An Input-Adaptive and In-Place Approach to Dense Tensor-Times-Matrix Multiply

Jiajia Li, Casey Battaglino, loakeim Perros, Jimeng Sun, Richard Vuduc

Computational Science \& Engineering,
Georgia Institute of Technology

19 ${ }^{\text {th }}$ Nov 2015

Georgia

 TechCollege of

Computational Science and Engineering

The problem

$\underline{\mathbf{Y}}=\underline{\mathbf{X}} \mathrm{x}_{\mathrm{n}} \mathbf{U}$

The problem

The problem

- We proposed an in-place TTM algorithm and employed auto-tuning method to adapt its parameters.

Outline

- Background
- Motivation
- InTensLi Framework
- Experiments and Analysis
- Conclusion

Tensor and Applications

- Tensor: interpreted as a multi-dimensional array, e.g. $\underline{\mathbf{X}} \in \mathbb{R}^{I \times J \times K}$.
- Special cases: vectors (\mathbf{x}) are $1 D$ tensors, and matrices (\mathbf{A})are $2 D$ tensors.
- Tensor dimension (N): also called mode or order.
- We focus on dense tensors in this work.
- Applications
- Quantum chemistry, quantum physics, signal and image processing, neuroscience, and data analytics.

A third-order (or three-dimensional) $I \times J \times K$ tensor.

Tensor Representations

- Sub-tensor

- Whole tensor

- Diff representations \rightarrow Diff algorithms \rightarrow Diff performance.

Memory Mapping

- Tensor organization
- Multi-dimensional array - logically
- Linear storage - physically
- Memory mapping ${ }^{1}$.

Logical

Physical

Row-major (LDim: k)

$$
\underbrace{1 \rightarrow 5 \rightarrow 3 \rightarrow 7}_{2 \rightarrow 6 \rightarrow 4 \rightarrow 8} \text { K-> J-> }
$$

Column-major (LDim: 1)
$1 \rightarrow 2 \rightarrow 3 \rightarrow 4$
$\underset{5 \rightarrow 6 \rightarrow 7 \rightarrow 8}{ } \quad$ I->J->K

LDim: Leading Dimension

[^0]
Tensor Operations

- Matricization, aka unfolding or flattening.
- Mode-n product, aka tensor-times-matrix multiply (TTM) TTM on Mode-1

- Tensor contraction, Kronecker product, Matricized tensor times Khatri-Rao product (MTTKRP) etc.

Tтм Algorithm

- Baseline Ttm algorithm in Tensor Toolbox and Cyclops Tensor Framework (Ctf).

- Ttm Applications
- Low-rank tensor decomposition.
- Tucker decomposition, e.g. Tucker-HOOI algorithm.

$$
\underline{\mathbf{Y}}=\underline{\mathbf{X}} \times_{1} \mathbf{A}^{(1) T} \cdots \times_{n-1} \mathbf{A}^{(n-1) T} \times_{n+1} \mathbf{A}^{(n+1) T} \cdots \times_{N} \mathbf{A}^{(N) T} .
$$

Main Contributions

- Proposed an in-place tensor-times-matrix multiply (INTTM) algorithm, by avoiding physical reorganization of tensors.
- Built an input-adaptive framework InTensLi to automatically adapt parameters and generate the code.
- Achieved $4 \times$ and $13 \times$ speedups compared to the state-of-the-art Tensor Toolbox and CtF tools.

Observation 1: Transformation is expensive.

Notation: the number of words (Q), floating-point operations (W), last-level cache size (Z).
The relation of them is $Q \geq \frac{W}{8 \sqrt{Z}}-Z^{2}$ for both general matrix-matrix multiply (GEMM) and Tтм.

- Suppose TtM does the same number of flops as Gemm $(\hat{W}=W)$, the relation of Arithmetic Intensity of GEmM and TTM: $\hat{A} \approx A /\left(1+\frac{A}{m}\right)$ when counting transformation.
$\left(1+\frac{A}{m}\right)$ is the penalty.
- Assume cache size Z is 8 MB , the penalty of a 3-D tensor is 33 .

Conclusion: When Ttm and Gemm do the same number of flops, Arithmetic Intensity of TtM is decreased by a penalty of 33 or more, as tensor dimension increases.

