An Input-Adaptive and In-Place Approach to Dense Tensor-Times-Matrix Multiply

Jiajia Li, Casey Battaglino, Ioakeim Perros, Jimeng Sun, Richard Vuduc

> Computational Science & Engineering. Georgia Institute of Technology

> > InTensl i

College of Georgia Tech Computing Computational Science and Engineering

The problem

$$\underline{\mathbf{Y}} = \underline{\mathbf{X}} \times_{n} \mathbf{U}$$

The problem

The problem

Transform:

70% running time. 50% space.

• We proposed an in-place TTM algorithm and employed auto-tuning method to adapt its parameters.

Outline

- Background
- Motivation
- InTensLi Framework
- Experiments and Analysis
- Conclusion

Tensor and Applications

- Tensor: interpreted as a multi-dimensional array, e.g. $\underline{\mathbf{X}} \in \mathbb{R}^{I \times J \times K}$.
 - Special cases: vectors (\mathbf{x}) are 1D tensors, and matrices (\mathbf{A}) are 2D tensors.
 - Tensor dimension (N): also called mode or order.
 - We focus on dense tensors in this work.
- Applications
 - Quantum chemistry, quantum physics, signal and image processing, neuroscience, and data analytics.

A third-order (or three-dimensional) $I \times J \times K$ tensor.

Tensor Representations

Sub-tensor

Whole tensor

ullet Diff representations o Diff algorithms o Diff performance.

Memory Mapping

- Tensor organization
 - Multi-dimensional array logically
 - Linear storage physically
- Memory mapping¹.

¹GARCIA, R.,and LUMSDAINE, A. Multiarray: A c++ library for generic programming with arrays. Software Practive Experience 35 (2004), 159–188.

Tensor Operations

- Matricization, aka unfolding or flattening.
- Mode-n product, aka tensor-times-matrix multiply (TTM)

 Tensor contraction, Kronecker product, Matricized tensor times Khatri-Rao product (MTTKRP) etc.

T_{TM} Algorithm

• Baseline TTM algorithm in TENSOR TOOLBOX and CYCLOPS Tensor Framework (CTF).

- TTM Applications
 - Low-rank tensor decomposition.
 - Tucker decomposition, e.g. Tucker-HOOI algorithm.

$$\underline{\mathbf{Y}} = \underline{\mathbf{X}} \times_1 \mathbf{A}^{(1)T} \cdots \times_{n-1} \mathbf{A}^{(n-1)T} \times_{n+1} \mathbf{A}^{(n+1)T} \cdots \times_N \mathbf{A}^{(N)T}.$$

Main Contributions

- Proposed an in-place tensor-times-matrix multiply (InTTM) algorithm, by avoiding physical reorganization of tensors.
- \bullet Built an input-adaptive framework ${\rm InTENSLI}$ to automatically adapt parameters and generate the code.
- Achieved $4\times$ and $13\times$ speedups compared to the state-of-the-art Tensor Toolbox and CTF tools.

Observation 1: Transformation is expensive.

Notation: the number of words (Q), floating-point operations (W), last-level cache size (Z).

The relation of them is $Q \ge \frac{W}{8\sqrt{Z}} - Z^2$ for both general matrix-matrix multiply (GEMM) and T_{TM} .

- Suppose TTM does the same number of flops as GEMM ($\hat{W} = W$), the relation of Arithmetic Intensity of GEMM and TTM : $\hat{A} \approx A/(1+\frac{A}{m})$ when counting transformation.
 - $(1+\frac{A}{m})$ is the penalty.
- Assume cache size Z is 8MB, the penalty of a 3-D tensor is 33.

Conclusion: When T_{TM} and G_{EMM} do the same number of flops, Arithmetic Intensity of T_{TM} is decreased by a penalty of 33 or more, as tensor dimension increases.

²G. Ballard, E. Carson, J. Demmel, M. Hoemmen, N. Knight, and O. Schwartz. Communication lower bounds and optimal algorithms for numerical linear algebra. Acta Numerica, 23:pp. 1–155, 2014.

Observation 2: Performance of the multiplication in \mathbf{T}_{TM} is far below peak.

• TTM algorithm involves a variety of rectangular problem sizes.

(a) TTM's multiplication.

(b) GEMM performance in Intel MKL with 4 threads.

Observation 3: TTM organization is critical to data locality.

• There are many ways to organize data accesses.

Observation 3: TTM organization is critical to data locality.

- There are many ways to organize data accesses.
- Choose slice representation.

Table 1 : Different representation forms of mode-1 TTM on a $I \times J \times K$ tensor.

