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Abstract—This paper presents the optimized design and imple-
mentation of sparse tensor-times-dense matrix multiply (SpTTM)
for CPU and GPU platforms. This primitive is a critical
bottleneck in data analysis and mining applications based on
tensor methods, such as the Tucker decomposition. We first
design and implement sequential SpTTM to avoid explicit data
transformations between a tensor and a matrix, which is the
conventional approach. We further optimize SpTTM on multicore
CPU and GPU systems by parallelizing, avoiding locks, and
exploiting data locality. Our sequential SpTTM is up to 3.5×
faster than the SpTTM from Tensor Toolbox and 1.5× over that
from Cyclops Tensor Framework. Our parallel algorithms show
4.1× speedup on multicore Intel Core i7 and 18.8× speedup on
NVIDIA K40c GPU over our sequential SpTTM respectively.

I. INTRODUCTION

This paper considers the problem of optimizing the sparse
tensor-times-dense matrix (SpTTM) operation, which appears
widely in tensor-based data analysis applications. Such appli-
cations arise in numerous domains, including neuroscience [1,
2], healthcare analytics [3–5], natural language processing [6],
signal processing [7], machine learning [8, 9], and social
network analytics [10]. Tensors, which are multi-way arrays,
provide a natural way to represent multidimensional data; a
subsequent analysis of the tensor usually takes the form of
factoring or decomposing the tensor into interpretable compo-
nents [11–14]. (This process is analogous to the use of matrix
decompositions to analyze 2-way data; tensors generalize such
analyses to the k-way case for k > 2.) The speed of some
of the most popular tensor decompositions, including the so-
called Tucker decomposition [13], depend critically on having
a fast SpTTM, thereby motivating this study.1

Regarding our paper’s scope, we consider parallelism and
locality for single-node multicore CPU and GPU platforms,
and we are particularly interested in sparse input tensors.
Sparsity refers to the tensor consisting mostly of zero entries,
for which we wish to avoid explicit storage and computation.
By contrast, there are several efficient methods for the case

1 Beyond SpTTM, other basic tensor operations that can appear as
bottlenecks in other decompositions include tensor matricization (con-
verting a tensor into an equivalent matrix), elementwise tensor addi-
tion/subtraction/multiplication/division, Kronecker products, Khatri-Rao prod-
ucts, and Matricized Tensor Times Khatri-Rao Product (MTTKRP).

when the tensor is dense [15–18]. The sparse case is especially
important to data analysis applications, since real-world data
is often voluminous but sparse.

In principle, an SpTTM is similar to sparse matrix-times-
dense matrix (SpMM). Indeed, conventional SpTTM imple-
mentations, such as those in the Tensor Toolbox [19] and Cy-
clops Tensor Framework (CTF) [20], first transform a sparse
tensor into an equivalent sparse matrix and then assume an
optimized SpMM. This approach is reasonable and produces
good results. However, this conversion step incurs nontrivial
costs in time and space. Moreover, the generated matrix can
be very large in one of its dimensions, explicit indexing
of which—for a many-way tensor—can quickly exceed the
range of a 64-bit unsigned integer. Thus, we are motivated
primarily to avoid any such conversion, carrying out the
SpTTM “natively” on the given input tensor.

With that as background, our proposed techniques make the
following contributions:

• We design and implement sequential SpTTM to avoid
data transformation between a tensor and a matrix.

• We optimize SpTTM on single-node multicore CPU
and GPU systems by parallelizing, avoiding locks, and
employing local (fast) memory (caches on CPUs and
“shared memory” on GPUs).

• Our optimized SpTTM achieves up to 4.1× on multicore
Intel Core i7 and 18.8× on NVIDIA GPU K40c over
our sequential SpTTM baseline, which is maximally 3.5×
faster than the SpTTM from Tensor Toolbox and 1.5×
over that from Cyclops Tensor Framework.

II. BACKGROUND

We first introduce the essential tensor notation for basic
tensor operations. Several examples and definitions are drawn
from the overview by Kolda and Bader [13].

A. Tensor Representation

A tensor is defined as a multi-way array, and the order
of a tensor is the number of dimensions, also called modes.
Vectors, or first-order tensors, are denoted by boldface low-
ercase letters, e.g., v, and matrices, or second-order tensors,
are denoted by boldface capital letters, e.g., A. High-order
tensors are denoted by bold capital calligraphic letters, e.g.,IA3 2016; Salt Lake City, Utah, USA; November 2016
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Fig. 1. A third-order sparse tensor X .

