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Abstract
This work presents a systematic exploration on the promise

and special challenges of deep learning for sparse matrix

format selection—a problem of determining the best stor-

age format for a matrix to maximize the performance of

Sparse Matrix Vector Multiplication (SpMV). It describes

how to effectively bridge the gap between deep learning

and the special needs of the pillar HPC problem through

a set of techniques on matrix representations, deep learn-

ing structure, and cross-architecture model migrations. The

new solution cuts format selection errors by two thirds, and

improves SpMV performance by 1.73× on average over the

state of the art.

CCS Concepts • Mathematics of computing → Com-
putations onmatrices; •Computingmethodologies→
Neural networks; Modeling methodologies;

Keywords SpMV, Sparse matrix, Format selection, Convo-

lutional neural network, Deep learning
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1 Introduction
Deep Neural Networks (DNN) has already shown high im-

pact on various applications via its several distinctive ap-

pealing properties, such as much less demand for feature

extraction and highly accurate prediction. Its special effi-

cacy is demonstrated in assisting perceptions and decision

makings.

In High Performance Computing (HPC), there are many

cases calling for decision makings that resemble some prob-

lems in other domains on which DNN has shown effective-

ness. However, HPC problems also feature some distinctive

attributes that pose some special challenges to DNN (detailed

below). It remains an open question how to bridge that gap to

tap into the potential of DNN for HPC. In this work, we take

one of the fundamental HPC problems, sparse matrix storage

format selection, as the focus to explore this direction.

Sparse matrix vector multiplication (SpMV) is one of the

most important, widely used kernels in many scientific appli-

cations (e.g., linear equation system solvers) [9, 16]. It is also

often the performance bottlenecks of their executions [8, 13].

Optimizing its performance is difficult because of the irregu-

lar indirect data access patterns.

One of the most important factors people have observed

for the SpMV performance is the selection of the proper for-

mat to represent sparse matrices in memory. Various storage

formats have been proposed for diverse application scenarios

and computer architectures [6, 10, 17, 19, 23, 24, 33, 38, 42, 43].

As observed in numerous studies [6, 10, 20, 22, 26, 32, 38, 40],

the different formats may substantially affect the data lo-

cality, cache performance, and ultimately the end-to-end

performance of SpMV (for as much as several folds [20]).

The problem is a good candidate for DNN, especially Con-

volutional Neural Networks (CNN), to solve, for several rea-

sons. First, selecting the proper format is a challenging task

for programmers. The proper format of a sparse matrix de-

pends on its matrix size, nonzero distribution, architecture

characteristics, and so on. Second, it has been also difficult

for traditional machine learning techniques to solve. Due to

94

https://doi.org/10.1145/3178487.3178495
https://doi.org/10.1145/3178487.3178495
http://www.acm.org/publications/policies/artifact-review-badging#replicated
http://www.acm.org/publications/policies/artifact-review-badging#available
http://www.acm.org/publications/policies/artifact-review-badging#reusable
http://www.acm.org/publications/policies/artifact-review-badging#functional


PPoPP ’18, February 24–28, 2018, Vienna, Austria Yue Zhao, Jiajia Li, Chunhua Liao, and Xipeng Shen

the difficulties in coming up with the right features of matri-

ces for learning and the complex relations between SpMV

performance and the proper format of a sparse matrix, so far,

traditional machine learning techniques have achieved an av-

erage of 85% [20] and 78% [32] prediction accuracy
1
. Consid-

ering themispredictionmay lead to several-fold performance

loss, a more accurate prediction model is needed. Third, the

problem resembles some other tasks that CNN has proved

effective. Particularly, it is akin to image classification—such

as, to tell whether an image contains a dog or a cat; in both

problems, the right decisions are primarily determined by

the spatial patterns of the elements in an input. For image

classification, the patterns are of pixels, and for sparse matrix

format selection, they are of non-zero elements. As CNN has

shown good efficacy on image classifications, the similarity

of the two problems suggests some promise for it to work

for sparse matrix format selection.

On the other hand, the problem poses some special chal-

lenges to CNN. Three of them are especially prominent.

