribution.

The Geometric Mean of Numbers of Nonzeros per Block
(Mb) depends on nonzero distribution and block size B.

4In CSB, block sizes are typically around
√
I ×
√
I for an I × I sparse

matrix [33].



We choose geometric mean because we expect skewed or
uneven distributions. From our experiments on real tensors
in Table III, the numbers of nonzeros per block are generally
skewed downward, with many small values and a few large
ones, and unevenly distributed. The four tensor blocks in Fig-
ure 3 consist of 3, 1, 2, 2 nonzeros respectively, thus Mb = 1.9.

The Average Slice Size per Tensor Block (cb) is analogous
to c: it is the average slice size in a block, cb = Mb

B . The value
cb reflects the nonzero density of a block. It is also crucial to
MTTKRP performance (details in Section V). Note that for a
third-order tensor, c = O(1) (or O

(
I2
)
) does not necessarily

mean cb = O(1) (or O
(
B2
)
) because of potential nonuniform

local and global nonzero distributions.
The HICOO format uses
Shicoo = (nb + 1) · βlong︸ ︷︷ ︸

bptr

+N · nb · βint︸ ︷︷ ︸
block indices

+N ·M · βbyte︸ ︷︷ ︸
element indices

≈M [αb · βlong + αbN · βint +N · βbyte]

(13)

bits of storage. Given a sparse tensor, its storage size of a
HICOO representation only depends on αb. The index space
shown in Table II takes two extreme values 0 and 1 of αb to
get its lower and upper bounds. This amount will be smaller
than COO when Shicoo < Scoo, or

αb <
βint − βbyte
βint +

1
N
βlong

. (14)

For a third-order tensor (N = 3) with βint = 32 bits, βlong =
64 bits, βbyte = 8 bits, then αb < 0.45. This means if there
are more than 2 nonzeros per block on average, theoretically,
HICOO consumes less space than COO. The threshold of
αb grows with tensor order N , i.e., the sparsity restriction of
HICOO becomes looser with increasing dimensionality.

Overall, HICOO is compact, exposes data locality in every
tensor mode, and is mode-generic. HICOO, as a general
sparse tensor format, is able to support diverse types of tensor
operations and various computing platforms.

Fig. 4. A HICOO-MTTKRP example showing the operations on one nonzero
tensor entry 7. Its corresponding matrix blocks Ab,Bb,Cb are shown as
bounded blank boxes, and its corresponding matrix rows are plotted as solid
boxes inside.

V. HICOO-MTTKRP ALGORITHMS

We use the HICOO format for the MTTKRP operation
and introduce our optimization methods for sequential and
multicore parallel algorithms.

A. Sequential Algorithm

Figure 4 depicts HICOO-MTTKRP algorithm on the exam-
ple 4×4×3 HICOO tensor from Figure 3. Taking the nonzero
entry with a value 7 in block B3 as an example, its block
indices are (1, 0, 0) and element indices are (1, 0, 1). Block

indices (bi, bj,bk) identify the beginning locations of blocked
matrices Ab,Bb,Cb (marked as blank boxes) by offsetting
bi · B, bj · B, bk · B rows from A,B,C. Every tensor block
only accesses blocked matrices Ab,Bb,Cb ∈ RB×R. Then
the nonzeros within a block can be indexed only by element
indices (ei, ej, ek). The matrix rows needed by this nonzero
element are plotted as solid boxes. At the bottom of Figure 4,
the two rows of C and B first do element-wise product, then
their resulting vector is scaled by the nonzero value 7 to update
one row of A. We use SIMD directives to accelerate the
vector operations of each nonzero entry. Sequential HICOO-
MTTKRP algorithm for a third-order tensor is shown in
Algorithm 2 in Appendix A.

If block size B is configured to keep Ab,Bb,Cb cached
in local memory, they can be re-used multiple times without
memory transfers. Assume the number of nonzeros of a tensor
block is Mb, and every slice in the block has an equal
size cb, thus the memory traffic of one blocked matrix is
NRmin{B,Mb}βfloat bits. When Mb > B, or equally cb > 1,
at most NBR values are transferred from memory for this
blocked matrix because all its values are already cached after
the first transfers; otherwise, if cb < 1, all NRMb values will
be transfered from memory as COO-MTTKRP and no reuse
for them. Tensor blocking exploits data locality in memory
transfers for the matrix operands, and also benefits the parallel
algorithms that follow.