X . Figure 1 shows a third-order tensor X ∈ RI×J×K . The
scalar element at position (i, j, k) of tensor X is denoted by
xijk.

High-order tensors have a close relation with matrices
and vectors. A slice (figure 2(a)) is a 2-dimensional cross-
section of a tensor, achieved by fixing all indices but two, e.g
S::k = X (:, :, k) in MATLAB notation. A fiber (figure 2(b))
is a vector extracted from a tensor along a specified mode,
selected by fixing all indices but one, e.g f:jk = X (:, j, k). A
tensor consists of a set of slices or fibers. Besides, a tensor
can be transformed into an equivalent matrix by recalculating
indices, this is called matricization, or unfolding. For example,
mode-1 matricization of a 3× 4× 5 tensor X would result in
a 3 × 20 matrix X(1). We recommend readers to see more
details in [13]. In the following tensor operations, different
tensor representations will be used for the best explanation.

Fig. 2. Slices and fibers of a third-order tensor X ∈ RI×J×K . (a) Slices
S::k = X (:, :, k); (b) Fibers f:jk = X (:, j, k).

B. Tensor-Times-Matrix

Tensor-Times-Matrix (TTM) on mode n, also known as
the n-mode product, is the multiplication of a tensor X ∈
RI1×I2×···×In×···×IN with a matrix U ∈ RIn×R 2, denoted
by Y = X ×nU. This results in a I1× I2×· · ·× In−1×R×
In+1 × · · · × IN tensor, and its operation is defined as

yi1···in−1rin+1···iN =

In∑
in=1

xi1···in−1inin+1···iNuinr. (1)

Since the real application data is always sparse with a
relatively small amount of nonzero entries, we focus on sparse
tensor-times-dense matrix (SpTTM) in this paper. SpTTM
is a critical kernel in tensor decomposition algorithms, such
as the Tucker decomposition. The factor matrices in tensor
decomposition are usually dense, and the number of columns

2Different from [13], We use the transposed form of the matrix U for
efficient TTM in row-majored storage pattern of C language.
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Fig. 3. Sparse matrix-dense matrix multiply.

of each matrix is called rank. We focus on the popular low-
rank tensor decompositions, which means the factor matrices
all have small number of columns.

III. SPTTM PROPERTY AND SCOO FORMAT

We first explain an important property of SpTTM to its
implementation, then we introduce sCOO format for a semi-
sparse tensor, which is a special sparse tensor.

A. Notation

We introduce some notation to be used in the following
paper.

• Product mode: the mode on which a tensor times a matrix,
e.g. mode-n in Equation 1.

• Index mode: the modes except the product mode, e.g.
mode-(1, . . . , n− 1, n+ 1, . . . , N) in Equation 1.

• Dense mode: all non-empty fibers on this mode are dense.
• Sparse mode: at least one non-empty fiber on this mode

are sparse.

B. SpTTM Property

SpTTM outputs a semi-sparse tensor whose product mode
is dense and index modes are unchanged.

Mode-n fibers of X and Y tensors are defined as

fXn = X (i1, . . . , in−1, :, in+1, . . . , iN ),

fYn = Y(i1, . . . , in−1, :, in+1, . . . , iN )

where i1, . . . , in−1, in+1, . . . , iN are fixed. fXn is a sparse fiber
because of the sparsity of X . Equation 1 is equal to

fY
n (r) =

In∑
in=1

fX
n (in)uinr (2)

when r is fixed. Element fYn (r) is the dot-product of fiber
fXn and u(:, r), a column of U. Since u(:, r) is a dense
vector, each fY

n (r) is non-zero only if there exist at least
one nonzero in fiber fXn . That is, a non-empty fiber fXn
generates a dense fiber fYn . For each pair of fixed indices
i1, . . . , in−1, in+1, . . . , iN , we compute a mode-n fiber of Y ,
so the indices i1, . . . , in−1, in+1, . . . , iN are unchanged for
the resulting tensor Y . We call a sparse tensor with one or
more dense modes as a semi-sparse tensor. Figure 3 shows
the behavior of a second-order sparse tensor (sparse matrix)
times a dense matrix. The product mode j is a dense mode in
the resulting matrix, while its index mode i is the same with
the input sparse matrix, except index i is indexing dense fibers
now.