The first is input representation. CNN typically requires

all input data to be of the same size (as it usually has a fixed

number of visible nodes.) For a dataset that contains data of

different sizes, some data normalization methods are usually

applied to transform them into a fixed size. For images, the

transformation could be cropping, scaling or sampling. That

approach works in general for image processing because it

keeps the major patterns of the objects in the image. But

sparse matrix format selection is sensitive to some subtle

features of a matrix, which can get lost by those traditional

transformations. For instance, as Section 4 will elaborate,

scaling creates some diagonals for a non-diagonal matrix;

as having diagonals critically affects format selection for

SpMV, the scaled images mislead CNN learning and predic-

tion. Therefore, new research explorations are necessary for

understanding the effects of the various transformations for

keeping the important features of sparse matrices, and for

finding the fixed-size representations that properly suit the

need of CNN for sparse matrix format selection.

The second special challenge is the design of the suit-

able CNN structures. CNN structure refers to the number of

network layers, the type of network of each layer, and the

number of nodes on each layer. Differences in CNN struc-

tures affect the quality of the learning results significantly.

For image processing, researchers and practitioners have

used different CNN structures for some public image sets.

However, because of the different representations of the in-

put data, the prior explored structures for image processing

may not work effectively for sparse matrix format selection.

New research is hence needed for identifying the structures

of CNN that fit the needs of sparse matrix format selection.

1
The accuracy number of [20] is the average of different platforms and

precisions, and that of [32] is the average of different platforms using their

“Advanced2” feature set.

The third challenge is the architectural dependence of

sparsematrix format selection. As prior studies have shown [10,

38, 41], many factors of a machine (e.g., memory bandwidth,

cache size, number of cores) could affect the performance of

SpMV on a particular matrix format and the best format for a

givenmatrix. A predictionmodel built for onemachine rarely

works well for another. Re-training CNN is time-consuming.

How to efficiently migrating a model across systems is a

problem specifically important for HPC problems.

The paper presents our research results for addressing

these challenges. It makes several major contributions.

First, it describes a set of fixed-size representations of

sparse matrices that we have designed, reports their influ-

ences, and identifies a histogram-based representation as the

most effective choice. (Section 4)

Second, it empirically reveals the influence of CNN struc-

tures on sparse matrix format selection and identifies a late-
merging structure as a CNN structure that suites the needs

of Sparse Matrix format selection. The structure delays the

integration of the information from different parts of the

input representation to a late stage of the CNN processing,

making it better match the input representations of sparse

matrices. (Section 5)

Third, it introduces a concept in machine learning, transfer
learning, into HPC, and reveals its potential for alleviating

the cross-architecture migration difficulties for CNN-based

models to serve for matrix format selection. It proposes two

ways to materialize transfer learning in this new context, em-

pirically compares their effectiveness, and demonstrates the

large savings of the model migration overhead the technique

brings. (Section 6)

Fourth, using an expanded set of sparse matrices, it com-

pares the CNN-based method with the state of the art of

sparse matrix format selection. The results indicate that the

newmethod improves the accuracy of the best matrix format

selection from 85% to 93%. The predictions rectified by the

CNNmodel yields 1.73 average (up to 5.2) speedups to SpMV.

(Section 7)

Finally, the paper crystallizes all the explorations into a set

of novel findings on the applications of CNN to sparse matrix

format selection, which could shed insights for bridging the

gap between CNN and other HPC problems. It also discusses

the ways that the developed CNN-based selector can be

adopted in practice, through the integrations into a compiler,

a library, or serving as a standalone tool. (Section 8)

2 Background
This section provides the necessary background on sparse

matrix formats, their usage in SpMV, and CNN.

2.1 Sparse Matrix Storage Format
To efficiently store and process a sparse matrix, compressed

data structures (a.k.a. storage formats) are used which store
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[         ]

CSR

COO SpMVCOO

CSR SpMV

DIA

data = [     ]
DIA SpMV

1  5  0  0
0  2  6  0
8  0  3  7
0  9  0  4

rows = [0 0 1 1 2 2 2 3 3]
cols  = [0 1 1 2 0 2 3 1 3]
data = [1 5 2 6 8 3 7 9 4]

for(i = 0; i < nnzs; ++i) {  
y[rows[i]] += data[i]*x[cols[i]];