Analysis. Sequential HICOO-MTTKRP algorithm has
Flopshicoo = N ·M ·R (15)

flops, identical to COO-MTTKRP algorithm in Equation (5).
Since HICOO-MTTKRP exploits matrix reuse, its memory
traffic is
Byteshicoo =

nb

8
[ βlong︸ ︷︷ ︸
one bptr value

+ 2N · βint︸ ︷︷ ︸
block indices and blocked matrices pointers

+ Mb(N · βbyte + βfloat)︸ ︷︷ ︸
element indices and values per block

+NRmin{B,Mb} · βfloat︸ ︷︷ ︸
blocked matrix values

]

≈
M

8
[2αb · βint + βbyte +Rmin{

1

cb
, 1} · βfloat]N

(16)
bytes, where nb × Mb ≈ M, αb = nb

M . Given a sparse
tensor, the memory traffic depends on αb, cb, and R. αb
determines the traffic of loading the tensor, while cb and
R influences that of loading factor matrices which generally
dominates the whole memory traffic of HICOO-MTTKRP.
Therefore, its arithmetic intensity (AI) is about max{14 ,

cb
4 }

when βint, βfloat = 32 bits, βbyte = 8 bits, which is listed
in Table II. When cb > 1, theoretically HICOO-MTTKRP
has higher arithmetic intensity than all the state-of-the-art
MTTKRP algorithms.

Since nb × Mb ≈ M , αb × cb ≈ 1
B . cb is inversely

proportional to αb. However, there are cases that a reordered
tensor has the same αb but different cb values which lead
to MTTKRP performance change. This is because we use the
geometric mean for cb, αb×cb is not always strictly equal to 1

B ,
but this cb can better reflect performance. The two parameters
are both needed to guide users in Section V-C.



B. Parallel Algorithm

As mentioned in Section IV, our small tensor blocks are
good for data locality but have parallel issues on multicore
CPUs. Parallelizing small tensor blocks of sequential HICOO-
MTTKRP (Line 1 in Algorithm 2) occurs a huge number
of small workloads per thread, which is not efficient for
heavyweight CPU threads. Besides, parallelizing either the first
(line 1) or the second loop (line 4) leads to write conflicts,
multiple threads may write the same blocked matrix Ãb or
even the same row of it. Because the rank R is very small,
parallelizing the R-loop (line 6) is not efficient and causes
false-sharing for Ãb. A simple solution is to use expensive
locks or atomic operations to protect Ãb. Our work completely
removes write conflicts by taking advantage of pre-knowledge
from HICOO construction process.

Logical Superblocks. We increase the workload granularity
of scheduling and employ two-level blocking that groups
small blocks into larger ones which we call superblocks. A
superblock is essentially a “logical” subtensor that can poten-
tially consist of many small blocks. During HICOO format
conversion, we first extract L× · · · × L nonzero superblocks
then treat each superblock as an independent tensor to convert
it to the physical HICOO format with B × · · · × B blocks
(L ≥ B). An additional array lptr is included to store the
beginning pointers of nonzero superblocks, with its size nl,
the number of superblocks.

Superblock Scheduling. Since HICOO systematically par-
titions a Z-order sorted tensor into superblocks, data race
information can be recorded and then used to guide parallel
MTTKRP execution. A superblock scheduling table lschr
is constructed to indicate write-conflict information between
them. Generally, the overhead of storing lptr and lschr are
negligible compared to the other components of HICOO, e.g.,
einds, binds, because of the small number of superblocks.
Different superblock sizes will generate different scheduling
tables.

Figure 5 shows a lschr table for mode-1 MTTKRP. In the y-
direction, superblocks (e.g., 0, 1, 2, 3) have no write conflicts
because they are updating different regions of Ã. These
superblocks can be independently parallelized, therefore, a
reasonable large number of superblocks in the y-direction is
preferable. In the x-direction, superblocks (e.g., 0, 4, 8) have
potential write conflicts (shown as arrows) that are, therefore,
avoidable if they are executed sequentially. In this figure, three
iterations are needed to serialize all the 10 superblocks. The
larger the number of iterations, the stronger dependence shown
in this MTTKRP. With this superblock scheduler, we iterate
superblocks in two loops: one for independent superblocks,
the other for iterations; and choose a strategy to parallelize
one of them.

