
An Input-Adaptive and In-Place Approach to Dense
Tensor-Times-Matrix Multiply

Jiajia Li, Casey Battaglino, Ioakeim Perros, Jimeng Sun, Richard Vuduc
Georgia Institute of Technology

North Ave NW
Atlanta, GA 30332

{jiajiali, cbattaglino3, perros}@gatech.edu {jsun, richie}@cc.gatech.edu,

ABSTRACT
This paper describes a novel framework, called InTensLi
(“intensely”), for producing fast single-node implementations
of dense tensor-times-matrix multiply (Ttm) of arbitrary
dimension. Whereas conventional implementations of Ttm
rely on explicitly converting the input tensor operand into
a matrix—in order to be able to use any available and fast
general matrix-matrix multiply (Gemm) implementation—
our framework’s strategy is to carry out the Ttm in-place,
avoiding this copy. As the resulting implementations expose
tuning parameters, this paper also describes a heuristic em-
pirical model for selecting an optimal configuration based on
the Ttm’s inputs. When compared to widely used single-
node Ttm implementations that are available in the Ten-
sor Toolbox and Cyclops Tensor Framework (Ctf), In-
TensLi’s in-place and input-adaptive Ttm implementations
achieve 4× and 13× speedups, showing Gemm-like perfor-
mance on a variety of input sizes.

Categories and Subject Descriptors
G.1.0 [Mathematics of Computing]: Numerical Anal-
ysis—Numerical algorithms; C.1.2 [Computer Systems
Organization]: Multiple Data Stream Architectures (Mul-
tiprocessors)—Parallel processors

Keywords
Multilinear algebra, tensor operation, code generation, of-
fline autotuning

1. INTRODUCTION
We consider the problem of how to improve the single-

node performance of a dense mode-n product [21], or more
simply, a dense tensor-times-matrix multiply (Ttm). One
may regard a tensor as the multidimensional generalization
of a matrix, as depicted in figure 1 and formalized in § 2;
a dense Ttm multiplies a dense tensor by a dense matrix.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SC ’15, November 15-20, 2015, Austin, TX, USA
© 2015 ACM. ISBN 978-1-4503-3723-6/15/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2807591.2807671

i = 1,…,I

j = 1,…,J k =
 1,

…,K

Figure 1: A third-order (or 3-way) tensor may be
thought of as a 3-dimensional array, or as a 3-D ana-
logue of a 2-D matrix.

Tensor-based computations, or multilinear algebraic compu-
tations, underlie a variety of current and emerging applica-
tions in chemometrics, quantum chemistry and physics, sig-
nal and image processing, neuroscience, and data analytics,
to name a few [2–4, 10, 15, 15, 19, 20, 23, 24, 26–29, 31, 34–
37, 41, 44]. For such computations, Ttm is both a funda-
mental building block and usually the dominant bottleneck.

The conventional way to implement Ttm relies on ma-
tricization of the tensor, which essentially transforms the
tensor into an equivalent matrix [21]. Ttm then simply be-
comes a general matrix-matrix multiply (Gemm). This ap-
proach is sensible, for two reasons. First, Gemm is a clean
and portable abstraction for which many fast implementa-
tions already exist [11, 17, 43, 45]. Secondly, the basic theo-
retical computation and communication complexity of Ttm
matches Gemm [39]. Thus, Ttm has high arithmetic inten-
sity at sufficiently large sizes and so should scale well, just
like Gemm.

Unfortunately, we observe that state-of-the-art Gemm-
based implementations of Ttm, such as the Tensor Tool-
box or Cyclops Tensor Framework (Ctf) [40], can perform
well below what one expects from Gemm alone (§ 3). The
problem is matricization.

Mathematically, matricization is merely a conceptual (or
logical) restructuring of the tensor. However, this step is
almost always implemented as an explicit copy. Copying
ensures that the matricized tensor has a non-unit stride in
only one dimension, as required by the Basic Linear Alge-
bra Subprograms (Blas) [1]. By contrast, doing the Ttm
in-place without such copies would require a different inter-
face for Gemm, one which could support non-unit strides in
both the row and column dimensions [43]; accordingly, per-
formance may be expected to decrease due to decreases in
cache line utilization, prefetch bandwidth, and the degree of

http://dx.doi.org/10.1145/2807591.2807671

SIMDization. (Copying can also roughly double the storage;
see § 3.) Nevertheless, the conventional wisdom is that this
copy need not incur a performance overhead. By contrast,
we find that explicit matricization can in practice dominate
the overall running time, accounting for 70% of the total
running time or more, even at large sizes1 (figure 4 in § 3).

These observations raise a very natural question: can one
achieve Gemm-like performance for Ttm using only an in-
place approach?

Contributions.
We answer the preceding question affirmatively. Our main

contribution is a novel framework for automatically gener-
ating high-performance in-place Ttm implementations (§ 4).
This framework generates Ttm implementations that use
coarse-grained parallelism via OpenMP and any underlying
high-performance Gemm. It considers several strategies for
decomposing the specific type of Ttm that the user requires
in order to maximize the use of the fast Gemm. We show
that our framework can produce Ttm implementations that
achieve a high fraction of what a hypothetical pure Gemm
can achieve (§ 5).

Beyond a code generation strategy, the second contribu-
tion of our work is a method, based on empirical model-
based tuning, to select a good implementation of the Ttm.
Our method considers the characteristics of the input to
the Ttm, such as the size of the tensor in each dimension.
Put differently, the code generation framework produces sev-
eral parameterized implementations; and we use a heuristic
model to select the parameters, which need to be tuned for a
given input. In this way, the framework’s results are input-
adaptive [25]. Thus, even if a compiler-based loop transfor-
mation system can, from a näıve Ttm code as input, produce
the codes that our framework generates, the input-adaptive
aspect of our approach can be considered a distinct contri-
bution.

We have implemented our approach as a system called In-
TensLi, which is pronounced as “intensely” and is intended
to evoke an In-place and input-adaptive Tensor Library.

Taken together, we show that our InTensLi-generated
Ttm codes can outperform the Ttm implementations avail-
able in two widely used tools, the Tensor Toolbox [21]
and Ctf [40], by about 4 times and 13 times, respectively.
Our framework can be directly applied to tensor decomposi-
tions, such as the well-known Tucker decomposition, whose
computation heavily relies on efficient tensor-times-matrix
multiply [21].

2. BACKGROUND
This section provides some essential formal background

on tensors. To help keep this paper relatively self-contained,
several of the examples and definitions are taken from the
excellent overview by Kolda and Bader [21].

A tensor can be interpreted as a multi-way array. This fact
is illustrated graphically in figure 1, which shows a 3rd-order
tensor. We represent a tensor by a bold underlined capital

1The argument would be that the copy is, asymptotically, a
negligible low-order term in the overall running time. How-
ever, that argument does not hold in many common cases,
such as the case of the output tensor being is much smaller
than the input tensor. This case arises in machine learning
and other data analysis applications, and the result is that
the cost of a data copy is no longer negligible.

letter, e.g., X ∈ RI×J×K . The order of a tensor is the num-
ber of its dimensions or modes, which in the example is 3.
Matrices and vectors are special cases of tensors. Matrices
are 2nd-order tensors, and we denote them by boldface cap-
ital letters, e.g., A ∈ RI×J . Vectors are 1st-order tensors,
and we denote them by boldface lowercase letters, e.g., x.
The elements of a tensor are scalars, and we denote them
by lowercase letters, such as xijk for the (i, j, k) element of
a 3rd-order tensor X.

Given a tensor, we can also ask for a variety of sub-tensors.
One form of sub-tensor is a slice, which is a 2-dimensional
cross-section of a tensor. Figure 2(a) illustrates the concept
of slices, showing different slices of a 3rd-order tensor. An-
other form of sub-tensor is a fiber, illustrated in figure 2(b).
A fiber is a vector extracted from the tensor, and is de-
fined by fixing every index but one [21]. Figure 2(b) gives
three fibers of the tensor, denoted by x:jk,xi:k,xij:. Since
slices are all matrices, they can for the 3rd-order example
of figure 2(a) be represented by Xi::, X:j:, and X::k. In this
paper, we consider double-precision real-valued elements for
all tensors, matrices, and scalars.