C. sCOO format

Tensors generated from real-world applications are usually
hyper-sparse with only a small number of nonzero entries.
Thus, a sparse tensor is represented by a compressed format by
storing only the nonzero entries. The most straight-forward and
popular format of a sparse tensor is coordinate (COO) format.
COO format uses one array to store the nonzero entries, and
N arrays to store all the indices for N modes. Figure 4(a)
shows a 3× 3× 2 semi-sparse tensor with mode-3 (indexing
by k) as the dense mode in the COO format.

i j k val

(a) COO (b) sCOO

1 1
2 1

3 3

i j val

1 2
3 4

5 6

1 1 1 1
1 1 2 2
2 1 1 3
2 1 2 4
3 3 1 5
3 3 2 6

Fig. 4. COO and sCOO formats of a semi-sparse 3× 3× 2 tensor.

Since the indices of a dense mode can be computed from
the location of nonzero entries, it is unnecessary to store
dense modes’ indices by extra arrays in a semi-sparse tensor.
Besides, due to the highly sparse property of the input tensor
of SpTTM, the output is still a sparse tensor but with a dense
mode. We use a simple semi-COO (sCOO) format which
only stores the indices of sparse modes and all the nonzeros.
The idea of distinguishing dense and sparse modes was first
proposed by Baskaran et al in [21]. Figure 4(b) shows the
sCOO format for the example semi-sparse tensor. The sCOO
format saves 50% space compared to the COO format to store
a third-order semi-sparse tensor with one dense mode, when
integer and floating-point values occupy the same number of
bits. The space benefit comes from two aspects: First, sCOO
eliminates the index array of the dense mode; Second, each
index array of sCOO is shorter because of index compression.
If a N th-order semi-sparse tensor has k dense modes, then
sCOO will save at least k

N+1 storage space.

IV. SEQUENTIAL SPTTM

Based on COO and sCOO formats, we implement sequential
SpTTM by directly operating on nonzero entries without
explicit transformation.

Given a sparse tensor X ∈ RI1×I2×···×IN and a dense
matrix U ∈ RIn×R, we know the resulting tensor Y is a semi-
sparse tensor. From Equation 1, the ideal time complexity of
SpTTM is

Tideal = 2×Xnnz ×R, (3)

where Xnnz is the number of nonzeros of X . The intuitive
algorithm for SpTTM without explicit transformation is to

loop all nonzeros of X by timing each one with its corre-
sponding row of U. Then all rows with the same indices
(i1, . . . , in−1, in+1, . . . , iN ) are sum-reduced to get a fiber of
Y (fYn ). This algorithm has two problems: First, in the sum-
reduction stage there is an implicit index comparing operation
even if X is pre-sorted. The complexity of comparing indices
(i1, . . . , in−1, in+1, . . . , iN ) is high especially for high-order
sparse tensors. One more comparison for an extra mode
increases the SpTTM complexity by Xnnz, which is non-
trivial compared to Equation 3 especially for low-rank tensor
decomposition with a small R. Second, the sum-reduction
stage is hard to parallelize and may lead to memory write
conflicts.

To solve these problems, we design our SpTTM algorithm
(Algorithm 1) to avoid expensive index comparison and with
easy-to-implement parallelization. Each mode-n fiber of Y
(fYn ) is a sized-R dense vector, we record nfibs as the number
of fYn . Thus the number of nonzeros of Y: Y nnz = nfibs∗R.
We use an extra array fptr to identify the beginning locations
of every mode-n fiber of X (fXn ), then transverse all nfibs
fibers of Y . Instead of transversing X , we avoid comparing
the indices.

Our SpTTM has two steps, pre-allocating semi-sparse tensor
Y and computing. From SpTTM’s property in Section III,
the semi-sparse tensor keeps the index modes unchanged, so
the nfibs of Y is the same with the number of fXn . By
pre-sorting on X , we can allocate the accurate space for Y .
During the computation step, each fYn = yval(i, :) locates the
corresponding fXn = xval(fptr(i), . . . , fptr(i+1)−1). Then
fYn is the sum of rows u(mind, :) scaled by each nonzero
of fiber fXn . Algorithm 1 achieves the ideal time complexity
(Equation 3) by eliminating the index comparison. For a third-
order sparse tensor, our SpTTM only uses O(4×Xnnz) space
which is much smaller than the traditional O(7 × Xnnz)
counting the transformed matrix in COO format. Thus, our
SpTTM saves at least 42% space for a third-order tensor.