Parallel Strategies. The easy case is that we have rea-
sonably large independent superblocks to directly parallelize.
However, the number of independent superblocks depends on
the product mode size (i.e., In in mode n) and the superblock
size L. For mode-n MTTKRP, the number of independent

Fig. 5. Superblock scheduling table for mode-1 MTTKRP.

superblocks is roughly In
L . If it is small (e.g., 2 for choa in

mode 3), most superblocks cannot run simultaneously.
We introduce a widely used privatization parallel strategy

[28, 38] to parallelize iterations, especially for irregularly-
shaped tensors. Thread-local buffers are created locally to
keep the updates of the superblocks from distinct iterations,
then they can be parallelized independently. Afterwards, an
extra parallel reduction stage is used to get the final results.
The privatization strategy is only used for MTTKRP in short
tensor modes, i.e., small corresponding factor matrices, due
to their disadvantage of direct parallelization. Besides, it
consumes trivial extra memory. To better fit the dynamic
workload of superblocks, we use dynamic OpenMP strategy
for parallelism.

C. Parameter Guidance
Several of the parameters in Table I can affect the perfor-

mance of HICOO-MTTKRP and HICOO’s storage size. We
illustrate five critical parameters from our experiments and
provide an analysis here that can guide users on how to tune
them. (Our implementation of this analysis can suggest to
users if a particular parameter value might not be a good
choice.) The first three are the parameters of the HICOO
format, while the last two are choices among COO, CSF,
and HICOO formats. Since our analyses in Section III, IV,
V are for general tensors, these parameters could describe the
features of both cubical and irregularly-shaped tensors which
frequently occur in real applications.

Block Size. Block size B should be set to keep all the
blocked matrices in fast cache, i.e., NBRβfloat ≤ Scache.
Users could compute the largest B for HICOO. This explains
almost all HICOO-MTTKRPs obtain their best performance
with B = 128 in our experiments, when R = 16.

Parallel Strategy. If the number of independent superblocks
is too small (e.g., < 4P , P is the number of threads) to
be parallelized efficiently and the iterations are much more
than independent superblocks (e.g., 20× larger in our experi-
ments), we use privatization strategy to parallelize superblocks
between iterations. This case generally occurs on irregularly-
shaped tensors. For example, mode 3 of tensor choa is much
smaller than the other two modes. Given a superblock size
L = 512, the number of independent superblocks is only
2 in mode 3, while the number of iterations is as large as
22475. In this case, privatization strategy is chosen for better
performance.

Superblock Size. Superblock size L is important to parallel
MTTKRP performance. It can be tuned to ensure reasonable



amount of tasks for CPU threads. After fixing a parallel
strategy, we can compute the number of parallel tasks (either
independent superblocks or iterations) for different Ls. When
this number is reasonable, e.g., between [4P, 100P ], this L is
acceptable; otherwise, a smaller or larger L will be suggested.

Storage space. As explained in Section IV, αb determines
the storage size of HICOO, smaller is better. This effect will
also be shown from Table IV in Appendix C. The threshold
of HICOO to achieve compressed storage than COO can be
calculated from Equation (14). We suggest to first compare
the value to its threshold (0.45 for 3D tensors), if αb is larger
than it, a HICOO representation is highly possible to use more
storage than one COO and also CSF representation.

Performance. cb is critical to HICOO-MTTKRP’s memory
traffic and thus its performance from Table II, larger is better.
From our experiments in Figure 10, unless cb < 0.01 (exclud-
ing deli and nell1 for 3D tensors), HICOO-MTTKRP is
faster than CSF-MTTKRP by taking advantage of our parallel
strategy. Besides, αb is also taken into account because it
affects the memory traffic of loading the input tensor, espe-
cially when the tensor is much larger than factor matrices. The
effects of αb and cb on MTTKRP performance and last-level
cache behavior will be shown in Figure 10 of Appendix C. If
αb is larger and cb is smaller than their thresholds, HICOO-
MTTKRP may not behave well. Therefore, CSF-MTTKRP is
favorable.

Note that these thresholds are obtained from empirical tests
on our platform. A user may need to experiment with other
thresholds.

VI. EVALUATION AND ANALYSIS

A. Experimental Setup

Platform The experiments are ran on a Linux server with
Intel Xeon E7-4850 v3 multicore platform consisting 56
physical cores with 2.2 GHz frequency on four sockets. It is
a Haswell platform with 32 KiB L1 data cache and 1970 GiB
memory. Code is written in C language with OpenMP direc-
tives, and is compiled by icc 18.0.2.