(a) Horizontal, lateral, and frontal slices of a third-order
tensor

(b) Column (mode-1), row (mode- 2), and tube
(mode-3) fibers of a third order tensor.

Figure 2: Some sub-tensor views of the third-order
tensor X ∈ RI×J×K shown in figure 1.

Examples of tensor operations include the mode-n prod-
uct introduced in § 1, tensor contraction, and Kronecker
product [21]. Since the mode-n product is among the most
widely used of these primitives, we focus on it in this paper
and refer to it alternately as the tensor-times-matrix multi-
ply (Ttm), following the terminology of the Tensor Tool-
box [6]. Comprehensive surveys of other tensor operations
appear elsewhere [10, 21].

The Ttm between a tensor X ∈ RI1×I2×···×IN and a ma-
trix U ∈ RJ×In is another tensor Y = X ×n U, where
Y ∈ RI1×···×In−1×J×In+1×···×IN . One way to precisely de-
fine Ttm is to express it as the element-wise computation,

yi1...in−1jin+1...iN = (X×n U)i1...in−1jin+1...iN

=

In∑
in=1

xi1i2...iNujin . (1)

Note that where the input tensor X is of length In in its nth

mode, the result Y is of length J in its nth mode. Typically,
J will be much less than In, which we show has important
consequences for performance in § 3.

The traditional way to execute a Ttm is through matri-
cization, also called unfolding or flattening in the literature.
That is, Ttm is equivalent to a matrix-matrix multiplication
in the form,

Y = X×n U⇔ Y(n) = UX(n), (2)

where Y(n) and X(n) denote the matricized forms of Y and
X, respectively. For a mode-n product, matricization phys-
ically reorders the elements of an order-N tensor into a ma-
trix, by exchanging mode-n with the leading dimension that
is dictated by the matrix data layout. (For instance, if the
data is stored in row-major layout, then the last dimen-
sion (mode-N) is the leading dimension.) As an example, a
3× 4× 2 tensor with elements from 1 to 24 can be arranged
as a 3×8 matrix, or a 4×6 matrix, or a 2×12 matrix. In the
context of tensors (rather than performance optimization),
the vectorization operation, y = vec(X), converts a tensor
into an equivalent vector. The reverse process of creating a
tensor from a matrix or vector is called tensorization.

X(1) =

 1 4 7 10 13 16 19 22
2 5 8 11 14 17 20 23
3 6 9 12 15 18 21 24

 ,
X(2) =

1 2 3 13 14 15
4 5 6 16 17 18
7 8 9 19 20 21
10 11 12 22 23 24

 ,
X(3) =

[
1 2 3 . . . 10 11 12
13 14 15 . . . 22 23 24

]
.

(3)

Currently, most tensor toolkits, including the widely used
Tensor Toolbox and Ctf libraries [6, 40], implement Ttm
using a three-step method: (i) matricizing the tensor by
physically reorganizing it (copying it) into a matrix; (ii) car-
rying out the matrix-matrix product, using a fast Gemm
implementation; and (iii) tensorizing the result, again by
physical reorganization. This procedure appears in algo-
rithm 1 and figure 3. We analyze this procedure in more
detail in § 3.

Input: A dense tensor X ∈ RI1×I2×···×IN , a matrix
U ∈ RJ×In , and an integer n;

Output: A dense tensor Y ∈ RI1×···×In−1×J×In+1×···×IN ;
// Matricize: Transform from X to X(n).

1: Set sz = size(X), order = [n, 1 : n− 1, n+ 1 : N];

2: X̃ = permute(X, order);

3: Xmat = reshape(X̃), Xmat ∈ RIn×
∏i=1,...,N

−n Ii ;
// Multiply: Y(n) = UX(n).

4: Ymat = U ∗Xmat;
// Tensorize: Transform from X(n) to X.

5: Set out sz = [J, sz(1 : n− 1), sz(n+ 1 : N)];

6: Ỹ = tensor(Ymat, out sz);

7: Y = inversePermute(Ỹ, order);
8: return Y;

Algorithm 1: The baseline mode-n product algorithm
(TTM) in Tensor Toolbox [6] and Ctf [40].

One particular motivation for improving TTM performance
is its central role in the tensor decomposition, widely used
to create a low-rank representation of a tensor [13], as a

X X(n)X
~

permutematricize

UX(n)

product

Y(n)

permute tensorize

=
Y
~

Y

Figure 3: Structure of the baseline TTM computa-
tion.

higher-dimensional generalization of the singular value de-
composition (SVD). The higher-order orthogonal iteration
(HOOI) variant, or Tucker-HOOI algorithm, computes for
each mode n

Y = X×1A
(1)T · · ·×n−1A

(n−1)T×n+1A
(n+1)T · · ·×NA(N)T

until convergence occurs. Thus, we have n(n − 1) mode-n
products over the course of a single iteration.

3. MOTIVATING OBSERVATIONS
To motivate the techniques proposed in § 4, we make a few

observations about the traditional implementations of Ttm
(algorithm 1). These observations reveal several interesting
problems and immediately suggest possible ways to improve
Ttm performance.

0.0

0.2

0.4

0.6

0.8

1.0
MultiplyTransform

10003 2004 605

N
or

m
al

iz
ed

 T
im

e

Tensor Size
0.0

0.2

0.4

0.6

0.8

1.0
MultiplyTransform

10003 2004 605
N

or
m

al
iz

ed
 S

pa
ce

Tensor Size

(a) Time Profiling (b) Space Profiling

Figure 4: Profiling of algorithm 1 for mode-2 prod-
uct on 3rd, 4th, and 5th-order tensors, where the
output tensors are low-rank representations of cor-
responding input tensors.

Observation 1: In a traditional Ttm implementation,
copy overheads dominate when the output tensor is much
smaller than the input tensor. Consider algorithm 1, which
has two transformation steps, one on lines 2–3 and the other
on lines 6–7. They can carry a large overhead when imple-
mented as physical reorganizations, i.e., explicit copies.

For instance, consider the profiling results for a mode-2
product on 3rd-order, 4th-order, and 5th-order dense ten-
sors, as shown in figure 4. The x-axis represents tensor
sizes and the y-axis shows the fraction of time or space
of the transformation step (lower dark bars) compared to
the matrix multiply (upper light-grey bars). These profiles
were gathered for the Tensor Toolbox implementation.2

Transformation takes about 70% of the total running time
and accounts for 50% of the total storage.

2In this paper, Tensor Toolbox calls Intel Math Kernel
Library as the high-performance Blas implementation of
Gemm.

To see fundamentally why copying hurts performance, com-
pare the arithmetic intensity of Ttm with copy overheads
against Gemm. Consider a system with a two-level memory
hierarchy, that is, with a large slow memory connected to a
fast memory (e.g., last-level cache) of size Z words. Recall
that the arithmetic intensity of a computation running on
such a system is the ratio of its floating-point operations, or
flops Q, to the number of words, W , moved between slow
and fast memory [16]; the higher a computation’s intensity,
the closer to peak it will run. For both Gemm and tensor
contractions, W ≥ Q

8
√
Z
− Z [7]. Thus, an upper-bound on

arithmetic intensity, A, is

A ≡ Q

W
≤ Q

Q

8
√

Z
− Z

≈ 8
√
Z, (4)

where the latter bound holds if Q

8
√
Z
� Z, or Q � 8Z3/2.

For a non-Strassen Gemm on n × n matrices, Q = 2n3,
so that equation (4) holds when n3 � 4Z3/2. Assuming
a cache of size 8 MiB, which is 220 double-precision words,
then 4Z3/2 = 232, which means the matrix dimension n
should satisfy n & 1600.