Mode-1 Product Representation Forms		BLAS Level	Transformation
	Tensor representation		_
Full reorganization	$\underline{\mathbf{Y}} = \underline{\mathbf{X}} imes_1 \mathbf{U}$	_	
	Matrix representation	L3	Yes
	$\mathbf{Y}_{(1)} = \mathbf{U}\mathbf{X}_{(1)}$		
Sub-tensor extraction	Fiber representation		
	$\mathbf{y}(f,:,k) = \mathbf{X}(:,:,k)\mathbf{u}(f,:),$	L2	No
	Loops: $k = 1, \dots, K, f = 1, \dots, F$		
	Slice representation	L3	No
	$Y(:,:,k) = UX(:,:,k), Loops : k = 1, \dots, K$	LS	NO

Layout

- Background
- 2 Motivation
- InTensLi Framework
 - Algorithmic Strategy
 - InTensLi Framework
- 4 Experiments and Analysis
- Conclusion
- References

Algorithmic Strategy

- To avoid data copy,
 - Rules: 1) compress only contiguous dimensions; 2) always include the leading dimension.
 - Lemma: TTM can be performed on up to $max\{n-1,N-n\}$ contiguous dimensions without physical reorganization.

Algorithmic Strategy

- To avoid data copy,
 - Rules: 1) compress only contiguous dimensions; 2) always include the leading dimension.
 - Lemma: TTM can be performed on up to $max\{n-1, N-n\}$ contiguous dimensions without physical reorganization.
- To get high performance of GEMM,
 - Find an approximate matrix size according to computer architecture.
 - Use auto-tuning method in InTensLI framework.

INTTM Algorithm and Comparison

- Intim's AI: $\tilde{A} \lesssim \frac{\hat{Q}}{\frac{\hat{Q}}{8\sqrt{Z}}} = 8\sqrt{Z} \approx A$.
- Traditional TTM's AI: $\hat{A} \approx \frac{A}{1 + \frac{A}{m}}$.
- INTTM eliminates the AI by a factor $1 + \frac{A}{m}$.

```
Input: A dense tensor \mathbf{X} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}, a dense matrix
      \mathbf{U} \in \mathbb{R}^{J \times I_n}, and an integer n;
Output: A dense tensor \mathbf{Y} \in \mathbb{R}^{I_1 \times \cdots \times I_{n-1} \times J \times I_{n+1} \times \cdots \times I_N}.
          // Nested loops, using P_L threads
 1: parfor i_l = 1 to I_l, all i_l \in M_L do
          if M_C are on the left of i_n then
              \mathbf{X}_{\text{sub}} = \text{inplace-mat}(\mathbf{X}, M_C, i_n);
              \mathbf{Y}_{\text{sub}} = \text{inplace-mat}(\mathbf{Y}, M_C, j);
          // Matrix-matrix multiplication, using P_C threads
              \mathbf{Y}_{\text{sub}} = \mathbf{X}_{\text{sub}} \mathbf{U}', \mathbf{U}' is the transpose of \mathbf{U}.
          else
              \mathbf{X}_{\text{sub}} = \text{inplace-mat}(\mathbf{X}, i_n, M_C);
              \mathbf{Y}_{\text{sub}} = \text{inplace-mat}(\mathbf{Y}, i, M_C);
          // Matrix-matrix multiplication, using P_C threads
              \mathbf{Y}_{\mathrm{sub}} = \mathbf{U} \mathbf{X}_{\mathrm{sub}}
          end if
10:
11: end parfor
12: return Y:
```

In-place Tensor-Times-Matrix Multiply (INTTM) algorithm.

INTTM Algorithm and Comparison

- Intim's AI: $\tilde{A} \lesssim \frac{\hat{Q}}{\frac{\hat{Q}}{8\sqrt{Z}}} = 8\sqrt{Z} \approx A$.
- Traditional TTM's AI: $\hat{A} \approx \frac{A}{1 + \frac{A}{m}}$
- INTTM eliminates the AI by a factor $1 + \frac{A}{m}$.

```
// Nested loops, using P_L threads
     1: parfor i_l = 1 to I_l, all i_l \in M_L do
             if M_C are on the left of i_n then
                \overline{\mathbf{X}}_{\mathrm{sub}} = \mathrm{inplace\text{-}mat} \ (\mathbf{X}, M_C, i_n);
                \mathbf{Y}_{\text{sub}} = \text{inplace-mat}(\mathbf{Y}, M_C, j);
             // Matrix-matrix multiplication, using P_C threads
                \mathbf{Y}_{\text{sub}} = \mathbf{X}_{\text{sub}} \mathbf{U}', \mathbf{U}' is the transpose of \mathbf{U}.
             else
                \mathbf{X}_{\text{sub}} = \text{inplace-mat}(\mathbf{X}, i_n, M_C);
                \mathbf{Y}_{\text{sub}} = \text{inplace-mat}(\mathbf{Y}, j, M_C);
             // Matrix-matrix multiplication, using P_C threads
                \mathbf{Y}_{\mathrm{sub}} = \mathbf{U} \mathbf{X}_{\mathrm{sub}}
             end if
   11: end parfor
   12: return Y:
In-place Tensor-Times-Matrix Multiply (INTTM) algorithm.
```

Input: A dense tensor $\mathbf{X} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}$, a dense matrix

Output: A dense tensor $\mathbf{Y} \in \mathbb{R}^{I_1 \times \cdots \times I_{n-1} \times J \times I_{n+1} \times \cdots \times I_N}$.