Dataset We use the sparse tensors, derived from real-world
applications, that appear in Table III, ordered by decreasing
nonzero density separately for third- and fourth-order tensors.
Most of these tensors are included in The Formidable Repos-
itory of Open Sparse Tensors and Tools (FROSTT) dataset
(Refer to the details in [39]). The darpa (source IP-destination
IP-time triples), fb-m, and fb-s (short for “freebase-music”
and “freebase-sampled”, entity-entity-relation triples) are from
the dataset of HaTen2 [40], and choa is built from electronic
health records (EHRs) of pediatric patients at Children’s
Healthcare of Atlanta (CHOA) [41].

Implementations We compare the performance of MT-
TKRP algorithms on multicore CPUs using COO and CSF
formats5. COO-MTTKRP from ParTI! library [42] is a C
implementation of the MTTKRP that appears in Tensor Tool-
box [43]. We use OpenMP with privatization method to obtain

5F-COO is implemented only for GPUs.

its highest possible performance at a cost of maybe large extra
space to save the local copies. CSF-MTTKRP is from SPLATT
v1.1.1 [34] which is regarded as the state-of-the-art MTTKRP
and CPD library [28]. We configured SPLATT for its best
performance, meaning the ALLMODE setting (storing all N CSF
trees) and enabling the tiling option. All parallel programs
are configured using “numactl” to interleave allocated memory
system-wide, i.e., on all sockets.

TABLE III
DESCRIPTION OF SPARSE TENSORS.

Tensors Order Dimensions #Nonzeros Density

nell2 3 12K × 9K × 29K 77M 2.4× 10−5

choa 3 712K × 10K × 767 27M 5.0× 10−6

darpa 3 22K × 22K × 24M 28M 2.4× 10−9

fb-m 3 23M × 23M × 166 100M 1.1× 10−9

fb-s 3 39M × 39M × 532 140M 1.7× 10−10

deli 3 533K × 17M × 2.5M 140M 6.1× 10−12

nell1 3 3M × 2M × 25M 144M 9.1× 10−13

crime 4 6K × 24× 77× 32 5M 1.5× 10−2

nips 4 2K × 3K × 14K × 17 3M 1.8× 10−6

enron 4 6K × 6K × 244K × 1K 54M 5.5× 10−9

flickr 4 320K × 28M × 2M × 731 113M 1.1× 10−14

deli4d 4 533K × 17M × 2M × 1K 140M 4.3× 10−15

B. Overall Performance

The tensor rank R is set to 16 in our experiments. For all
experiments, we use 32-bit unsigned integers for indices and
pointers, which are enough for these tensors, and 32-bit single-
precision floating-point values. Most experiments find B =
128 achieve the best performance, even though we can use
up to 16 bits for larger B, while L varies much among these
tensors. Generally, for a long tensor mode, direct parallelism
is used; while for a very short mode, privatization method is
chosen. All execution times are averaged over five iterations.

Figure 6 (a) and (b) show the speedup of parallel MTTKRP
in a single mode based on HICOO over COO and CSF
(ALLMODE setting) formats, respectively. We test up to 56
threads and show the performance obtained by the most
threads (“max”) and under the thread configuration with the
highest performance (“best”) separately. The y-axis shows the
speedup and x-axis gives all the cases of MTTKRPs, i.e.,
MTTKRPs in every mode on all tensors. A single parallel
HICOO-MTTKRP achieves up to 63.5× (12.6× on average)
speedup over COO format and up to 991.4× (62.0× on
average) speedup over CSF format when using 56 threads. The
extraordinary high speedup over CSF is achieved on tensors
crime and nips, because CSF-MTTKRP scales poorly in
their very short modes. Under the “best” thread configuration
for all implementations, a single parallel HICOO-MTTKRP
achieves up to 23.0× (6.8× on average) speedup over COO
and up to 15.6× (3.1× on average) speedup over CSF. The
highest performance of CSF-MTTKRP on tensors crime and
nips is mostly obtained on 2 and 4 threads. In some tensor
modes, only a black square can be recognized since the
highest speedup is achieved by using all 56 threads. Mostly the
“max” configuration gets higher or equal speedup to the “best”
configuration because HICOO-MTTKRP is the most scalable
in the three implementations (see Figure 8 below). However,



in some cases when HICOO-MTTKRP is less well-scaled, the
“best” configuration may get better speedup. In the following
content, we only refer to the speedup achieves under the “best”
thread configuration.

(a) Speedups of HICOO over COO

(b) Speedups of HICOO over CSF in ALLMODE setting
Fig. 6. MTTKRP performance comparison with the “max” and “best” thread
configurations. The longest modes and shortest modes of every tensor are
marked in red and blue respectively.