Algorithm 1 Sequential SpTTM algorithm.
Input: A sparse tensor X ∈ RI1×I2×···×IN , a dense matrix

1: U ∈ RIn×R, and an integer n;
Output: A semi-sparse tensor Y ∈ RI1×···×In−1×R×In+1···×IN ;

2: nfibs: the number of mode-n fibers of Y
3: fptr: the beginnings of each X mode-n fiber, size nfibs.
4: for i = 0, . . . , nfibs do
5: for j = fptr(i), . . . , fptr(i+ 1)− 1 do
6: mind = xinds(n, j)
7: for r = 0, . . . , R do
8: yval(i, r)+ = xval(j) ∗ u(mind, r)
9: end for

10: end for
11: end for
12: Return Y;

V. OPTIMIZED SPTTM

Based on our sequential SpTTM, we optimize SpTTM on
multicore CPU and GPU platforms by parallelizing, avoiding



locks, and using local (fast) memory (caches on CPUs and
“shared memory” on GPUs).

A. Multi-threading SpTTM

We first parallelize SpTTM on the multicore CPU architec-
ture using OpenMP. Since our sequential SpTTM transverses
all independent fibers of Y , we can easily parallelize this
loop by assigning different CPU threads. In Algorithm 2, each
thread computes a length R fiber fYn independently and shares
matrix U. Because our SpTTM algorithm limits the sum-
reduction dependency inside a thread, OMP SpTTM naturally
avoids locks and well utilizes CPU caches for reading X and
its indices and writing Y .

Algorithm 2 Multi-threading SpTTM algorithm.
Input: A sparse tensor X ∈ RI1×I2×···×IN , a dense matrix

1: U ∈ RIn×R, and an integer n;
Output: A semi-sparse tensor Y ∈ RI1×···×In−1×R×In+1···×IN ;

2: nfibs: the number of mode-n fibers of Y
3: fptr: the beginnings of each X mode-n fiber, size nfibs.
4: parfor i = 0, . . . , nfibs do
5: for j = fptr(i), . . . , fptr(i+ 1)− 1 do
6: mind = xinds(n, j)
7: for r = 0, . . . , R do
8: yval(i, r)+ = xval(j) ∗ u(mind, r)
9: end for

10: end for
11: end parfor
12: Return Y;

B. GPU SpTTM

We also parallelize SpTTM on the GPU architecture using
CUDA programing interface and optimize it using GPU shared
memory.

1) Parallelization strategy: We assign two-dimensional
thread blocks to compute each nonzero entry of Y with the size
ntx× nty, where nty is set to R, the number of columns of
U and ntx could be 16, 32, 64, 128 according to different nty
values. Since our SpTTM algorithm is a main kernel for low-
rank decomposition, the rank R is usually a number smaller
than 100 [13]. Thus, only one-dimensional grids are needed,
each of which consists of up to nb = nfibs/ntx blocks. A real
sparse tensor may have more nfibs than a grid’s capability,
we further divide SpTTM into ng device kernels, with each
kernel launches the maximum number of blocks of a grid. To
summarize,

ng =
nfibs

maxGridSize× ntx
(4)

nb =

{
nfibs
ntx , ng = 1

maxGridSize
ntx , ng > 1

(5)

Because of GPU hardware limitation, the maximum number
of threads per block maxBlockSize = 1024. So,

ntx <
maxBlockSize

nty
(6)

According to different nty = R, we choose the maximal pos-
sible value under this limitation. Overall, our GPU SpTTM has

ng kernels and each kernel has nb blocks of ntx×nty threads.
Because our SpTTM algorithm doesn’t need communication
between threads, each thread can execute independently.