Now consider a Ttm implementation that copies explic-
itly. Suppose this Ttm involves an order-d tensor of size m
in each dimension, so that the tensor’s size is md and the
Ttm’s flops are Q̂ = 2md+1. The two transformations steps
together require moving a total of 2md words. Further sup-
pose that this Ttm does the same number of flops as the

preceding Gemm; then, Q̂ = Q or m = n
3

d+1 . The intensity
Â of this Ttm will be, again assuming Q̂ = Q� 8Z3/2,

Â .
Q̂

Q̂

8
√
Z

+ Q̂
m

=
8
√
Z

1 + 8
√

Z
m

≈ A

1 + A
m

. (5)

Thus, copying might reduce the copy-free intensity, A, by
a factor of 1 + A/m. How large can this penalty be? If
n & 1600 and d = 3, then m ≈ 254 and 1 +A/m ≈ 33. This
penalty increases as the order d increases. Thus, one should
avoid explicit copying.

Observation 2: The Gemm sizes that arise in Ttm may
be far below peak. It is well-known that while Gemm bench-
marks emphasize its performance on large and square prob-
lem sizes, the problem sizes that arise in practical appli-
cations are often rectangular and, therefore, may have a
very different performance profile. The best example is LU
decomposition, in which one repeatedly multiples a “tall-
skinny” matrix by a “short-fat” matrix.3 Similarly, one ex-
pects rectangular sizes to arise in Ttm as well, due to the na-
ture of the decomposition algorithms that invoke it. That is,
the Gemm on line 4 of algorithm 1 will multiply operands of
varying and rectangular sizes. A particularly common case
is one in which J � Ii, which can reduce intensity relative
to the case of J ≈ Ii.

Based on these expectations, we measured the perfor-
mance of a highly-tuned Gemm implementation from Intel’s
Math Kernel Library. Figure 5 shows the results. The opera-
tion was C = BAT , where A ∈ Rn×k, B ∈ Rm×k. The value
of m is fixed to be m = 16, which corresponds to a “small”
value of J . Each square is the performance at a particular
value of k (x-axis, shown as log2 k) and n (y-axis, shown as
log2 n), color-coded by its performance in GFLOP/s. Fig-
ure 5(a) shows the case of a single thread, and (b) for 4

3That is, block outer products.

threads. (The system is a single-socket quad-core platform,
described in § 5.)

According to figure 5, performance can vary by roughly
a factor of 6, depending on the operand sizes. When k or
n becomes very large, performance can actually decrease.
The maximum performance in figure 5 is about 38 GFLOP/s
for 1 thread, and 140 GFLOP/s for 4 threads. This par-
ticular Gemm can actually achieve up to 50 GFLOP/s and
185 GFLOP/s for 1 and 4 threads, respectively, at large
square sizes.

k
1 2 3 4 5 6 7 8 9 10 11 12 13 14

n

1
2
3
4
5
6
7
8
9

10
11
12
13
14

5

10

15

20

25

30

35

k
1 2 3 4 5 6 7 8 9 10 11 12 13 14

n

1
2
3
4
5
6
7
8
9

10
11
12
13
14

20

40

60

80

100

120

140

(a) m=16, using 1 thread (b) m=16, using 4 threads

Figure 5: Performance of dense, double-precision
general matrix multiply from the Intel Math Kernel
Library for C = BAT , where A is n × k, B is m × k.
The value of m is fixed at 16, while k (x-axis) and
n (y-axis) vary. Note that the x- and y-axis labels
show log2 k and log2 n, respectively. Each square is
color-coded by performance in GFLOP/s.

Observation 3: Analogous to Blas operations, different
ways of organizing Ttm have inherently different levels of
locality. There are several ways to organize a Ttm. Some of
these formulations lead to scalar operations, which have rel-
atively poor locality compared to Level-2 (matrix-vector) or
to Level-3 (matrix-matrix) type operations. As with linear
algebra operations, one should prefer Level-3 organizations
over Level-2 or Level-1.

We summarize these different formulations in table 1, for
the specific example of computing a mode-1 Ttm on a 3rd-
order tensor. There are two major categories. The first is
based on full reorganization (algorithm 1), which transforms
the entire input tensor into another form before carrying
out the product. This category includes the matricization
approach. The second category is based on sub-tensor ex-
traction. The formulations in this category iterate over sub-
tensors of different shapes, such as scalars, fibers, or slices
(§ 2). By analogy to the Blas, each of the formulations cor-
responds to the Blas level shown in the table (column 3).
The full reorganizations also imply at least a logical trans-
formation of the input tensor, whereas sub-tensor extraction
methods do not (column 4). Further explanation of different
representations will be given in § 4.

4. IN-PLACE AND INPUT-ADAPTIVE TTM
This section describes the InTensLi framework, which

automatically generates an in-place, input-adpative Ttm
(InTTM). By in-place, we mean avoiding the need for physi-
cal reorganization of the tensor or its sub-tensors when com-
puting the Ttm; by input-adaptive, we mean choosing a
near-optimal strategy for a given set of inputs, which for a
mode-n product include the value of n and the size of the
input tensor (both order and length of each dimension).

Table 1: A 3rd-order tensor’s different representation forms of mode-1 Ttm. The input tensor is X ∈ RI1×I2×I3 ,
the input matrix is U ∈ RJ×I1 , and the output tensor is Y ∈ RJ×I2×I3 .

Mode-1 Product Representation Forms Blas Level Transformation

Full
reorganization

Tensor representation
— —

Y = X ×1 U

Matrix representation
L3 Yes

Y(1) = UX(1)

Sub-tensor
extraction

Scalar representation

Slow Noyji2i3
=

∑I1
i1=1 xi1i2i3

uji1

Loops : i2(3) = 1, · · · , I2(3), j = 1, · · · , J
Fiber representation

L2 Noy(j, :, i3) = X(:, :, i3)u(j, :),

Loops : i3 = 1, · · · , I3, j = 1, · · · , J
Slice representation

L3 No
Y(:, :, i3) = UX(:, :, i3), Loops : i3 = 1, · · · , I3

4.1 A 3rd-order tensor example
To build some intuition for our basic scheme, it is helpful

to introduce some basic terms on a concrete example.
Consider a three-dimensional tensor X ∈ RI1×I2×I3 and

a matrix U ∈ RJ×In , with which we wish to compute the
mode-n product (or Ttm), Y = X×n U. From the discus-
sion of § 3 and table 1, recall that there are several ways to
evaluate a Ttm. For instance, table 1 includes several forms,
such as the slice representation, which fixes one mode of X;
the fiber representation, which fixes two; and the scalar rep-
resentation, which fixes all modes inside the nested loops.
These operations can be performed in-place so long as we
pre-allocate Y. Moreover, having chosen a form we are also
free to choose which dimensions to fix and which to iterate
over. Alternatively, we may compute Y by slices by com-
puting, say, Y(:, i2, :) = UX(:, i2, :) for all i2 = 1, · · · , I2,
instead of fixing mode-3 in table 1.

The term stride refers to the distance between consecutive
elements along the same mode. The leading dimension is the
dimension with unit stride, or stride equal to 1. For instance,
suppose our three-dimensional tensor X is stored in row-
major layout. Then, each element xijk is stored at position
i · (I2I3) + j · (I3) + k. The leading dimension is the third
(i3) dimension. We take two alternatives of the above slice
representations as examples, Y(:, :, i3) = UX(:, :, i3) and
Y(:, i2, :) = UX(:, i2, :). The row stride of matrix X(:, :, i3)
(representation in table 1) is I2I3 and the column stride
is I3, for some i3, while the row stride of matrix X(:, i2, :)
(alternative representation) is I2I3 and the column stride
is 1. When both the row stride and the column stride are
non-unit, the matrix is stored in a general stride layout.

The traditional Blas interface for Gemm operations re-
quire unit stride in one dimension, and so cannot operate on
operands stored with general stride. The recent Blas-like
Library Instantiation Software (Blis) framework can export
interfaces to support generalized matrix storage [43]. How-
ever, Gemm on strided matrices is generally expected to be
slower than Gemm on matrices, since strided loads might
utilize cache lines or other multi-word transfers more poorly
than unit stride accesses. Therefore, a reasonable imple-
mentation heuristic is to avoid non-unit stride computation.
For tensor computations, that also means we should prefer
to build or reference sub-tensors starting with the leading di-
mension. Thus, we prefer the first slice representation (same
with table 1) over the second.