As we mentioned, irregularly-shaped tensors have distinct
performance behavior in different modes. We summarize the
speedup separately for the longest (marked in red in Figure 6)
and the shortest (marked in blue) modes of every tensor.
HICOO-MTTKRP in the shortest mode achieves an average
6.7× speedup over COO and 5.7× speedup over CSF; while
in the longest mode, HICOO-MTTKRP obtains an average
8.1× speedup over COO and 2.8× over CSF. HICOO is more
advantageous in short modes compared to CSF, because of
the less shape-sensitivity and privatization parallel strategy of
HICOO. Compared to COO, HICOO shows a marginal win in
long modes, because HICOO avoids the relatively expensive
reduction stage of privatization method used in COO.

HICOO-MTTKRP is almost always faster than COO-
MTTKRP due to its better data locality and smaller mem-
ory footprint. Compared to CSF-MTTKRP, the speedup of
HICOO-MTTKRP is not stable because CSF-MTTKRP dis-
tinctly behaves on long and short modes, where long modes
are more favorable. Some tensors, e.g., nell1 and deli, have
almost all the blocks containing just a few nonzero entries,
making them hypersparse (cb � 1). Thus, HICOO cannot
reduce much memory traffic of MTTKRP (see Table II). Since
our method flexibly chooses the two parallelization strategies,
tensors fb-m and fb-s need only 249KB and 760KB extra
space for the local matrix copies respectively, trading that for
much higher performance.

C. Optimization Breakdown

We show the advantages of HICOO by evaluating three
factors separately, which are sorting, compression, and SIMD.
The baseline is COO-MTTKRP with the COO representation
sorted in a lexicographic mode order, then we use Z-order
sorting to rearrange nonzeros but still run COO-MTTKRP,

where we get 18% speedup on average. We convert tensors to
HICOO by compressing indices, an extra 20% improvement is
shown. Lastly, SIMD directives are applied to vectorize matrix
rows, which gives an average of 22% speedup. With all these
optimizations, HICOO-MTTKRP doubles the performance of
COO-MTTKRP for a single thread.

Fig. 7. HICOO optimization breakdown on 3D tensors.

D. Thread Scalability

Figure 8 compares the thread scalability of COO, CSF, and
HICOO MTTKRPs using tensors fb-s and choa representing
the behavior in the shortest and longest modes of a tensor.
Generally, CSF-MTTKRP scales poorly in short modes: 9 out
of all 12 tensors achieve the best performance in their shortest
modes with ≤ 8 threads; while only 2 tensors achieve the
best performance in their longest modes with ≤ 8 threads.
COO-MTTKRP does not scale well in long modes: 7 out
of 12 tensors achieve the best performance in their longest
mode with ≤ 8 threads. The x-axis shows the number of
threads and the y-axis shows the speedup over sequential
MTTKRP. HICOO-MTTKRP scales better than COO and
CSF in most cases despite the extra lptr and lschr structures
needed to support superblock scheduling. CSF-MTTKRP has
a potentially low parallel degree for short modes and may uses
locks, while COO-MTTKRP always employs privatization
with an expensive reduction stage for long modes, which
affects its scalability. These observations verify the results in
Section VI-B.

(a) tensor fb-s in mode 3 (b) tensor choa in mode 1
(shortest mode) (longest mode)

Fig. 8. Thread scalability of parallel COO, CSF, and HICOO MTTKRPs on
two representative cases.

E. Application

Figure 9 depicts a CANDECOMP/PARAFAC decomposi-
tion using alternating least squares algorithm (CP-ALS) [25]
in all the three formats, where MTTKRP is the most expensive
computational kernel. The speedup and compression rates are
relative to CSF in ALLMODE setting, and “CSF-1” refers to CSF
in ONEMODE setting. HICOO achieves the best speedup on most
tensors with comparable compression rate to CSF ONEMODE.
COO does not gain any advantages either from performance



or storage aspect. HICOO-CPD outperforms 6.2× over COO-
CPD and 2.1× over CSF-CPD on average.
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Fig. 9. CPD time and tensor storage comparison relative to CSF in ALLMODE
setting.