}

ptr    = [0 2 4 7]
cols  = [0 1 1 2 0 2 3 1 3]
data = [1 5 2 6 8 3 7 9 4]

for(i = 0; i < m; ++i) {  
for(j = ptr[i]; j < ptr[i+1]; ++j)     
y[i] += data[j] * x[cols[j]];

}

offsets=[-2 0 1]

*  *  8  9
1  2  3  4
5  6  7  *

for(d = 0; d < ndiags; ++d) {  
k = offsets[d];  
istart = max(0, -k); jstart = max(0, k);  
L = min(m - istart, n - jstart);   
for(i = 0; i < L; ++i) {    
y[istart+i] += data[istart+d*max_dia+i] 

* x[jstart+i];  
}

}

Compute y = AxA =

Figure 1. Sparse matrix storage formats and their corre-

sponding SpMV pseudo-code (adapted from [20]).

only nonzero entries. Various storage formats have been

proposed [6, 10, 17, 19, 23, 26, 33, 38].

As examples, Figure 1 shows a sparse matrix represented

in COO, CSR, DIA formats respectively and their correspond-

ing SpMV algorithms.m, n, and nnzs are used to represent

the number of rows, columns, and nonzero entries of the

sparse matrix respectively. Coordinate (COO) format explic-

itly stores the row and column indices and the values of all

nonzero entries in rows, cols, and data arrays separately. Com-

pressed sparse row (CSR) format retains the same cols and
data arrays of COO but compresses the row indices into ptr,
elements of which are the beginning positions of all rows in

the cols/data. Diagonal (DIA) format stores non-zeros along

the diagonal direction (from top left to bottom right). In the

DIA example in Figure 1, the first row of data contains the
two elements on the left bottom diagonal of matrix A, the

second row is for the principal diagonal of matrix A, and the

third row is for the diagonal on the top right of the matrix.

The array offsets records the offsets of each diagonal from

the principal diagonal. Please refer to prior literature [28, 31]

for more details.

2.2 Convolutional Neural Networks (CNN)
CNN is a class of networks that finds non-linear models

of patterns in inputs and makes data classifications. The

most popular type of CNNs used in image recognition are

convolutional neural networks (CNNs) [15, 18].

A CNN usually consists of a stack of layers of nodes. In

Figure 2 (a), the leftmost layer is the input level, with each

node representing one element in the input vector (e.g., the

gray value of a pixel in an input image), the rightmost is

the output level, with each node representing the predicted

probability for the input to belong to one of two classes.

The output layer of a CNN gives the final prediction, while

the other layers gradually extract out the critical features

… …

convolution pool fully connected

x1
x2
x3

xm

w1
w2
w3 w1w2 w3

w1
w2
w3

x4

…

(a) A 1-dimensional convolutional network

Activation Map (h)Filter (W)

Input region (X)

-1 1 1
1 0 1
1 -1 1

2 1 4 1
3 6 2
4 3 1 -2
2 1 3 1

1

2
2 0 1

1 0
0 0 0

0
0
0

0 0 0 0
0
2
1

0 0
0
0
0

1 1 1 2
0 0 0 0 0 0
0 0

(b) A 2-D convolutional operation

Figure 2. Illustration of CNN.

from the input. A CNN may consist of mixed types of lay-

ers, some for subsampling results (pooling layers), some for

non-linear transformations. Convolution layers are of the

most importance, in which, convolution shifts a small win-

dow (called a filter) across the input, and at each position, it

computes the dot product between the filter and the input

elements covered by the filter, as Figure 2 (b) shows in a

2-D case. In Figure 2 (a), the weights of every three edges

connecting three input nodes with one layer-2 node form the

filter < w1,w2,w3 > at that level. The result of a convolution

layer is called an activation map. Multiple filters can be used

in one convolution layer, which will then produce multiple

activation maps. The last layer (i.e., the output layer) usually

has a full connection with the previous layer.

Part of the CNN training process is to determine the proper

values of the parameters in the filters (i.e., weights on the

edges of the networks). In training, all the parameters in the

network are initialized with some random values, which are

refined iteratively by learning from training inputs. Each

training input has a label (e.g., the ground truth of its class).

The forward propagation on an input through the network

gives a prediction; its difference from its label gives the pre-

diction error. The training process (via back propagation)

revises the network parameters iteratively to minimize the

overall error on the training inputs. In using CNN, only for-

ward propagation is needed to get the prediction.