2) Using GPU shared memory: We first analyze the GPU
SpTTM behavior to find data locality. The only data reuses
are matrix U and tensor Y . u(mind, tidy) can be reused by
ntx threads with the same tidy when mind happens to be
the same. Large sparse tensors usually have low reuse degree
because of the hyper-sparse nonzero distribution. For example
the density of ‘nell2’ tensor from Never Ending Language
Learning (NELL) project [22] is 2.40e-05. Thus, the reuse of
U can be reasonably ignored when no pre-processing of X
is used for better locality. Therefore, we only reuse Y , each
yval(i, tidy) is reused by fptr(i− 1)− fptr(i) times.

In Algorithm 3, we show GPU SpTTM algorithm by using
GPU shared memory for tensor Y . The needed shared memory
size is ntr × R × sizeof(double) < 8K according to
Equation 6, which is smaller than shared memory size (16K
or 48K). Although data locality of Y could also be explored
by GPU caches, long fibers and their indices of large tensor
X may potentially generate more cache misses for writing Y ,
especially for relatively small GPU cache (Table I). Thus, we
secure tensor Y using GPU shared memory.

Algorithm 3 GPU SpTTM algorithm with GPU shared mem-
ory utilization.
Input: A sparse tensor X ∈ RI1×I2×···×IN , a dense matrix

1: U ∈ RIn×R, an integer n, and GPU thread hierarchy dimGrid
and dimBlock;

Output: A semi-sparse tensor Y ∈ RI1×···×In−1×R×In+1···×IN ;
2: nfibs: the number of mode-n fibers of Y
3: fptr: the beginnings of each X mode-n fiber, size nfibs.
4: Yshr: shared memory space for Y .
5: tidx = threadIdx.x;
6: tidy = threadIdx.y;

. i: global index of a Y mode-n fiber.
7: i = blockIdx.x ∗ blockDim.x+ tidx;
8: yshr(tidx, tidy) = 0;

. j: global index of the nonzeros of X mode-n fiber.
9: for j = fptr(i), . . . , fptr(i+ 1)− 1 do

10: mind = xinds(n, j)
11: yshr(tidx, tidy)+ = xval(j) ∗ u(mind, tidy)
12: end for
13: yval(i, tidy) = yshr(tidx, tidy);
14: Return Y;

VI. EXPERIMENTS

In this section, we test our algorithms on two platforms
and also compare the performance with state-of-the-art Ten-
sor Toolbox library [13]. Then we analyze the performance
behavior by varying product modes and ranks.

A. Platforms and Dataset

We use Intel Core i7-4770K and NVIDIA Tesla K40c
testing platforms (Table I). NVIDIA Tesla K40c has much
higher peak performance and bandwidth than multicore Intel
Core i7. All experiments are performed in double-precision



TABLE I
EXPERIMENTAL PLATFORMS CONFIGURATION

Intel NVIDIA
Parameters Core i7-4770K Tesla K40c

Microarchitecture Haswell Kepler
Frequency 3.5 GHz 0.75 GHz

#Physical cores 4 2880
Peak DP Performance 56 Gflops 1430 Gflops

Last-level cache 8 MB 1.5 MB
Memory size 32 GiB 12 GB

Memory bandwidth 25.6 GB/s 288 GB/s

Compiler gcc 5.4.0 nvcc 7.5

and the performance numbers are the average of five running
tests.

We use sparse tensors from real applications including func-
tional Magnetic Resonance Imaging (fMRI) measurements of
brain activity [23] (“brainq” with noun-voxel-human), Never
Ending Language Learning (NELL) project [22] (“nell1” and
“nell2” with noun-verb-noun), and data crawled from tagging
systems [24] (“deli” with user-item-tag). The details of the
data are shown in Table II.

TABLE II
DESCRIPTION OF SPARSE TENSORS.

Dataset Order Mode sizes NNZ Density

brainq 3 60× 70K × 9 11M 2.9e-01
nell2 3 12K × 9K × 29K 77M 1.3e-05
nell1 3 2.9M × 2.1M × 25.5M 144M 3.1e-13

deli 3 0.5M × 17.3M × 2.5M 140M 6.1e-12

B. Performance Speedup

We test our algorithms on CPU and GPU platforms and
show their speedups over our sequential SpTTM on real
tensors in Figure 5. The number of columns of the dense
matrix is set to 16, to reflect tensor decomposition’s low-
rank property. All speedup numbers are SpTTM on mode-3
and averaged over five iterations. Because of the large tensor
sizes, GPU memory cannot hold all the data of some SpTTM
algorithms. The OMP SpTTM speedups over our sequen-
tial SpTTM are obtained by employing the maximum eight
threads using hyper-threading technique. The GPU SpTTM
speedups over our sequential SpTTM are tested by setting
ntx = 32. Compared to our sequential SpTTM, OMP SpTTM
achieves up to 4.1× speedup and GPU SpTTM achieves
up to 18.8× speedup on the four real sparse tensors. GPU
SpTTM’s speedup over OMP SpTTM is up to 6.0×, showing
the advantage of using GPU to accelerate SpTTM.