We can also reshape a tensor into a matrix by partitioning
its indices into two disjoint subsets, in different ways. For ex-
ample, the tensor X(:, :, :) ∈ RI1×I2×I3 can be reshaped into

a matrix X̃(:, :) ∈ R(I1×I2)×I3 , that is, a matrix with I1I2
rows and I3 columns. This particular reshaping is purely
logical: it does not require physically reorganizing the under-
lying storage before passing it either to a Blas-style Gemm
that requires a unit-stride matrix or a Blis-style Gemm that
supports a general stride matrix (see § 4.2). Another way

to reshape X is to generate a matrix X̂(:, :) ∈ RI2×(I1×I3).
As it happens, this reshape operation is impossible with-
out physically reorganizing the data (see § 4.2). Thus, we
need to be careful when choosing a new dimension order of
a tensor, to avoid physical reorganization. These two facts
are the key ideas behind our overall strategy for performing
Ttm in-place.

4.2 Algorithmic Strategy
We state two lemmas: the first suggests how to build ma-

trices given an arbitrary number of modes of the input ten-
sor, and the second establishes the correctness of computing
a matrix-matrix multiplication on sub-tensors.

Lemma 4.1. Given an N th-order tensor X ∈ RI1×I2×···×IN

and a matrix U ∈ RJ×In , the mode-n product can be per-
formed without physical reorganization on up to max{n −
1, N − n} contiguous dimensions.

Proof. From section § 4.1, to avoid physical reorganiza-
tion, the dimensions of sub-tensors should be a sub-sequence
of the input tensor’s. Combining contiguous dimensions is
the only way to build a high performance MM kernel with
sub-tensors (matrices).

We first prove that two contiguous modes (except mode-n)
can be reshaped to one dimension without physical reorga-
nization. Let m and m + 1 be two contiguous modes. Let

X̃ ∈ RI1×···×Inew···×IN , where Inew = ImIm+1, be the re-
shaped tensor that comes from combining these two modes
into a new dimension. Because the order of the two contigu-

ous modes is unchanged, elements of tensor X̃ have exactly
the same physical arrangement as tensor X. Thus, we can

logically form tensor X̃ from X without data movement.
However, for two non-contiguous modes, e.g. mode-m and
(m + 2), we cannot form a new reshaped tensor without a
permutation, which demands physically reorganizing X.

When reshaping contiguous modes, the resulting sub-tensors
Xsub ∈ RIn×Inew are actually matrices. For a mode-n prod-

uct, the most contiguous modes are obtained by either the
leftmost modes of mode-n, {1, · · · , n − 1} or the rightmost
ones {n+1, · · · , N}. Thus, up to max{n−1, N−n} contigu-
ous modes can be reshaped into a “long” single dimension
in the formed matrices, without physical data reorganiza-
tion.

Lemma 4.2 applies lemma 4.1 to the computation of the
mode-n product.

Lemma 4.2. Consider the mode-n product, involving an
order-N tensor. It can be computed by a sequence of matrix
multiplies involving sub-tensors formed either from the left-
most contiguous modes, {1, . . . ,m1}, 1 ≤ m1 ≤ n−1; or the
rightmost contiguous modes, {m2, . . . , N}, n+1 ≤ m2 ≤ N .

Proof. Recall the scalar definition of the mode-n prod-
uct, Y = X×n U, which is

yi1···in−1j···iN =

In∑
in=1

xi1···iNujin .

Without loss of generality, consider the rightmost contigu-
ous modes {m2, · · · , N}, and suppose they are combined
into a single dimension. Let Ip ≡ Im2 · · · IN be the total
size of this new dimension. Then, we may extract two new
(logical) sub-tensors (matrices): Xsub, which is taken from
X and has size In × Ip, and Ysub, which is taken from Y
and has size J × Ip. The Gemm operation, Ysub = UXsub,

is in scalar form, (Ysub)jip =
∑In

in=1 ujin(Xsub)in,ip . The
index ip = im2 × Im2+1 · · · IN + · · ·+ iN , corresponds to the
offset (im2 , · · · , iN) in the tensors X and Y; the remain-
ing modes, {i1, · · · , in−1, in+1, · · · , im2−1}, are fixed indices
during this Gemm. Thus, iterating over all possible values
of {i1, · · · , in−1, in+1, · · · , im2−1} and performing the cor-
responding matrix multiplies yields the same result as the
mode-n product.

Lemma 4.1 and lemma 4.2 imply an alternative repre-
sentation of a mode-n product, relative to those listed in
table 1. This algorithmic strategy may be summarized by
the in-place tensor-times-matrix multiply (InTtm) proce-
dure shown in algorithm 2 and figure 6.

To instantiate this algorithm for a tensor with given di-
mensions, we must generate a set of nested loops (line 1)
and use a proper kernel for the inner matrix-matrix multi-
plication (lines 5 and 9).

A number of parameters arise as a result of this algorithm:

• Loop modes, ML. Modes utilized in nested loops. They
are not involved in the inner-most matrix multiplies.
For instance, in table 1, the loop mode is i3 in the
“Slice representation.”

• Component modes, MC . Modes participate in matrix
multiply. ML and MC constitute the set of all tensor
modes, except mode-n. From lemma 4.1, only con-
tiguous modes are considered as component modes. In
table 1, component mode is i2.

• Loop parallel degree, PL. The number of threads uti-
lized by nested loops, i.e., loop modes, to exploit par-
allelization at a coarse-grained level.

• MM parallel degree, PC . The number of threads em-
ployed by the inner-most matrix multiply; fine-grained
parallelism.

Input: A dense tensor X ∈ RI1×I2×···×IN , a dense matrix
U ∈ RJ×In , and an integer n;

Output: A dense tensor Y ∈ RI1×···×In−1×J×In+1×···×IN ;

// Nested loops, using PL threads
1: parfor il = 1 to Il, all il ∈ML do
2: if MC are on the left of in then
3: Xsub = inplace-mat (X, MC , in);
4: Ysub = inplace-mat (Y, MC , j);

// Matrix-matrix multiplication, using PC threads
5: Ysub = XsubU

′, U′ is the transpose of U.
6: else
7: Xsub = inplace-mat (X, in, MC);
8: Ysub = inplace-mat (Y, j, MC);

// Matrix-matrix multiplication, using PC threads
9: Ysub = UXsub

10: end if
11: end parfor
12: return Y ;

Algorithm 2: In-place Tensor-Times-Matrix Multiply
(InTtm) algorithm to compute a mode-n product.
“inplace-mat” means in-place building a sub-tensor (ma-
trix) from initial full tensor, using modes for its row and
column respectively.

…

X UX Y

=…

Figure 6: Structure of new InTtm computation.

In algorithm 2, we avoid physical reorganization of the X
and Y tensors, and build a MM kernel accordingly using the
chosen component modes (MC). If MC is assigned to the
modes left of in, Xsub and Ysub are in-place constructed with
the size of

∏
ic∈MC

Ic × In and
∏

ic∈MC
Ic × J respectively.

Mode-n is taken as the column of Xsub and Ysub, thus we
use Ysub = XsubU

′ as the MM kernel. Otherwise, MC is
assigned to the modes to the right of in, mode-n is taken as
the row of Xsub and Ysub. Thus we use Ysub = UXsub as
the MM kernel. Note that sub-tensors (matrices) are not ex-
plicitly built, but implicitly referred to logically sub-tensors.
Multi-threaded parallelism is additionally employed on both
nested loops and the MM kernel, exposing two additional pa-
rameters. The parameter configuration will be described in
the next section.