VII. RELATED WORK

Study on improving the performance of sparse problems has
a long history, for example, some optimization methods for
sparse matrices are enlightening and applicable to tensors [2–
16]. Optimizing CPD and the MTTKRP operation has been
well-studied recently [25, 44, 45]. Tensor Toolbox [43] and
Tensorlab [23] implemented MTTKRP in the most popular
COO format through multiple sparse tensor-vector products
using MATLAB. SPLATT [19, 28] algorithmically improved
MTTKRP by factoring out inner multiplications and proposed
a more compressed CSF format. According to their experi-
ments [28], SPLATT outperforms Tensor Toolbox, GigaTensor,
and DFacTo (introduced below), becoming the one achieving
the highest performance on multicore CPUs by far. GigaTensor
[31] reformulated MTTKRP as a series of Hadamard products
to utilize the massive parallelism of MapReduce. However,
this algorithm is not suitable for multicore CPUs because of
its high computational complexity. DFacTo [30] considered
MTTKRP as a series of sparse matrix-vector multiplications
for distributed systems, however, it requires explicit matri-
cization which takes non-negligible time. HyperTensor [29]
investigated fine- and also coarse-grained parallel algorithms
for distributed systems, while its MTTKRP implementation
is based on COO format. A more recent work [22] proposed
Flagged-COOrdinate (F-COO) format. As we state in Section I
and III, CSF and F-COO formats can achieve compactness but
not, simultaneously, mode-generic orientation. Some tensor
formats are proposed for structural sparse tensors or specific
tensor operations, such as “mode-generic and mode-specific”
[20] and semi-COOrdinate (sCOO) [21, 46] formats for the
ones with dense modes, Extended Karnaugh Map Represen-
tation (EKMR) for some other tensor operations.

Our work proposed a new compressed HICOO format for
general sparse tensors, which does not favor one mode over
the others and preserves the mode-generic orientation. HICOO
is proposed to explore an alternative approach of sparse
tensor formats. Compared to the state-of-the-art CSF from
SPLATT [28, 34], HICOO has the following advantages. First,
HICOO could exploit data locality for all tensor dimensions
while CSF’s tree structure limits this mostly to the leaf level.

Second, HICOO has more potential of its storage compression
because of the avoidance of larger and indeterminate-length
pointers compared to indices. We are pursuing more aggressive
compression techniques, as proposed for sparse matrices [47],
as part of our future work for HICOO. Third, from our
parallel strategies and the experiments, HICOO-MTTKRP is
less sensitive to irregularly-shaped tensors which frequently
appear in real applications. Besides, our blocking strategy
has similarities with cache tiling used in SPLATT, but is
fine-grained and totally removes write conflicts. SPLATT uses
coarse-grained parallelism which is quite similar to row paral-
lelism in SpMV. This work is orthogonal to some optimization
work for an MTTKRP sequence as a whole, such as [32, 48],
we will consider integrating them as our future work.

VIII. CONCLUSION

“Flexible format
Of hierarchical sparse blocks
Small, and often fast”
– Haiku for HICOO

HICOO is a flexible, compact, and mode-generic format for
general sparse tensors. It derives from but also improves upon
COO by compressing the indices in units of sparse tensor
blocks, which compresses the storage while promoting data
locality. Our multicore-parallel HICOO MTTKRP achieves
remarkable speedups over COO and another state-of-the-art
format, compressed sparse fiber (CSF) formats. HICOO uses
up to 2.5× less storage than COO format and comparable
storage to one CSF representation. When used within CPD,
we also observe speedups against COO- and CSF-based im-
plementations.

Other platforms such as GPUs and distributed memory sys-
tems can also benefit from the data locality of HICOO format
and the two-level blocking to accelerate tensor algorithms.
Our future work will explore the behavior of the performance
critical parameters of HICOO and predict their optimal choice
by sampling nonzero distribution of an input tensor. We also
plan to develop HICOO variants of other widely used kernels,
such as tensor-times-matrix multiplication (TTM). Our code is
publicly available.6
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ARTIFACT DESCRIPTION APPENDIX: HICOO:
HIERARCHICAL STORAGE OF SPARSE TENSORS

A. Abstract

This appendix details how to construct the HICOO for-
mat and run both serial and multicore parallel matricized
tensor-times-Khatri-Rao product (MTTKRPs) and CANDE-
COMP/PARAFAC decomposition using HICOO and COO
formats on real-world tensors.

B. Description

1) Check-list (artifact meta information):
• Algorithm: MTTKRP, CPD
• Program: C program with OpenMP
• Compilation: Compile with CMake
• Data set: the Formidable Repository of Open Sparse Tensors

and Tools (FROSTT) and HaTen2 dataset
• Hardware: General multicore CPUs
• Execution: See details below
• Output: updated matrices and execution times.
• Publicly available?: Yes

2) How software can be obtained: The experiments in this
paper can be reproduced from the Github repo located at https:
//github.com/hpcgarage/ParTI.