 $\mathbf{U} \in \mathbb{R}^{J \times I_n}$, and an integer n;

Layout

- Background
- 2 Motivation
- InTensLi Framework
 - Algorithmic Strategy
 - InTensLi Framework
- Experiments and Analysis
- Conclusion
- References

INTENSLI Framework

- Input: tensor features, hardware configuration, and MM benchmark.
- Parameter estimation
 - Mode partitioning: M_L and M_C .
 - Thread allocation: P_L and P_C .
- Code generation

Parameter Estimation - Mode Partitioning

- Decide forward/backward strategy.
 - Row-major: forward strategy.
 - Column-major: backward strategy.

Parameter Estimation - Mode Partitioning

- Chosen forward strategy.
- ullet Group size decides InTtm algorithm.

Choosing Group Size

- MSTH and MLTH: Thresholds of GEMM's size, the size of all the three operating matrices.
- MSTH = 1.04MB and MLTH = 7.04MB in our experiments.

Choosing Group Size

- MSTH and MLTH: Thresholds of GEMM's size, the size of all the three operating matrices.
- MSTH = 1.04MB and MLTH = 7.04MB in our experiments.
- Decide M_C : Use MSTH and MLTH to decide group size, then decide M_C .
- Decide M_L : The rest modes of M_C , except mode-n.

Thread Allocation and Code Generation

- Thread allocation
 - In most cases, maximum performance is obtained by only two configurations:
 - Small matrices: all threads are allocated to nested loops.
 - Large matrices: all threads are allocated to GEMM operation.
 - A threshold PTH is set to distinguish the GEMM size, which is 800 KB in our tests.
- Code generation
 - Generate nested loops and wrappers for the GEMM kernel.
 - Code generated in C++, using OpenMP with the collapse directive.

Experimental Platforms

- Double-precision is adopted in our experiments.
- We employ 8 and 32 threads on the two platforms respectively, considering hyper-threading.
- Xeon E7-4820 has a relatively large memory (512 GiB), allowing us to test a larger range of (dense) tensor sizes than has been common in prior single-node studies.

Table 2: Experimental Platforms Configuration

Parameters	Intel Core i7-4770K	Intel Xeon E7-4820
Microarchitecture	Haswell	Westmere
Frequency	3.5 GHz	2.0 GHz
# of physical cores	4	16
Hyper-threading	On	On
Peak GFLOP/s	224	128
Last-level cache	8 GiB	18 GiB
Memory size	32 GiB	512 GiB
Memory bandwidth	25.6 GB/s	$34.2\mathrm{GB/s}$
# of memory channels	2	4
Compiler	icc 15.0.2	icc 15.0.0

Performance Comparison

Implementations

- INTTM: INTENSLI generated C++ code with OpenMP.
- TT-TTM: TENSOR TOOLBOX library in MATLAB.
- CTF: C++ code, supporting MPI+OpenMP parallelization.
- GEMM: C++ code, baseline TTM algorithm without transformation.

Speedup

- Obtain 4× and 13× speedup compared to Tensor Toolbox and CTF.
- Get close to GEMM-only's performance.

Performance comparison of $\ensuremath{\mathrm{TTM}}$ on mode-2 over diverse dimensional tensors.

Analysis

- Performance of different modes.
 - INTENSLI is stable for different mode-*n* products, while TENSOR TOOLBOX is not.

Performance behavior of InTTM against Tensor Toolbox (TT-TTM) for different mode products on a $160 \times 160 \times 160 \times 160$ tensor.

Analysis

- Parameter selection
 - Compare InTensLi with exhaustive search, the performance is close to optimal.

Comparison between the performance of TTM on mode-1 with predicted configuration and the actually highest performance on 5th-order tensors.

Conclusion

Summary

- Proposed an in-place tensor-times-matrix multiply (InTTM) algorithm, by avoiding physical reorganization of tensors.
- ullet Built an input-adaptive framework InTENSLI to automatically do optimization and generate the code.
- Achieved $4\times$ and $13\times$ speedups compared to the state-of-the-art Tensor Toolbox and CTF tools.

Future

- Integrate it into Tucker and other tensor decompositions.
- Explore similar strategy for sparse tensors.

Source code: https://github.com/hpcgarage/InTensLi.

Backup Slides

References

- E. Solomonik, D. Matthews, J. Hammond, and J. Dem- mel. Cyclops tensor framework: reducing commu- nication and eliminating load imbalance in massively parallel contractions. Technical Report UCB/EECS- 2012-210, EECS Department, University of California, Berkeley, Nov 2012.
- B. W. Bader, T. G. Kolda, et al. Matlab tensor toolbox version 2.5. Available from http://www.sandia.gov/~tgkolda/TensorToolbox/index-2.6.html, January 2012
- T. Kolda and B. Bader. Tensor decompositions and applications. SIAM Review, 51(3):455–500, 2009.
- ...

Observation 1: Transformation is expensive.

• Transformation takes about 70% of the total run-time, and close to 50% of the total storage.

(b) Space Profiling

33 / 33

Profiling of TTM algorithm on mode-2 product on 3rd, 4th, and 5th-order tensors, where the output tensors are low-rank representations of corresponding input tensors.