[^1]Observation 2: Performance of the multiplication in Tтм is far below peak.

- TTM algorithm involves a variety of rectangular problem sizes.

(a) TTM's multiplication.

(b) GEMM performance in Intel MKL with 4 threads.

Observation 3: TTM organization is critical to data locality.

- There are many ways to organize data accesses.

Non-Contigunous

Observation 3: TTM organization is critical to data locality.

- There are many ways to organize data accesses.
- Choose slice representation.

Table 1: Different representation forms of mode-1 TTM on a $I \times J \times K$ tensor.

Mode-1 Product Representation Forms		BLAS Level	Transformation
Full reorganization	Tensor representation $\underline{\mathbf{Y}}=\underline{\mathbf{X}} \times{ }_{1} \mathbf{U}$	-	-
	Matrix representation $\mathbf{Y}_{(1)}=\mathbf{U} \mathbf{X}_{(1)}$	L3	Yes
Sub-tensor extraction	$\begin{gathered} \text { Fiber representation } \\ \mathbf{y}(f,:, k)=\mathbf{X}(:,:, k) \mathbf{u}(f,:) \\ \text { Loops }: k=1, \cdots, K, f=1, \cdots, F \end{gathered}$	L2	No
	$\begin{gathered} \text { Slice representation } \\ \mathbf{Y}(:,:, k)=\mathbf{U X}(:,:, k) \text {, Loops : } k=1, \cdots, k \end{gathered}$	L3	No

Layout
(1) Background

2 Motivation
(3) InTensLi Framework

- Algorithmic Strategy
- InTensLi Framework
(4) Experiments and Analysis
(D) Conclusion
(6) References

Algorithmic Strategy

- To avoid data copy,
- Rules: 1) compress only contiguous dimensions; 2) always include the leading dimension.
- Lemma: Ttm can be performed on up to $\max \{n-1, N-n\}$ contiguous dimensions without physical reorganization.

Algorithmic Strategy

- To avoid data copy,
- Rules: 1) compress only contiguous dimensions; 2) always include the leading dimension.
- Lemma: Ttm can be performed on up to $\max \{n-1, N-n\}$ contiguous dimensions without physical reorganization.
- To get high performance of Gemm,
- Find an approximate matrix size according to computer architecture.
- Use auto-tuning method in InTensLi framework.

InTtm Algorithm and Comparison

- InTtm's AI: $\tilde{A} \lesssim \frac{\hat{Q}}{\frac{\hat{Q}}{8 \sqrt{V}}}=8 \sqrt{Z} \approx A$.
- Traditional Ttm's AI: $\hat{A} \approx \frac{A}{1+\frac{A}{m}}$.
- InTtm eliminates the AI by a factor $1+\frac{A}{m}$.

Input: A dense tensor $\underline{\mathbf{X}} \in \mathbb{R}^{I_{1} \times I_{2} \times \cdots \times I_{N}}$, a dense matrix
$\mathbf{U} \in \mathbb{R}^{J \times I_{n}}$, and an integer n ;
Output: A dense tensor $\underline{\mathbf{Y}} \in \mathbb{R}^{I_{1} \times \cdots \times I_{n-1} \times J \times I_{n+1} \times \cdots \times I_{N}}$;
// Nested loops, using P_{L} threads
parfor $i_{l}=1$ to I_{l}, all $i_{l} \in M_{L}$ do
if M_{C} are on the left of i_{n} then
$\mathbf{X}_{\text {sub }}=$ inplace-mat $\left(\underline{\mathbf{X}}, M_{C}, i_{n}\right)$;
$\mathbf{Y}_{\text {sub }}=$ inplace-mat $\left(\underline{\mathbf{Y}}, M_{C}, j\right)$;
// Matrix-matrix multiplication, using P_{C} threads $\mathbf{Y}_{\text {sub }}=\mathbf{X}_{\text {sub }} \mathbf{U}^{\prime}, \mathbf{U}^{\prime}$ is the transpose of \mathbf{U}.
else
$\mathbf{X}_{\text {sub }}=$ inplace-mat $\left(\underline{\mathbf{X}}, i_{n}, M_{C}\right)$;
$\mathbf{Y}_{\text {sub }}=\operatorname{inplace-mat}\left(\underline{\mathbf{Y}}, j, M_{C}\right) ;$
// Matrix-matrix multiplication, using P_{C} threads $\mathbf{Y}_{\text {sub }}=\mathbf{U} \mathbf{X}_{\text {sub }}$ end if
end parfor
return \underline{Y};
In-place Tensor-Times-Matrix Multiply (InTTM) algorithm.