3) Hardware dependencies: Multicore CPU platforms
4) Software dependencies: C Compiler, CMake, Open-

BLAS library
5) Datasets: the Formidable Repository of Open Sparse

Tensors and Tools (FROSTT) http://frostt.io and HaTen2
dataset https://datalab.snu.ac.kr/haten2/.

C. Installation

• Create a file by touch build.config to define “Open-
BLAS DIR”

• Type ./build.sh
• Check build/ for resulting library
• Check build/tests/ for resulting tests

D. Experiment workflow

Run the following tests.

• Construct HICOO: ./build/tests/convert hicoo –help will
give detailed options.

• COO-MTTKRP: ./build/tests/mttkrp –help will give de-
tailed options.

• HICOO-MTTKRP: ./build/tests/mttkrp hicoo matrixtiling
–help will give detailed options.

• COO-CPD: ./build/tests/cpd –help will give detailed op-
tions.

• HICOO-CPD: ./build/tests/cpd hicoo –help will give de-
tailed options.

All the running programs support both serial and parallel
implementations by setting dev id = -2 for serial code, dev id
= -1 for parallel code.

E. Evaluation and expected result

• HICOO has smaller storage than the COO format.
• Parallel HICOO-MTTKRP achieves better performance

than COO-MTTKRP and most CSF-MTTKRP from
SPLATT package (http://cs.umn.edu/∼splatt/) on the
above dataset.

• Parallel HICOO-CPD achieves better performance than
COO-CPD and most CSF-CPD from SPLATT on the
above dataset.

https://github.com/hpcgarage/ParTI
https://github.com/hpcgarage/ParTI
http://frostt.io
https://datalab.snu.ac.kr/haten2/
http://cs.umn.edu/~splatt/


APPENDIX

We use this appendix to show pseudocode, explain more
about the improvement of HICOO over CSB format for sparse
matrices, then show additional analysis of HICOO parameters
and its behavior on another manycore architecture.

A. Algorithm pseudocode

The MTTKRP algorithms are illustrated in Algorithm 1 and
2.
Algorithm 1 Sequential COO-MTTKRP algorithm ([18]).
Input: A third-order sparse tensor X ∈ RI×J×K , dense matrices B ∈

RJ×R,C ∈ RK×R;
Output: Updated dense matrix Ã ∈ RI×R;

. Ã← X(1)(C�B)
1: for x = 1, . . . ,M do
2: i = inds(x, 1), j = inds(x, 2), k = inds(x, 3);
3: for r = 1, . . . , R do
4: Ã(i, r)+ = val(x)C(k, r)B(j, r)

5: return Ã;

Algorithm 2 Sequential HICOO-MTTKRP algorithm.
Input: A third-order HICOO sparse tensor X ∈ RI×J×K , dense matrices

B ∈ RJ×R,C ∈ RK×R, block size B;
Output: Updated dense matrix Ã ∈ RI×R;

. Ã← X(1)(C�B)
1: for b = 1, . . . , nb do . block b
2: bi = binds(b, 1), bj = binds(b, 2), bk = binds(b, 3);
3: Ab = A+ bi ·B ·R; Bb = B+ bj ·B ·R; Cb = C+ bk ·B ·R;
4: for x = bptr[b], . . . , bptr[b+ 1]− 1 do . entry x
5: ei = einds(x, 1), ej = einds(x, 2), ek = einds(x, 3)
6: for r = 1, . . . , R do
7: Ãb(ei, r)+ = val(x)Cb(ek, r)Bb(ej, r)

8: return Ã;

B. Comparison with CSB

The Compressed Sparse Blocks (CSB) format is proposed
by Buluç et al. [33] for sparse matrices. Two critical features
of CSB inspired us: 1) it targets large matrices with hyper-
sparse matrix blocks; 2) CSB is mode-generic and allows effi-
cient computation of both Sparse Matrix-Vector Multiplication
(SpMV) and Sparse Matrix-Transpose-Vector Multiplication
(SpMTV) using a single CSB representation.

We find that small blocks are more suitable for sparse ten-
sors. However, small blocks pose two issues of a straightfor-
ward extension of CSB. 1) First, CSB is not storage-efficient
for small blocks as stated in [33]. Small blocks certainly lead
to more compressed nonzero indices by being capable of using
fewer bits, however, the storage of block indices, which is
saved contiguously as a dense array, increases much faster.
Therefore, the overall storage of CSB is not beneficial from
small blocks. 2) Secondly, small blocks imply a relatively
fine-grained parallelism. On our target multicore platforms,
heavyweight CPU threads are not efficient to schedule a huge
number of threads with a small workload of each. HICOO
improves from CSB idea by block index compression and an
extra superblock level for efficient CPU multithreading.