Note that the size of the inputs to a CNN is typically fixed,

equaling to the number of nodes in its input layer. If the raw

inputs are of different sizes, they have to be normalized to

the unified size.

3 Overview
In this work, by overcoming some major difficulties, we

successfully construct a CNN-based sparse matrix format

selector for SpMV. This section gives a high-level overview
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1.training 
labels 
collection

2.training 
matrices 
normalization

3.CNN 
structure 
design

trained CNN

Predicted 
format

A new matrix

Normalized  repr.

DNN construction Format prediction

4.training
normalized

matrices

CNN 
structure

labels

Figure 3. Overview.

of the construction process, and lists the major challenges

which will be discussed in detail in later sections.

As the left half of Figure 3 shows, the construction process

consists of four steps. It assumes that there are already a

large set of sparse matrices S that the construction can use

as its training inputs, and a target computing platform P
(where the executions of SpMV happen.)

(1) The first step collects training labels. It runs SpMVs

for all matrices on P multiple times, using a different matrix

format each time. By measuring the execution times, for

each matrix, it finds out the format that SpMV runs fastest

and labels that matrix with the ID of that format. (2) The

second step normalizes each of the matrices into a fixed size

such that they can be fed into the input layers of CNN. (3)

The third step designs the structure of CNN. The parameters

of the designed CNN are initialized to some random values.

The output layer is composed of K output nodes with each

corresponding to one of the K matrix formats to choose

from. (4) The fourth step runs the standard CNN training

algorithm on the collected labels and the normalizedmatrices

to finally determine the value of each parameter of the CNN,

and concludes the construction process.

Inference with the trained CNN model is easy. For a given

matrix, it is first normalized to the fixed size required by

the CNN. The normalized representation is then fed into the

trained CNN, the output nodes of which give the probabilities

for each of the formats to be the best choice for that input

matrix to use.

Steps one and four are easy to realize. Steps two and three

face some research challenges special to the sparse matrix

format selection problem. Additionally, the resulting CNN

is specific to the training platform P as it uses the labels

collected on P . How to quickly migrate the learned CNN

to another platform is another research challenge. The next

three sections separately describe our solutions to these three

major research issues.

4 Input Representations
Matrices are of various sizes. For them to work with CNN,

they have to be represented in a single size as the input layer

of a CNN requires. This process is called matrix normaliza-

tion. It is important that the normalization keeps the features

45
-25

89 37
43 94

77 15
7836

23
17 11

(a)An example orig-

inal matrix.

1 0 0 0
0 1 0 0
1 0 1 0
0 1 0 1

(b) Normalized bi-

nary matrix.

Figure 4. Image scaling loses some subtle but critical infor-

mation for matrices.

of the original matrix that are crucial for determining the ap-

propriate format for the matrix to use. In this section, we first

describe the common normalization method used in image

processing, and then present two novel methods we propose

to overcome the limitations of the traditional methods in the

context of sparse matrix format selection.

Representation fromTraditionalMethods In CNN-based

image processing, input normalization is through image scal-

ing, which down-samples large images or interpolates small

images. We tried to apply the same method to matrices. In

down sampling, for instance, a block in the original matrix

maps to one element in the new matrix. Because the spa-

tial patterns of non-zero elements rather than their exact

values are relevant to SpMV performance, the values of the

elements of the normalized matrix are set to binary. The new

element is set to zero if the original block contains all zeros,

and 1 otherwise. It results in a binary matrix.

The scaling method’s results are not satisfying, reflected

by low prediction accuracies (88%) by its constructed CNN

(detailed in Section 7). The main reason is that although

scaling keeps the coarse-grained patterns of objects in an

image, it loses some subtle info that is critical for matrix

format selection.

Figure 4 shows such an example. The original matrix con-

tains irregular diagonals, but after down-sampling, the nor-

malized matrix becomes a perfect regular diagonal matrix.

Being a diagonal matrix is an important property for matrix

format selection: Some matrix storage formats (e.g., DIA)

are designed particularly for efficiently storing diagonal ma-

trices; the normalization result hence causes confusions to

the CNN construction as well as the format prediction. Such

cases happen frequently on large sparse matrices.