By avoiding an explicit data copy, the intensity Ã of InTtm
algorithm will be,

Ã .
Q̂
Q̂

8
√
Z

= 8
√
Z ≈ A. (6)

Our in-place InTtm algorithm improves the arithmetic in-
tensity of tensor-times-matrix multiply, by eliminating the
factor 1 + A

m
. The arithmetic intensity of InTtm is close to

Gemm, so it has the potential to achieve comparable perfor-
mance to Gemm. Furthermore, utilizing in-place operations

decreases storage space by approximately 50%.
The InTtm algorithm also presents new challenges. Chal-

lenge 1: InTtm does not have a natural static representa-
tion. As shown in algorithm 2, loop modes ML and com-
ponent modes MC vary with the input tensor and mode-n.
Because its performance might depend on the input, InTtm
algorithm is a natural candidate for code-generation and
auto-tuning. Challenge 2: InTtm algorithm may operate
on inputs in a variety of shapes, as opposed to only square
matrices. For instance, it would be common in InTtm in the
case of a third-order tensor for two of the matrix dimensions
to be relatively small compared to the third. Additionally,
there might be large strides.

Despite these challenges, we still have opportunities for
optimization. To this end, we build an input-adaptive frame-
work that generates code given general input parameters.
We also embed optimizations to determine the four param-
eter values ML,MC , PL, and PC in this framework, to gen-
erate an optimal tensor-times-matrix multiply code.

4.3 An Input Adaptive Framework
Our input-adaptive framework is shown in figure 7, il-

lustrating the procedure of generating InTtm for a given
tensor. There are three stages: input, parameter estima-
tion, and loop generation, which generates the InTtm code.
Input parameters include data layout, input tensor, lead-
ing mode, MM Benchmark, and the maximum supported
number of threads. The parameter estimator predicts the
optimal values of intermediate parameters, including loop
order, ML, MC , PL, and PC . These intermediate parame-
ters guide the generation of InTtm code. Within InTtm,
either the Blis or MKL libraries will be called according to
the parameter configuration.

We first illustrate parameter estimation, then explain the
code generation process in the following sections.

Hardware
Parameters

Max # of
threads

MM
Benchmark

Input
Parameters

Tensor

Thresholds

Mode n

Data Layout

Code
Generator

ML

MC

PL

PC

Parameter
Estimator InTTM Code

Mode
Partition

Thread
Allocation

Affect

parfor i1 = 1 : I1
parfor i2 = 1 : I2

... ...

MM Libraries

BLIS MKL

Nested loops

Matrix-matrix
Multiplication

 Ysub=UXsub

 Ysub=XsubU’OR

Figure 7: Input adaptive framework

4.3.1 Parameter Estimation
The two main aspects of parameter estimation are mode

partitioning and thread allocation. Mode partitioning is the
most important, and its decision influences thread alloca-
tion, so we state it first.

Mode partitioning. Apart from mode-n, all tensor modes
are partitioned into two sets ML and MC , to generate nested
loops and sub-tensors for inner matrix multiply. From fig-
ure 5, matrices in different sizes achieve very different perfor-
mance numbers. In mode partitioning, we primarily decide
MC to maximize MM kernel’s performance, and the rest

modes are assigned to ML.
Lemma 4.1 implies that there are two ways to choose con-

tiguous modes, namely, from the modes either to the left
or right of mode-n. We refer to these options as the for-
ward strategy and backward strategy, respectively. In the for-
ward strategy, the mode set is MC = {m2, · · · , N}, where
n + 1 ≤ m2 ≤ N ; whereas in the backward strategy, the
mode set MC = {1, · · · ,m1}, where 1 ≤ m1 ≤ n − 1. If a
tensor is stored in row-major pattern, the forward strategy
generates a MM kernel with unit stride access in one dimen-
sion, while the backward strategy employs a general stride
MM kernel. This means using forward strategy MM kernel
can call the Blas, but the backward strategy would need
general stride support, as provided by Blis. Different stride
sizes and MM kernel implementations affect InTtm perfor-
mance. As one would expect and experiments confirm, it
is usually not possible for Blis operating on large general
strides to achieve performance comparable to MKL when
one dimension has unit stride. In the experiments below,
we assume row-major layout, in which case we adopt the
forward strategy. (One would use the backward strategy if
the default layout were assumed to be column-major.)

After determining the strategy, the parameter m1 (or m2)
in lemma 4.1 also needs to be determined. We introduce
another parameter, degree, which specifies the number of
component modes in MC . Once degree is decided, so is
m1 (or m2). For instance, take a three-dimensional ten-
sor, X ∈ R100×100×100 and a matrix U ∈ R16×100, and
suppose we wish to compute mode-1 product using the for-
ward strategy. When degree = 1, m2 = 3, MC = {i3},
Xsub ∈ R100×100. When degree = 2, m2 = 2, MC = {i2, i3},
Xsub ∈ R100×10000. Thus, different values of degree imply
different sub-tensors and MM kernel sizes. As shown in fig-
ure 5, one would therefore expect performance to vary with
different values of k and n, when m is fixed to a small value.
Based on this observation, in our scheme we build a MM
benchmark and use it to generate two thresholds, MSTH
andMLTH, which are used to determine the optimal degree
and then MC . To determine the thresholds, there are two
steps. The first step is to fix k while varying n, since m
is generally fixed when the tensors arise in some low-rank
decomposition algorithm; and the second step is varying k.

Figure 8 shows MM performance on different values of n,
when m and k are fixed. This figure shows a clear trend:
after performance reaches a top-most value, as n increases,
MM performance rebounds. We see a similar trend with
other values of m and k. Matrices with unbalanced dimen-
sions do not achieve high performance, in part because it
is more difficult to apply a multilevel blocking strategy, as
in Goto [11]. Put differently, when one dimension is rela-
tively small, there may not actually be enough computation
to hide data transfer time.

Figure 8 has a typical shape, which is some function f(n)
having a peak, fmax. Consider a horizontal line, κfmax, for
some fraction κ = 0.8, chosen empirically. The thresholds
MSTH and MLTH correspond to the two red bars closest
to but below the horizontal line. We setMSTH (MLTH) as
the storage size of the three matrices of the MM kernel with
chosen n values. The second step is to calculate the average
of each threshold over different values of k. We wish to find
the MM kernel with the three matrices’ storage size between
the computed values of MSTH and MLTH, which is rela-
tively more likely to produce high Gemm performance. The

0

30

60

90

120

150
m=16, k=512

1413121110987654321

Pe
rf

or
m

an
ce

 (G
FL

O
P/

s)

n, logarithm to the base of 2

80%

Figure 8: Performance variation of MM on different
sizes of n, when m = 16, k = 512, using 4 threads.

size bounds of the MM kernel limit the degree parameter in
our InTtm algorithm. From our experiments on a partic-
ular machine (with a Core i7 processor in our experiment),
MSTH is evaluated to 1.04 MB and MLTH is evaluated to
7.04 MB.

The parameter degree is first initialized to 1, and its
MM kernel’s storage size is calculated. If it is smaller than
MSTH, we increment degree and re-evaluate the storage
size until we find the maximum MM kernel size between
MSTH andMLTH. Now, we use degree to partition modes
to ML and MC .

From figure 7, the data layout also affects the partition-
ing process. Recall that the assumed data layout affects the
choice of a forward (row-major) versus a backward (column-
major) strategy. So, if degree = p, MC is {N−p+1, · · · , N}
(row-major) or {1, · · · , p} (column-major). This choice in
turn means that the component modes should be chosen
from the leading dimension, to guarantee unit stride in one
dimension. The data layout also decides the order of ML

modes, where loop order is an increasing sequence of dimen-
sions for row-major pattern.

Thread allocation. After determining MC , we decide PL

and PC according to the MM kernel size. From our tests, if
the matrix is small, parallelizing the nested loops is more effi-
cient than parallelizing the matrix multiply. For large matri-
ces, the situation is the opposite. We use a threshold PTH
for thread allocation, which is also shown as the storage size
of the MM kernel. The difference is that PTH is determined
from InTtm experiments, not from MM benchmark. If the
size of MM kernel is smaller than PTH, we allocate more
threads to nested loops; otherwise, more threads are allo-
cated to MM kernel. The value of PTH is set to 800 KB in
our tests. From our experiments, the highest performance
is always achieved when using maximum threads on either
nested loops or the MM kernel, so we only consider these
two situations.