C. More experimental results

1) Storage Space: Table IV compares the storage space
of COO, CSF, F-COO, and HICOO formats, along with

HICOO’s compression rates over COO and its αb values.
We show two settings for CSF format, ALLMODE (using all
CSF trees) and ONEMODE (using only one CSF tree). For F-
COO, all representations must be stored. HICOO uses less
space than ALLMODE CSF and F-COO formats on all tensors,
up to 2.5× less storage than COO format, and comparable
storage with ONEMODE CSF. HICOO consumes more space
than COO on tensors deli, deli4d and nell1. As discussed
in Section V-C, the value of the block ratio should satisfy
αb < 0.45 (3D) or 0.5 (4D) for a tensor to take less space in
HICOO than in COO. The αb values of these three tensors
are much larger than them, so it is not surprising that their
HICOO representations are larger. These observations suggest
that a simple test, perhaps based on sampling, could be used
to determine when to use COO versus HICOO (see also
Section V-C).

TABLE IV
SPARSE TENSOR SPACE COMPARISON IN DIFFERENT FORMATS.

Tensors COO CSF (MiB) F-COO HICOO Compress αb

(MiB) ALL ONE (MiB) (MiB) Rate Values

choa 411 666 212 935 192 2.14 0.02
darpa 434 958 218 986 308 1.41 0.22
nell2 1150 1850 589 2667 543 2.12 0.02
fb-m 1480 3760 1200 3453 1420 1.04 0.42
fb-s 2080 5410 1720 4854 2100 0.99 0.46
deli 2090 4120 1320 4861 3490 0.60 0.99
nell1 2140 4430 1210 4981 3610 0.59 1.00

crime 102 176 41 328 41 2.49 0.00
nips 59 106 24 191 25 2.36 0.02
enron 1010 2030 421 3334 460 2.20 0.04
flickr 2100 4540 1040 6944 1740 1.21 0.36
deli4d 2610 7340 1860 8619 3540 0.74 0.80

2) Performance parameters: Figure 10 illustrates the trends
of parameters αb and cb with performance and last-level
cache behavior on third-order tensors. We use the speedup
of HICOO-MTTKRP over CSF in ALLMODE setting and the
last-level cache hit rates respectively. This figure verifies that
smaller αb and larger cb are good for HICOO performance
and its MTTKRP data locality.
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Fig. 10. αb and cb relations with (a) the speedup of HICOO over CSF in
ALLMODE setting and (b) last-level cache hit rates.

3) Superblock Size L: The choice of superblock size L
affects the number of independent tasks available in HICOO-
MTTKRP as discussed in Section V-C. Figure 11 shows how
the execution time of a HICOO-MTTKRP sequence varies
with L on 3D tensors. The x-axis shows L values, while



the y-axis shows the execution times of parallel HICOO-
MTTKRP normalized to that of L = 28 or 210. Tensors
nell2 and choa show their best performance at L = 210 in
Figure 11(a). By contrast, MTTKRP times on the other tensors
in Figure 11(b) tend to decrease asymptotically with L, with
some small variability beyond a certain point (L = 214). The
main difference between these two groups is nonzero density,
which is relatively high for tensors in Figure 11(a) and low in
Figure 11(b). The guidance in Section V-C helps users to fast
identify the optimal L.

(a) (b)
Fig. 11. Superblock size L influences on HICOO-MTTKRP, x-axis shows
L values, times are normalized to L = 28 are 210 for these two figures
respectively. Lower is better.

4) Experiments on KNL: We also test HICOO-MTTKRP
on a Intel Xeon Phi Processor 7250 (“KNL”) platform us-
ing the cache mode for multi-channel dynamic random ac-
cess memory (MCDRAM). Figure 12 shows the speedup of
HICOO over COO format on KNL using 68 threads. A
HICOO-MTTKRP sequence achieves 1.0 − 97.4× speedup
and comparable performance with CSF-MTTKRP on the
two tensors from Smith et al.’s recent work [38]. HICOO-
MTTKRP also achieves 0.25−3.27× speedup on KNL over on
Haswell multicore platform using 56 threads. This experiment
gives a proof-of-concept that other accelerators, e.g., GPUs,
can also benefit from HICOO format with its good thread
scalability.

Fig. 12. HICOO-MTTKRP speedup of HICOO over COO on a KNL.
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