We also compare our results with MATLAB Tensor Tool-
box’s implementation from Sandia National Laboratories [19]
and Cyclops Tensor Framework [20] in C++ language. We
compare with Tensor Toolbox version 2.6 and CTF-1.4.1,
while Tensor Toolbox is build in MATLAB R2014b, CTF is
compiled with Intel icc-17.0.0 linked with Intel Math Kernel
Library [25]. We record their sequential execution time and get
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Fig. 5. Parallel SpTTM’s speedup over sequential SpTTM.
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Fig. 6. Execution time comparison of Tensor Toolbox, Cyclops Tensor
Framework, and our SpTTMs on the “brainq” tensor.

the average over five iterations. SpTTMs in Tensor Toolbox
and CTF first transform a sparse tensor into a sparse matrix,
and then do a sparse matrix and a dense matrix multiplication,
finally transform the sparse matrix back to a sparse or dense
tensor. Our SpTTM algorithm is directly implemented on
the input sparse tensor without transformation, which saves
time and space. Figure 6 shows the execution time of our
SpTTM algorithms comparing with Tensor Toolbox (TTBox)
and Cyclops Tensor Framework (CTF) on the “brainq” tensor,
which is the only tensor they can run without exceeding CPU
memory. 3 Our SpTTM algorithms (“seq”, “omp”, and “gpu”)
are much faster than TTBox and CTF. One reason is that
we avoid transformation time, and the other reason is our
optimized sequential SpTTM improves the performance. This
figure also proves comparing OMP and GPU SpTTM with our
own written sequential SpTTM is fair enough.

C. Analysis

We first analyze the tensor transformation time percentage
of Tensor Toolbox, then analyze SpTTM performance behavior
by varying product modes and ranks. We also measure the
benefit of using GPU shared memory.

1) Tensor transformation: We use “ttbox” and “ttbox w/o
transform” to show the performance of Tensor Toolbox and
the pure multiply operation in it (without data transformation)

3CTF stores its SpTTM’s output in a dense tensor, while TTBox uses a
sparse or dense format depending on the output tensor’s sparsity.



in Figure 7. The data transformation, including the conversion
time of matricization and tensorization before and after the
multiply, takes 14-31% execution time. Tensor Toolbox with
and without data transformation are both slower than our se-
quential SpTTM in all cases, which shows our transformation
avoiding is beneficial and our SpTTM algorithm (Algorithm 1)
outperforms Tensor Toolbox’s SpTTM.
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Fig. 7. The execution time of Tensor Toolbox w/ and w/o tensor transforma-
tion on the “brainq” tensor.

2) Mode behavior: From Figure 6, the running time of
GPU SpTTM on the three modes varies more than OMP and
sequential SpTTM. GPU SpTTM gets the longest running time
on mode-2. Considering the dimension size of “brainq” is
60 × 70K × 9 from Table II, SpTTM on mode-2 can only
have up to 540 thread blocks, which is quite small for the GPU
architecture. Thus, GPU SpTTM runs even slower than OMP
SpTTM on mode-2. This figure shows SpTTM on different
modes may have different performance behavior according to
the dimension sizes.

3) Rank behavior: We also test SpTTM on different ranks
8, 16, 32, 64. From our experiments, keeping 512 threads per
block achieves the highest performance, so we set block sizes
as (64, 8), (32, 16), (16, 32), (8, 64) to test GPU SpTTM. Note
that in this experiment, only the block shape varies, the number
of blocks and threads are kept the same. When the rank size
grows, the output tensor Y becomes larger, thus we can do
a full test only on the two relative small tensors “brainq”
and “nell2”. We use relative performance by mapping the
GPU SpTTM performance with rank size 8 to 1. Figure 8
shows the performance grows when increasing the rank size,
because a longer dense vector is processed by each thread with
regular memory accesses. The actual performance numbers
of “brainq” and “nell2”are 2 − 7 Gflops and 3 − 12 Gflops
respectively, which are both much lower than the GPU’s peak
performance in Table I because of the irregularity of sparse
tensors.

