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Abstract
Tensor computations present significant performance chal-
lenges that impact a wide spectrum of applications. Efforts on
improving the performance of tensor computations include
exploring data layout, execution scheduling, and parallelism
in common tensor kernels. This work presents a benchmark
suite for arbitrary-order sparse tensor kernels using state-of-
the-art tensor formats: coordinate (COO) and hierarchical
coordinate (HiCOO). It demonstrates a set of reference ten-
sor kernel implementations and some observations on Intel
CPUs and NVIDIA GPUs. The full paper can be referred to
at http://arxiv.org/abs/2001.00660.

CCS Concepts •Computingmethodologies→ Shared
memory algorithms; Massively parallel algorithms; •
Mathematics of computing→Mathematical software
performance.
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1 Introduction
Tensors (as multi-dimensional arrays) especially sparse ten-
sors, are utilized by a large number of critical applications
that span a range of domain areas, which include quantum
chemistry, healthcare analytics, social network analysis, data
mining, signal processing, machine learning, and more. Op-
erations on sparse tensors tend to dominate the execution-
time of these applications. Understanding the performance
characteristics of different implementation approaches is of
paramount importance. This paper presents a benchmark
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suite specifically for that purpose. The suite provides imple-
mentations of common tensor kernels using state-of-the-art
sparse tensor data structures and a variety of real sparse
tensors as its input dataset.
Given the heterogeneity in available hardware resources

for high performance computing (HPC), it is non-trivial to
answer questions about the potential for sparse tensor al-
gorithms to be efficiently ported to various hardware. The
difficulty of planning for the irregular parallelism that results
from operating on sparse data structures is compounded by
the availability of Graphics Processing Units (GPUs), vector-
izing units, Field Programmable Gate Arrays (FPGAs), and
potentially Tensor Processing Units (TPUs).

Optimizing the performance of tensor applications is chal-
lenging due to several application characteristics, named
in [1, 3, 4]: curse of dimensionality, mode orientation, tensor

transformation, irregularity, and arbitrary tensor orders (or

dimensions). Beyond these, challenges associated with all
benchmarks also apply, which include completeness, diver-

sity, extendibility, reproducibility, and comparability across
implementations. Comparisons across research groups and
optimizations will be improved by using a standard set of
kernels and inputs.

2 Contributions
Our benchmark suite consists of a set of reference implemen-
tations from various tensor applications, each of which show
different computational behavior. We implement two sparse
tensor formats: the most popular and mode-generic coordi-
nate (COO) format and a newly proposed, more compressed
hierarchical coordinate (HiCOO) format [5] to represent gen-
eral, arbitrary sparse tensors. Beyond the implementation
diversity, platform and workload (or input) diversity is also
critical to gain insights from a benchmark suite. We imple-
ment the same set of tensor kernels on CPUs and GPUs to
provide a good understanding for users. Different inputs of
an algorithm usually obtain different performance due to
their diverse data sizes and patterns. This phenomenon is
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more obvious for sparse problems because their algorithm
behavior largely depends on the features of data. Besides, our
benchmark suite can easily adopt new sparse tensor kernels
and data representations.

The contributions of this work include:
• reference implementations for five tensor kernels [1,
3, 4]: tensor element-wise (Tew), tensor-scalar (Ts),
tensor-times-vector (Ttv), tensor-times-matrix (Ttm),
and matriced tensor times Khatri-Rao product (Mt-
tkrp), in COO andHiCOO formats on CPUs and GPUs;

• Roofline performance models for one multicore Intel
CPU and one NVIDIA GPU platforms to analyze the
tensor kernels; and insights gained from experiments
and analysis of the performance.

3 Experimental Results
We perform experiments on an Intel Xeon Gold 6126 mul-
ticore server platform with 56 physical 2.6GHz-cores dis-
tributed on four sockets and an NVIDIA Tesla V100 GPU
with 5120 1.53GHz-cores. Figure 1 plots the Roofline models
for the two platforms with DRAM and last-level cache (LLC)
bandwidth tested from the Empirical Roofline Tool (ERT) [6],
and the theoretical peak SP performance and DRAM band-
width (not cache-aware) for reference. The dataset, described
in Table 1, uses sparse tensors derived from real-world ap-
plications [2, 7].

Table 1. Description of sparse tensors.
No. Tensors Order Dimensions #Nnzs Density

r1 vast 3 165K × 11K × 2 26M 6.9 × 10−3
r2 nell2 3 12K × 9K × 29K 77M 2.4 × 10−5
r3 choa 3 712K × 10K × 767 27M 5.0 × 10−6
r4 darpa 3 22K × 22K × 24M 28M 2.4 × 10−9
r5 fb-m 3 23M × 23M × 166 100M 1.1 × 10−9
r6 fb-s 3 39M × 39M × 532 140M 1.7 × 10−10
r7 flickr 3 320K × 28M × 1.6M 113M 7.8 × 10−12
r8 deli 3 533K × 17M × 2.5M 140M 6.1 × 10−12
r9 nell1 3 2.9M × 2.1M × 25M 144M 9.1 × 10−13

r10 crime4d 4 6K × 24 × 77 × 32 5M 1.5 × 10−2
r11 uber4d 4 183 × 24 × 1140 × 1717 3M 3.9 × 10−4
r12 nips4d 4 2K × 3K × 14K × 17 3M 1.8 × 10−6
r13 enron4d 4 6K × 6K × 244K × 1K 54M 5.5 × 10−9
r14 flickr4d 4 320K × 28M × 1.6M × 731 113M 1.1 × 10−14
r15 deli4d 4 533K × 17M × 2.5M × 1K 140M 4.3 × 10−15

Observation 1: Achieved performance is diverse and hard

to predict, which varies with the dimension sizes and non-zero

patterns of tensors, platforms, and data formats.

Observation 2: Performance is generally below the Roofline

performance calculated from main/global memory bandwidth

except for some small tensors fitting into caches or algorithms

with good data locality thus making a good use of caches.

Observation 3: It is hard to obtain good performance ef-

ficiency for non-streaming kernels on multi-socket CPU ma-

chines because of NUMA effect, which might be even harder

than on GPUs.

Observation 4: HiCOO algorithms is faster than or similar

to COO counterparts because of its better local locality and

smaller memory footprint, except Mttkrp on GPUs where load

imbalance and lower parallelism play more important roles.

(a) Intel CPU (b) NVIDIA GPU
Figure 1. Roofline models marked with the operational in-
tensities of tensor kernels.

(a) Intel CPU

(b) NVIDIA GPU
Figure 2. Single-precision performance of tensor kernels on
the Intel CPU and NVIDIA Tesla V100 platforms with the
Roofline performance marked as a line.
4 Conclusion
This paper presents a benchmark suite targeting sparse ten-
sor kernels, which are memory bound and often dominate
application performance. It identifies important kernels and
data representations and provides reference implementations
to aid the community in effectively sharing and comparing
performance and optimization results. This benchmark suite
is a continuous effort: more operations and complete tensor
methods, data representations, platforms will be included.
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