4.3.2 Code Generation
The code generation process consists of two pieces: gener-

ating nested loops and generating wrappers for the matrix
multiply kernel. For each mode in set ML, we build a for
loop for it according to the mode order established by ML.
PL is the number of threads allocated in nested loops. Code
is generated in C++, using OpenMP with the collapse di-
rective.

For the matrix multiply kernel, we build in-place sub-
tensors Xsub and Ysub using modes in MC . According to
the row and column strides, we choose between Blis [43] or
Intel MKL libraries [17]. Thus, a complete InTtm code is

generated according to the determined parameters.

5. EXPERIMENTS AND ANALYSIS
Our experimental evaluation focuses on three aspects of

InTensLi: (a) assessing the absolute performance (GFLOP/s)
of its generated implementations; (b) comparing the frame-
work against widely used alternatives; and (c) verifying that
its parameter tuning heuristics are effective. This evaluation
is based on experiments carried out on the two platforms
shown in table 2, one based on a Core i7-4770K processor
and the other on a Xeon E7-4820. Our experiments employ
8 and 32 threads on the two platforms respectively, consider-
ing hyper-threading. The system based on the Xeon E7-4820
has a relatively large memory (512 GiB), allowing us to test
a much larger range of (dense) tensor sizes than has been
common in prior single-node studies. Note that all compu-
tations are performed in double-precision.

Table 2: Experimental Platforms Configuration
Intel Intel

Parameters Core i7-4770K Xeon E7-4820

Microarchitecture Haswell Westmere
Frequency 3.5GHz 2.0GHz

of physical cores 4 16
Hyper-threading On On
Peak GFLOP/s 224 128

Last-level cache 8GiB 18GiB
Memory size 32GiB 512GiB

Memory bandwidth 25.6GB/s 34.2GB/s
of memory channels 2 4

Compiler icc 15.0.2 icc 15.0.0

Basic benchmark. We first check that the InTensLi-
generated InTtm delivers consistent performance at a vari-
ety of tensor dimensions and sizes. The results for a mode-
2 product, as an example, appear in figure 9. We tested
X ×2 U where X is an order-d tensor of size m in each di-
mension (total tensor size is md) and U is a 16×m matrix
to agree with the low-rank property of tensor decomposi-
tion. We test d ∈ {3, 4, 5} at various values of m, shown
along the x-axis, chosen so that the largest m still permits
md to fit into main memory; the y-axis shows performance
in GFLOP/s. On the Core i7, our InTtm achieves over
40 GFLOP/s on 3rd-order tensors, with performance tend-
ing to steadily decrease or remain flat with increasing size
and order. At higher orders, dimension size decreases in or-
der to fit into memory, which reduces the inner Gemm per-
formance as we would expect from the observations of § 3.
By contrast, performance trends on the Xeon E7 platform
differ from those on the Core i7. In particular, 3rd-order ten-
sors show the worst performance, compared to higher-order
tensors. This stems in part from worse Intel MKL perfor-
mance on the Xeon E7—it achieves only 51 GFLOP/s on a
square Gemm with operands of size 1000× 1000, compared
to 154 GFLOP/s on the Core i7. However, it also happens
that, on the Xeon E7, the multithreading within MKL does
not appear to benefit Gemm performance much. Our abil-
ity to achieve higher performance with higher orders on that
platform comes mainly from our use of coarse-grained outer-
loop parallelization.

On both platforms, InTensLi-generated InTtm does not
deliver performance that compares well with the peak per-
formance shown in table 2. The main reason is, as noted

Pe
rf

or
m

an
ce

 (G
FL

O
P/

s)

Tensor Size
3-D

60
0

80
0

10
00

24
0

22
0

16
0

18
0

20
0 50 6040 70 80

4-D 5-D

0

10

20

30

40

50

12
00

14
00

(a) Intel Core i7-4770K

Pe
rf

or
m

an
ce

 (G
FL

O
P/

s)

Tensor Size
3-D

15
00

20
00

25
00

40
0

25
0

30
0

35
0

12
0

60 10
0

80

4-D 5-D

0

10

20

30

40

50

30
00

(b) Intel Xeon E7-4820

Figure 9: Performance of InTensLi-generated InTtm
algorithm for mode-2 product on 3rd, 4th, and 5th-
order tensors. Each bar represents the performance
of a specific tensor size.

in § 3 and figure 5, Gemm performance differs from peak
for rectangular shapes. Such shapes can arise in InTensLi-
generated Ttm code, since it considers a variety of ways to
aggregate and partition loops.

Comparison to other tools. We compare InTensLi-
generated InTtm code against the equivalent implementa-
tions in the Tensor Toolbox and Ctf. Note that the Ten-
sor Toolbox and Ctf implementations use algorithm 1.
Tensor Toolbox is designed to be MATLAB-callable, but
under-the-hood uses multithreading and can link against
a highly-tuned Blas. Ctf is implemented in C++, with
OpenMP parallelization and Blas calls where possible. In
addition, it is useful to also compare against Gemm using a
matricized tensor (line 4 of algorithm 1) but ignoring any
reorganization time and other overhead. This measurement
of just Gemm provides an estimate of the performance we
might expect to achieve. Tensor Toolbox, Ctf, Gemm,
and our InTtm are all linked to MKL library for Gemm
calls.

The results appear in figure 10. Because Tensor Tool-
box and Ctf have larger memory requirements than the
InTtm, the tensor sizes selected for figure 10 are smaller
than for figure 9. In figure 10, the leftmost bar is InTensLi-
generated InTtm, which achieves the highest performance
among the four. The performance of Tensor Toolbox and
Ctf is relatively low, at about 10 GFLOP/s and 3 GFLOP/s,
respectively. Our InTtm gets about 4× and 13× speedups
compared to Tensor Toolbox and Ctf. The main reason
is that Tensor Toolbox and Ctf incur overheads from ex-
plicit copies. The rightmost bar is Gemm-only performance.

0

10

20

30

40

50

GEMMCTF

TT-TTMInTTM

Tensor Size
3-D: 10003 4-D: 1804 5-D: 605

Pe
rf

or
m

an
ce

 (G
FL

O
P/

s)

Figure 10: Performance comparison among
InTensLi-generated InTtm, Tensor Toolbox (TT-
TTM), Cyclops Tensor Framework (Ctf), and
Gemm on 3rd, 4th, and 5th-order tensors of mode-2
product.

Our InTtm matches it, and can even outperform it since the
InTensLi framework considers a larger space of implemen-
tation options than what is possible through algorithm 1.

0

10

20

30

40

50 TT-TTMInTTM

4321
Mode

Pe
rf

or
m

an
ce

 (G
FL

O
P/

s)

Figure 11: Performance behavior of InTensLi-
generated InTtm against Tensor Toolbox (TT-
TTM) for different mode products on a 160 × 160 ×
160× 160 4th-order tensor.

We also compare against just Tensor Toolbox for vary-
ing mode-n computations in figure 11, on a 4th-order ten-
sor. 4 X-axis shows the modes corresponding to our InTtm
algorithm. The Tensor Toolbox performance varies sig-
nificantly among different modes, ranging from 3 GFLOP/s
to 40 GFLOP/s. By contrast, the InTensLi-Ttm reduces
this performance variability with changing mode. This re-
sult shows the benefit of specializing the partitioning and
iteration-ordering strategy, as InTensLi does automatically.

Parameter selection. The last major aspect of the In-
TensLi framework is selecting good parameters. Recall that
during the mode partitioning process, a Gemm benchmark
is used to determine two thresholds, MSTH and MLTH.
In figure 12, we compare the results of using InTensLi’s
heuristics to choose these parameters against an exhaustive

4The Tensor Toolbox uses a column-major ordering,
whereas InTensLi uses a row-major ordering. As such, for
a order-d tensor, we compare Tensor Toolbox’s mode-n
product against our mode-(d − n + 1) product, i.e., their
mode-1 against our mode-4 product, their mode-2 against
our mode-3 product, and so on. In this way, the storage
pattern effect is eliminated.