InTtm Algorithm and Comparison

- InTtm's AI: $\tilde{A} \lesssim \frac{\hat{Q}}{\frac{\hat{Q}}{8 \sqrt{V}}}=8 \sqrt{Z} \approx A$.
- Traditional Ttm's AI: $\hat{A} \approx \frac{A}{1+\frac{A}{m}}$.
- InTtm eliminates the AI by a factor $1+\frac{A}{m}$.

Input: A dense tensor $\underline{\mathbf{X}} \in \mathbb{R}^{I_{1} \times I_{2} \times \cdots \times I_{N}}$, a dense matrix
$\mathbf{U} \in \mathbb{R}^{J \times I_{n}}$, and an integer n ;
Output: A dense tensor $\underline{\mathbf{Y}} \in \mathbb{R}^{I_{1} \times \cdots \times I_{n-1} \times J \times I_{n+1} \times \cdots \times I_{N}}$;
// Nested loops, using P_{L} threads
parfor $i_{l}=1$ to I_{l}, all $i_{l} \in M_{L}$ do
if M_{C} are on the left of i_{n} then
$\mathbf{X}_{\text {sub }}=$ inplace-mat $\left(\underline{\mathbf{X}}, M_{C}, i_{n}\right)$;
$\mathbf{Y}_{\text {sub }}=$ inplace-mat $\left(\underline{\mathbf{Y}}, M_{C}, j\right)$;
// Matrix-matrix multiplication, using P_{C} threads $\mathbf{Y}_{\text {sub }}=\mathbf{X}_{\text {sub }} \mathbf{U}^{\prime}, \mathbf{U}^{\prime}$ is the transpose of \mathbf{U}.
else
$\mathbf{X}_{\text {sub }}=$ inplace-mat $\left(\underline{\mathbf{X}}, i_{n}, M_{C}\right)$;
$\mathbf{Y}_{\text {sub }}=\operatorname{inplace-mat}\left(\underline{\mathbf{Y}}, j, M_{C}\right) ;$
// Matrix-matrix multiplication, using P_{C} threads $\mathbf{Y}_{\text {sub }}=\mathbf{U} \mathbf{X}_{\text {sub }}$ end if
end parfor
return \underline{Y};
In-place Tensor-Times-Matrix Multiply (InTTM) algorithm.

- Algorithmic Strategy
- InTensLi Framework
(4) Experiments and Analysis
(5) Conclusion
(6) References

InTensLi Framework

- Input: tensor features, hardware configuration, and MM benchmark.
- Parameter estimation
- Mode partitioning: M_{L} and M_{C}.
- Thread allocation: P_{L} and P_{C}.
- Code generation

Parameter Estimation - Mode Partitioning

- Decide forward/backward strategy.
- Row-major: forward strategy.
- Column-major: backward strategy.

Parameter Estimation - Mode Partitioning

- Chosen forward strategy.
- Group size decides InTtm algorithm.

Choosing Group Size

- MSTH and MLTH: Thresholds of Gemm's size, the size of all the three operating matrices.
- $M S T H=1.04 M B$ and $M L T H=7.04 M B$ in our experiments.

Choosing Group Size

- MSTH and MLTH: Thresholds of Gemm's size, the size of all the three operating matrices.
- $M S T H=1.04 M B$ and $M L T H=7.04 M B$ in our experiments.
- Decide M_{C} : Use MSTH and MLTH to decide group size, then decide M_{C}.
- Decide M_{L} : The rest modes of M_{C}, except mode-n.

Thread Allocation and Code Generation

- Thread allocation
- In most cases, maximum performance is obtained by only two configurations:
- Small matrices: all threads are allocated to nested loops.
- Large matrices: all threads are allocated to GEMM operation.
- A threshold $P T H$ is set to distinguish the Gemm size, which is 800 KB in our tests.
- Code generation
- Generate nested loops and wrappers for the Gemm kernel.
- Code generated in C++, using OpenMP with the collapse directive.