4) GPU shared memory: Figure 9 compares the perfor-
mance of the GPU SpTTM with or without using GPU shared
memory using the speedups over sequential SpTTM. This ex-
periment uses the same parameter settings as in Section VI-B.
Our GPU SpTTM with GPU shared memory optimization
doesn’t benefit much from this method on the testing tensors,
the improvement is 5%-27%. Further optimization on GPU
SpTTM is our next research step.
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Fig. 8. Relative performance of GPU SpTTM with different rank sizes on
“brainq” and “nell2” tensors.
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(“naive”) GPU shared memory.

VII. RELATED WORK

Several other libraries also realized basic sparse tensor
operations, such as Tensor Toolbox [19] and Cyclops Tensor
Framework (CTF) [20, 26]. Tensor Toolbox is implemented
in MATLAB environment, and CTF is implemented in C++
language. From algorithm aspect, Tensor Toolbox implement
SpTTM by converting a sparse tensor into a sparse matrix,
and converting the matrix back to a sparse/dense tensor after
a sparse matrix and a dense matrix multiplication. The con-
version consumes non-trial time. CTF is a parallel framework
of tensor contraction for distributed CPU systems, and it only
supports storing the output of sparse tensor-times-dense matrix
as a dense tensor, which is not space-efficient for hyper-
sparse tensors. Our SpTTM algorithms directly operate on the
coordinate format of a sparse tensor, and the resulting tensor
is stored in a hybrid format (sCOO) to save space. Besides,
our work is the first bringing sparse tensor operations to GPU,
to utilize GPUs powerful computing capability. 4

Some work proposed efficient storage formats for a sparse
tensor, such as the Compressed Sparse Fiber (CSF) format [28]
and the “mode-generic sparse storage format” [21]. Our sCOO
format is a simple version of the “mode-generic sparse storage
format” proposed by Baskaran et al, with dense modes fixed

4CTF supports some GPU functions now but not SpTTM, although
given the CTF infrastructure and a CUDA sparse matrix library (e.g. cuS-
PARSE [27]), it would be easy to support SpTTM in the future.



on the last several modes. CSF is a hierarchical, fiber-centric
format by extending the popular CSR format to sparse tensors,
and it is memory-efficient and shows high speedups on the
MTTKRP operation over the COO format. However, when
operating on a non-root mode, the recursive algorithm based
on CSF format may be not suitable for GPU architecture.

Some work on sparse matrix and dense matrix multiplica-
tion [29–36] is also related to our work. However, our focus
is to avoid unnecessary transformation, which is a problem
only for tensors. The optimization methods of sparse matrix
and dense matrix multiplication can be referred for our future
optimization.

VIII. CONCLUSION

This paper presents an optimized design and implementation
of sparse tensor-times-dense matrix multiply (SpTTM) for
CPU and GPU platforms. This primitive is a critical bottle-
neck in tensor decompositions, such as Tucker decomposition.
We design and implement sequential SpTTM to avoid data
transformation, and further optimize SpTTM on multicore
CPU and GPU systems by parallelizing, avoiding locks, and
exploring data locality. Our sequential SpTTM is maximally
3.5× and 1.5× faster than the SpTTMs in Tensor Toolbox
and Cyclops Tensor Framework respectively. Our parallel
algorithms show 4.1× speedup on multicore Intel Core i7 and
18.8× speedup on NVIDIA K40c GPU over our sequential
SpTTM respectively. From our analysis, different input sparse
tensors, ranks, and operating on different modes all influence
SpTTM performance. Adaptive parameters of the SpTTM
algorithms will be helpful to achieve fairly good performance
for a particular input sparse tensor.

In the future, we intend to do further optimization on
SpTTM to increase the dense matrix reuse and better han-
dle the load-balance issue. From our experiments and GPU
memory limitation, we will extend our algorithms to multi-
GPU platforms to support larger sparse tensors. Besides, more
tensor operations will be integrated into our Sparse Tensor
Operation Library (SpTOL), such as Matriced Tensor Times
Khatri-Rao Product (MTTKRP) and general tensor contrac-
tion.
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