40 50 60 70 80

Pe
rf

or
m

an
ce

 (G
FL

O
P/

s)

Tensor Size

0

10

20

30

40
BestInTensLi

Figure 12: Comparison between the performance
with predicted configuration and the actual highest
performance on 5th-order tensors of mode-1 prod-
uct.

search, in the case of a mode-1 product on a 5th-order tensor.
The black bars show the performance of the configuration
chosen automatically by InTensLi, and the gray bars show
the performance of the configuration chosen by exhaustive
search. For this particular input, there are 16 possible con-
figurations, among which InTensLi’s heuristics select just 1.
As figure 12 shows, InTensLi makes near-optimal choices.

From these experiments, InTensLi can easily be inte-
grated in tensor decompositions, such as Tucker decomposi-
tion for low-order tensors and hierarchical Tucker for high-
dimensional tensors. Such applications can benefit from
the performance and space-efficiency of InTensLi-generated
code.

6. RELATED WORK
One of the most widely-used tensor implementations is the

Tensor Toolbox. Its optimized Ttm kernel has been the
baseline comparison for our experiments. This implementa-
tion utilizes an algorithm (METTM) [22] that alleviates the
intermediate memory-blowup problem. By carefully choos-
ing which modes to compute with finer granularity, the in-
termediate data remains within working memory. Tensor
Toolbox suffers from excessive data copy according to our
experiments, which motivates our in-place approach.

Cyclops Tensor Framework (Ctf) [40] provides another
baseline implementation. Ctf is a recent HPC implemen-
tation with two levels of parallelism (OpenMP and MPI)
which focuses on communication reduction for symmetric
tensor contractions that arise frequently in quantum chem-
istry. Ttm is a specific instance of tensor contraction. CTF
distributes tensors via a slice-representation. Another im-
plementation that specializes on contraction is the Tensor
Contraction Engine (TCE) [5], a mature implementation
that focuses on synthesizing code and dynamically main-
tains load balance on distributed systems. TCE also builds
a model to choose optimal data layout, while we choose from
different matrix shapes. InTensLi-generated InTtm can
serve as a single-node implementation for a distributed ver-
sion.

As discussed in table 1, there are many different ways to
think about and represent the same tensor operation, and
there has been a recent flurry of work on rethinking tensor
representations to make for more efficient, scalable decom-
positions.

The Matricized Tensor Times Khatri-Rao Product (MT-
TKRP) is an essential step of CANDECOMP/PARAFAC
(CP) Decomposition, and differs from general Ttm in that
the matrix is the result of the Khatri-Rao product of two ma-
trices. N.Ravindran, et. al created an in-place tensor-matrix
product for MTTKRP [33], but their implementation oper-
ates on the ‘slice’ representation of the tensor. Our work
takes advantage of a more general subtensor representation,
and in particular its opportunities for performance tuning.

A number of sparse implementations have been proposed
as well: GigaTensor [20] restructures MTTKRP as a series
of Hadamard products in the MapReduce framework, which
increases parallelism at the cost of more work. This general
approach has had success scaling to very large tensors [18].
DFacTo [9] restructures the operation as a series of sparse
distributed matrix-vector multiplies, and SPLATT [38] com-
putes along tensor slices while exploiting sparsity patterns
to improve cache utilization in shared-memory. Though our
implementation is dense, the algorithm can be applied to
sparse tensors provided a sparse matrix multiply kernel is
provided (SpGEMM).

Baskaran et al. [8] implement a data structure approach to
improving the performance of tensor decompositions, propos-
ing a sparse storage format that can be organized along
modes in such a way that data reuse is increased for the
Tucker Decomposition. In contrast, our approach avoids
the overhead of maintaining a separate data structure and
can use native, optimized multiply operations.

7. CONCLUSIONS
This paper’s key finding is that a mode-n product, or Ttm

operation, can be performed efficiently in-place and tuned
automatically to the order and dimensions of the input ten-
sor. Our InTensLi framework can serve as a template for
other primitives and tensor products, a few of which appear
in § 6. Although we focused on improving single-node per-
formance, including exploiting shared memory parallelism
and reducing Ttm bandwidth requirements, this building
block can be used as a “drop-in” replacement for the intra-
node compute component of distributed memory implemen-
tations, which we will pursue as part of our future work.

There are several additional avenues for future work. One
is to show the impact of our performance improvements in
the context of higher-level decomposition algorithms, such
as Tucker, hierarchical Tucker, or tensor trains, among oth-
ers [12, 14, 30, 42]. The case of dense tensors has numer-
ous scientific applications, including, for instance, time series
analysis for molecular dynamics, which we are pursuing [32].
Beyond the dense case, sparse tensors primitives pose a num-
ber of new challenges, which include efficient data structure
design and iteration. The sparse case is as an especially
important class, with many emerging applications in data
analysis and mining [10].

Acknowledgments
This material is based upon work supported by the U.S. Na-
tional Science Foundation (NSF) Award Number 1339745,
and Award Number 1337177. Any opinions, findings and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect those
of NSF.

References
[1] An updated set of Basic Linear Algebra Subprograms

(BLAS). ACM Trans. Math. Softw., 28(2):135–151,
June 2002.

[2] E. Acar, C. Aykut-Bingol, H. Bingol, R. Bro, and
B. Yener. Multiway analysis of epilepsy tensors. Bioin-
formatics, 23(13):i10–i18, 2007.

[3] E. Acar, S. A. Camtepe, M. S. Krishnamoorthy, and
B. Yener. Modeling and multiway analysis of chatroom
tensors. In Intelligence and Security Informatics, pages
256–268. Springer, 2005.

[4] E. Acar, R. J. Harrison, F. Olken, O. Alter, M. Helal,
L. Omberg, B. Bader, A. Kennedy, H. Park, Z. Bai,
D. Kim, R. Plemmons, G. Beylkin, T. Kolda, S. Rag-
narsson, L. Delathauwer, J. Langou, S. P. Ponnapalli,
I. Dhillon, L.-h. Lim, J. R. Ramanujam, C. Ding,
M. Mahoney, J. Raynolds, L. EldÃl’n, C. Martin,
P. Regalia, P. Drineas, M. Mohlenkamp, C. Falout-
sos, J. Morton, B. Savas, S. Friedland, L. Mullin, and
C. Van Loan. Future directions in tensor-based compu-
tation and modeling, 2009.

[5] A. Auer and etc. Automatic code generation for many-
body electronic structure methods: the tensor contrac.
Molecular Physics, 104(2):211–228, 2006.

[6] B. W. Bader, T. G. Kolda, et al. Matlab
tensor toolbox version 2.5. Available from
http://www.sandia.gov/ tgkolda/TensorToolbox/,
January 2012.

[7] G. Ballard, E. Carson, J. Demmel, M. Hoemmen,
N. Knight, and O. Schwartz. Communication lower
bounds and optimal algorithms for numerical linear al-
gebra. Acta Numerica, 23:pp. 1–155, 2014.

[8] M. Baskaran, B. Meister, N. Vasilache, and R. Lethin.
Efficient and scalable computations with sparse tensors.
In High Performance Extreme Computing (HPEC),
2012 IEEE Conference on, pages 1–6, Sept 2012.

[9] J. H. Choi and S. Vishwanathan. Dfacto: Distributed
factorization of tensors. In Z. Ghahramani, M. Welling,
C. Cortes, N. Lawrence, and K. Weinberger, editors,
Advances in Neural Information Processing Systems 27,
pages 1296–1304. Curran Associates, Inc., 2014.

[10] A. Cichocki. Era of big data processing: A new ap-
proach via tensor networks and tensor decompositions.
CoRR, abs/1403.2048, 2014.

[11] K. Goto and R. A. v. d. Geijn. Anatomy of high-
performance matrix multiplication. ACM Trans. Math.
Softw., 34(3):12:1–12:25, May 2008.

