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Background
Tensor decomposition is a set of unsupervised methods to analyze + Design a simple memoization algorithm for MTTKRP sequence.
and extract knowledge from tensors, which is widely used in - B
healthcare analytics, image processing, machine learning, and social A+ X )(DOCOB) & A«X@O@DECH B~
network analytics. g
Sparse tensors _ Y@
Many real-world tensors are hyper-sparse and have specific features. To ~ - _ . >-
discover useful knowledge, efficient sparse algorithms are critical to B+ X5(DOCOA) & Be 'y(z) L
performance and scalability. N L B L
C+X5DoBoA) & (C«yDEBEA
; D« Xx4,)(CoBoA) & De«XOCHBWA_
+ Design an adaptive memoization algorithm for MTTKRP
K \,\ sequence, to flexibly choose number of memoized MTTKRPs and

reuse degrees.
A 3rd-order sparse tensor Tensor network diagram
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cPD -
CANDECOMP/PARAFAC decomposition (CPD) approximates an Reuse degree: 1~ ;2) }-

input tensor as a sum of component rank-one tensors, given the
number of desired components. CPD is scalable in time and space B« XyDOCOA) & Be YD WA

compared to other low-rank methods.
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Reuse degree: 1 uza)
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» Decrease the operation number.
» Probably increase the storage space.

Tradeoff

CPD on a 4t-order tensor

+ Build a mode-driven auto-tuner to accurately predict the algorithm
Contributions parameters for sparse tensors.

» This work proposes an adaptive and efficient algorithm for the
computational kernel, Matricized Tensor Times Khatri-Rao Product
operation (MTTKRP) of the classical CANDECOMP/PARAFAC We test our algorithm on Intel Xeon E7-4820 platform using 16 threads.
decomposition (CPD), by minimizing redundant computations.

» We also build a model-driven procedure to determine the adaptable 2r [ spLarr
algorithmic parameters for different input sparse tensors and enable 0} B o
the trade-off between time and space based on the user need and Datasct _Order _ Max Mode Size _ NNZ__Density ol
memory resource. Tl VI O e )
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» Our adaptive algorithm shows up to 10x speedup compared to state w36 36 ) K a7 &
of the art on real-world high order tensors. Our method also shows wrt 1 A 2K Less = 4¢
near constant scalability with respect to the tensor order, while using 2
acceptable storage space.
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Sparse Tensors
o Conclusion
« Decouple an MTTKRP operation intoa TTM and a TMHR.

Algorithm 3 Memorized Full MTTKRP algorithm (memFM). Our optimization to increase the reuse of MTTKRP sequence is

. IXJIxKxL 2 n .
N ];3\;“3‘%\12 ﬁtp‘%'ie"‘.ug“eﬁfx&.xth: g{odux ot ore mﬁ:m matrices peneﬁ cial for high-order tensors. We use acceptable space to trade for
Output: Updated dense factor matrix A € RIXE; higher performance.
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1/ Compute as po = [4,3,2].
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2: Save Y(2): Y(2) = Tmur (YU, C TMHR
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