We explored a number of representations to help address

the limitations, two of which showed good promise, de-

scribed next.

Augmentation with Density Representation In density
representation, instead of producing zero or one for each

block of the original matrix, it produces a decimal value

between 0 and 1, equaling the number of nonzero entries in

a block divided by the block size, as Figure 5 (a) illustrates

for the original matrix in Figure 4 (a).
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0.5 0 0 0

0 1 0 0

.25 0 .75 0

0 .25 0 0.5

(a) The density rep-

resentation.

2 0 0 0
4 0 0 0
3 0 1 0
2 0 1 0

(b) The row his-

togram representa-

tion.

Figure 5. The density representation and histogram repre-

sentation of the matrix in Figure 4 (a).

Compared to the binary representation, the density rep-

resentation captures more detailed variations among the

different regions of the original matrix. Binary representa-

tion is still useful for capturing the overall spatial patterns of

the non-zero elements in the original matrix. Using both of

them in one CNN could possibly get the best of both worlds.

We will return to this point when discussing the structure

design of CNN in Section 5. The density and binary repre-

sentations can be produced by one traversal of the original

matrix.

Algorithm 1 Normalized through Histogram Sampling.

1: procedure histNorm(A, r, BINS)
2: /* create a row histogram for an input matrix A */
3: /* the target representation is a r × BINS matrix R*/
4: initialize a r × BINS empty matrix R

5: ScaleRatio = A.height/r
6: MaxDim = max(A.height, A.width)

7: for each non-zero entry e in A do
8: int row = e .row / ScaleRatio

9: bin = BINS ×|e .row − e .col | / MaxDim

10: R[row][bin]++

11: return R

DistanceHistogramRepresentation Our second proposal

is distance histogram or called histogram representations, which
stores the spatial distribution of non-zero elements in a ma-

trix through histograms. It consists of two matrices, with one

storing the histograms for the rows of the original matrix,

and the other for the columns. The histogram is based on

the distance between an element and the principal diagonal

of the original matrix.

Algorithm 1 outlines the algorithm for constructing the

row histogram from a given matrix. We take the original

matrix in Figure 4 (a) as an example for explanation. In this

example, we try to construct a 4-row histogram matrix R
for the matrix. Every two consecutive rows in the original

matrix produce one row in the histogram matrix. Suppose

that we want the histogram to have 4 bins regarding the

distances from the elements to the principal diagonal of the

original matrix. Now consider the bottom two rows (rows 6

and 7 with 0-base index) in Figure 4 (a). Row 6 contains only

one non-zero element (with value 23), whose distance from

the principal diagonal is 1; the histogram bin number for

that distance is ⌊1/2⌋ = 0. It hence causes R[3][0] to increase
by 1 (lines 9 and 10 in Algorithm 1). Row 7 contains two non-

zero elements (with values 17 and 11), and their distances

from the principal diagonal are 4 and 1 respectively. Their

histogram bins are 2 and 0 respectively (calculated by line 9

in Algorithm 1), causing R[3][2] and R[3][0] each to increase

by one. Hence, the result of the bottom row of R is [2, 0, 1,

0].

In the same vein, one can construct a histogram for the

columns of the original matrix. Together they form the his-

togram representation for the matrix. The values in both

matrices are then normalized to the range of [0,1] by divid-

ing the largest value in each.

Compared to the binary and density representations, the

histograms—using numerical values and leveraging distances

rather than direct spatial locations—tend to capture richer

information about the distribution of non-zero elements in

the matrix. Meanwhile, their sizes are more flexible to adjust.

For binary and density representations, because matrices

can be larger in either dimension, the representations are

typically made square to strike a tradeoff. For histograms,

there is no such a need; the number of histograms can differ

from the number of rows or columns. A benefit of the relaxed

constraint is that the size of the histograms could be smaller.

For instance, in our experiments reported later, 128 × 128 is

the size that the binary and density representations should

take to get a good prediction accuracy, while 128×50 already

works well for histograms.

5 CNN Structure Designs
A CNN network may take various structures with different

depths or widths or types of layers. Different structures have

distinct modeling strengths and generalities. For instance,

a more complex network with deeper and wider layers can

typically capture more complex relations between the inputs

and outputs, but at the same time, it would require more data

to train than a simpler network needs.