[12] L. Grasedyck. Hierarchical singular value decom-
position of tensors. SIAM J. Matrix Anal. Appl.,
31(4):2029–2054, May 2010.

[13] L. Grasedyck, D. Kressner, and C. Tobler. A literature
survey of low-rank tensor approximation techniques.
GAMM-Mitteilungen, 36(1):53–78, 2013.

[14] R. A. Harshman. Foundations of the parafac procedure:
models and conditions for an” explanatory” multimodal
factor analysis. 1970.

[15] J. C. Ho, J. Ghosh, and J. Sun. Marble: High-
throughput phenotyping from electronic health records
via sparse nonnegative tensor factorization. In Proceed-
ings of the 20th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, KDD
’14, pages 115–124, New York, NY, USA, 2014. ACM.

[16] R. W. Hockney and I. J. Curington. f 1
2
: A parameter to

characterize memory and communication bottlenecks.
Parallel Computing, 10:277–286, 1989.

[17] Intel. Math kernel library. http://developer.intel.com/
software/products/mkl/.

[18] I. Jeon, E. E. Papalexakis, U. Kang, and C. Faloutsos.
Haten2: Billion-scale tensor decompositions. In ICDE,
2015.

[19] M. Jiang, P. Cui, F. Wang, X. Xu, W. Zhu, and S. Yang.
Fema: Flexible evolutionary multi-faceted analysis for
dynamic behavioral pattern discovery. In Proceedings
of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’14, pages
1186–1195, New York, NY, USA, 2014. ACM.

[20] U. Kang, E. E. Papalexakis, A. Harpale, and C. Falout-
sos. Gigatensor: scaling tensor analysis up by 100
times - algorithms and discoveries. In The 18th ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, KDD ’12, Beijing, China, Au-
gust 12-16, 2012, pages 316–324, 2012.

[21] T. Kolda and B. Bader. Tensor decompositions and
applications. SIAM Review, 51(3):455–500, 2009.

[22] T. G. Kolda and J. Sun. Scalable tensor decompositions
for multi-aspect data mining. In Proceedings of the 2008
Eighth IEEE International Conference on Data Mining,
ICDM ’08, pages 363–372, Washington, DC, USA, 2008.
IEEE Computer Society.

[23] C.-F. V. Latchoumane, F.-B. Vialatte, J. Solé-Casals,
M. Maurice, S. R. Wimalaratna, N. Hudson, J. Jeong,
and A. Cichocki. Multiway array decomposition anal-
ysis of eegs in alzheimer’s disease. Journal of neuro-
science methods, 207(1):41–50, 2012.

[24] L. D. Lathauwer and J. Vandewalle. Dimensionality
reduction in higher-order signal processing and rank-
(r1,r2,...,rn) reduction in multilinear algebra. Linear
Algebra and its Applications, 391(0):31 – 55, 2004. Spe-
cial Issue on Linear Algebra in Signal and Image Pro-
cessing.

[25] J. Li, G. Tan, M. Chen, and N. Sun. Smat: An in-
put adaptive auto-tuner for sparse matrix-vector mul-
tiplication. In Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation, PLDI ’13, pages 117–126, New York, NY,
USA, 2013. ACM.

http://developer.intel.com/software/products/mkl/
http://developer.intel.com/software/products/mkl/

[26] Y. Matsubara, Y. Sakurai, W. G. van Panhuis, and
C. Faloutsos. Funnel: Automatic mining of spatially
coevolving epidemics. In Proceedings of the 20th ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, KDD ’14, pages 105–114, New
York, NY, USA, 2014. ACM.

[27] J. Mocks. Topographic components model for event-
related potentials and some biophysical considera-
tions. Biomedical Engineering, IEEE Transactions on,
35(6):482–484, June 1988.

[28] M. Morup, L. K. Hansen, C. S. Herrmann, J. Par-
nas, and S. M. Arnfred. Parallel factor analysis as an
exploratory tool for wavelet transformed event-related
{EEG}. NeuroImage, 29(3):938 – 947, 2006.

[29] J. Nagy and M. Kilmer. Kronecker product approxima-
tion for preconditioning in three-dimensional imaging
applications. Image Processing, IEEE Transactions on,
15(3):604–613, March 2006.

[30] I. V. Oseledets. Tensor-train decomposition. SIAM J.
Scientific Computing, 33(5):2295–2317, 2011.

[31] E. E. Papalexakis, C. Faloutsos, and N. D. Sidiropolous.
ParCube: Sparse parallelizable tensor decompositions.
In Proceedings of the 2012 European Conference on Ma-
chine Learning Principles and Practice of Knowledge
Discovery in Databases (ECML PKDD), pages pp. 521–
536, Bristol, United Kingdom, 2012.

[32] A. Ramanathan, P. K. Agarwal, M. Kurnikova, and
C. J. Langmead. An online approach for mining col-
lective behaviors from molecular dynamics simulations,
volume LNCS 5541, pages pp. 138–154. 2009.

[33] N. Ravindran, N. D. Sidiropoulos, S. Smith, and
G. Karypis. Memory-efficient parallel computation of
tensor and matrix products for big tensor decomposi-
tions. Proceedings of the Asilomar Conference on Sig-
nals, Systems, and Computers, 2014.

[34] B. Savas and L. Eldén. Handwritten digit classifica-
tion using higher order singular value decomposition.
Pattern recognition, 40(3):993–1003, 2007.

[35] A. Shashua and A. Levin. Linear image coding for re-
gression and classification using the tensor-rank princi-
ple. In Computer Vision and Pattern Recognition, 2001.
CVPR 2001. Proceedings of the 2001 IEEE Computer
Society Conference on, volume 1, pages I–42–I–49 vol.1,
2001.

[36] N. Sidiropoulos, R. Bro, and G. Giannakis. Parallel
factor analysis in sensor array processing. Signal Pro-
cessing, IEEE Transactions on, 48(8):2377–2388, Aug
2000.

[37] N. Sidiropoulos, G. Giannakis, and R. Bro. Blind
parafac receivers for ds-cdma systems. Signal Process-
ing, IEEE Transactions on, 48(3):810–823, Mar 2000.

[38] S. Smith, N. Ravindran, N. Sidiropoulos, and
G. Karypis. Splatt: Efficient and parallel sparse tensor-
matrix multiplication. In Proceedings of the 29th IEEE
International Parallel & Distributed Processing Sympo-
sium, IPDPS, 2015.

[39] E. Solomonik, J. Demmel, and T. Hoefler. Communi-
cation lower bounds for tensor contraction algorithms.
Technical report, ETH Zürich, 2015.

[40] E. Solomonik, D. Matthews, J. Hammond, and J. Dem-
mel. Cyclops tensor framework: reducing commu-
nication and eliminating load imbalance in massively
parallel contractions. Technical Report UCB/EECS-
2012-210, EECS Department, University of California,
Berkeley, Nov 2012.

[41] J. Sun, D. Tao, and C. Faloutsos. Beyond streams
and graphs: dynamic tensor analysis. In Proceedings
of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 374–383.
ACM, 2006.

[42] L. R. Tucker. Some mathematical notes on three-mode
factor analysis. Psychometrika, 31(3):279–311, 1966.

[43] F. G. Van Zee and R. A. van de Geijn. BLIS: A
framework for rapidly instantiating BLAS functionality.
ACM Transactions on Mathematical Software, 2013.

[44] M. A. O. Vasilescu and D. Terzopoulos. Multilinear
analysis of image ensembles: Tensorfaces. In Computer
Vision-ECCV 2002, pages 447–460. Springer, 2002.

[45] R. C. Whaley and J. Dongarra. Automatically tuned
linear algebra software. In SuperComputing 1998: High
Performance Networking and Computing, 1998.

	Introduction
	Background
	Motivating Observations
	In-Place and Input-Adaptive TTM
	A 3rd-order tensor example
	Algorithmic Strategy
	An Input Adaptive Framework
	Parameter Estimation
	Code Generation

	Experiments and Analysis
	Related Work
	Conclusions