Experimental Platforms

- Double-precision is adopted in our experiments.
- We employ 8 and 32 threads on the two platforms respectively, considering hyper-threading.
- Xeon E7-4820 has a relatively large memory (512 GiB), allowing us to test a larger range of (dense) tensor sizes than has been common in prior single-node studies.

Table 2: Experimental Platforms Configuration

Parameters	Intel Core i7-4770K	Intel Xeon E7-4820
Microarchitecture	Haswell	Westmere
Frequency	3.5 GHz	2.0 GHz
\# of physical cores	4	16
Hyper-threading	On	On
Peak GFLOP/s	224	128
Last-level cache	8 GiB	18 GiB
Memory size	32 GiB	512 GiB
Memory bandwidth	$25.6 \mathrm{~GB} / \mathrm{s}$	$34.2 \mathrm{~GB} / \mathrm{s}$
\# of memory channels	2	4
Compiler	icc 15.0 .2	icc 15.0 .0

Performance Comparison

- Implementations
- InTtm: InTensLi generated $\mathrm{C}++$ code with OpenMP.
- TT-TTM: Tensor Toolbox library in MATLAB.
- CTF: $\mathrm{C}++$ code, supporting MPI+OpenMP parallelization.
- Gemm: C++ code, baseline Ttm algorithm without transformation.
- Speedup
- Obtain $4 \times$ and $13 \times$ speedup compared to Tensor Toolbox and Ctf.
- Get close to Gemm-only's performance.

Performance comparison of TTM on mode-2 over diverse dimensional tensors.

Analysis

- Performance of different modes.
- InTensLi is stable for different mode- n products, while Tensor Toolbox is not.

Performance behavior of InTtM against Tensor Toolbox (TT-TTM) for different mode products on a $160 \times 160 \times 160 \times 160$ tensor.

Analysis

- Parameter selection

- Compare InTEnsLi with exhaustive search, the performance is close to optimal.

Comparison between the performance of Tтм on mode-1 with predicted configuration and the actually highest performance on 5th-order tensors.

Conclusion

Summary

- Proposed an in-place tensor-times-matrix multiply (INTTM) algorithm, by avoiding physical reorganization of tensors.
- Built an input-adaptive framework InTensLi to automatically do optimization and generate the code.
- Achieved $4 \times$ and $13 \times$ speedups compared to the state-of-the-art Tensor Toolbox and CtF tools.

Future

- Integrate it into Tucker and other tensor decompositions.
- Explore similar strategy for sparse tensors.

Source code: https://github.com/hpcgarage/InTensLi.

Backup Slides

References

- E. Solomonik, D. Matthews, J. Hammond, and J. Dem- mel. Cyclops tensor framework: reducing commu- nication and eliminating load imbalance in massively parallel contractions. Technical Report UCB/EECS- 2012-210, EECS Department, University of California, Berkeley, Nov 2012.
- B. W. Bader, T. G. Kolda, et al. Matlab tensor toolbox version 2.5. Available from http://www.sandia.gov/~tgkolda/TensorToolbox/index-2.6.html, January 2012
- T. Kolda and B. Bader. Tensor decompositions and applications. SIAM Review, 51(3):455-500, 2009.
- ...

Observation 1: Transformation is expensive.

- Transformation takes about 70% of the total run-time, and close to 50% of the total storage.

(a) Time Profiling

(b) Space Profiling

Profiling of TTM algorithm on mode-2 product on 3rd, 4th, and 5th-order tensors, where the output tensors are low-rank representations of corresponding input tensors.

[^0]: ${ }^{1}$ GARCIA, R., and LUMSDAINE, A. Multiarray:A c++ library for generic programming with arrays.Software Practive Experience 35 (2004), 159-188.

[^1]: ${ }^{2}$ G. Ballard, E. Carson, J. Demmel, M. Hoemmen, N. Knight, and O. Schwartz. Communication lower bounds and optimal algorithms for numerical linear algebra. Acta Numerica, 23:pp. 1-155, 2014.