Insufficiency of Common Structures Despite the large

varieties, in image processing, the usual structure of a CNN is

as Figure 6 illustrates. The values in different channels of an

image (e.g., Red, Green, Blue values of pixels) together form a

single input layer, and the other layers all work on the values

combined from all these input nodes. The differences among

different CNNs for image processing have been mostly on

the configurations of each of the layers after the input layer.

In our exploration, we start with a set of CNNs of the

similar type of structure as used in image processing. How-

ever, after training each of the CNNs, we find the resulting

prediction accuracies unsatisfying, regardless of which input

representation is used (detailed in Section 7.)
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…
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Convolution & Pooling

Prediction

Channel 1GR
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Figure 6. Traditional CNN structure that merges the info

from different channels at the early stage of the networks.

Through examinations of the intermediate computation

results from the CNNs, we found that the fundamental reason

was the combinations of the info from different sources in

the early stages of the networks. In image processing, the

different sources of information are just different channels

of the input image, and have a homogeneous semantic. For

instance, for an RGB image, the jth element in each of the

three channels all corresponds to the jth pixel in the image,

and the values are all about the numerical values of the

pixel’s color, just in different color channels.

However, in our problem, the different sources of the

info do not have such homogeneous semantic or one-to-

one matching relations. Consider the binary representation

and the density representation. Even though each element

is derived from one region in the original matrix, they have

different types of values. In the histogram case, even though

the elements in the two histogram representations have the

same value type, they do not have a one-to-one matching

relation: one for rows, the other for columns. As a result,

the combinations of different sources of info at the early

stage of CNN work well for image processing, but not for

our problem.

Late-merging Structure To address the problem, we em-

ploy an alternative late-merging structure. As Figure 7 illus-
trates, the structure consists of two separate convolutional

networks with each processing the info from one source, and

only at the very last stage, the outputs of the two networks

are put together as joint features, fed to the fully connected

layer for the final output. The two convolution networks can

be regarded as processes to extract the critical features from

each of the two sources of input information. The final layer

combines these features for the final prediction.

Figure 7. Proposed late-merging CNN structure.

Such a structure avoids the early mixing of the influence

from the different sources in the early-merging structure,

and gives two-fold benefits. First, it leads to a simpler prob-

lem. In the early-merging case, the convolution network has

to simultaneously consider the influence from both sources

of info and extract out their combined features. In compari-

son, each of the convolution networks in the late-merging

structure only needs to extract the features from one source

of info. The simplicity entails a simpler structure needed for

the convolutional networks, and hence the reduced demands

for the amount of training data and time. Second, the late-

merging structure avoids the complexities from the different

value types and semantics of the different sources of info.

Theway that the late-emerging structure combines features

from different sources is similar to feature concatenations in

other models (e.g., Inception [34]). It fits the special proper-

ties of sparse matrices in the context of format selection.

For either the early-merging or late-merging structure,

there are numerous possible designs of the CNN with differ-

ent numbers of layers and other configurations. Following

the common practice, we choose the configuration through

the trial-and-error method by training and testing many

CNNs with different configurations and select the best one.

6 Cross-Architecture Adaptations
The need for cross-architecture migrations is another special

aspect of sparse matrix format selection compared to CNN-

based image processing. In image processing, data labels

are oblivious to computing systems: A dog in a picture is a

dog on whatever machines. But it is not the case for sparse

matrix format selection. The labels are the best formats for

the input matrices, which could differ significantly from one

machine to another. As a result, the CNN trained on one

machine cannot predict the formats for another machine

well (as Section 7.4 shows).

The implication of the architecture-dependence is that a

new CNN has to be built on each different machine, which

includes the collection of labels by rerunning SpMV on each

matrix on the new machine and rerunning the CNN training

algorithm to determine the appropriate parameters. Both

parts take a lot of time. Such a process takes about 75 hours

in our experiments for about 9200 matrices.

6.1 Concept and Two-fold Contributions
To alleviate this problem, we explore the use of transfer learn-
ing. Transfer learning is an idea existing in the deep learning

field [30, 44]. In image recognition, people can train a CNN

on a large dataset, and then use the pre-trained network as

the base in training a CNN for a new dataset. In the previous

studies, the idea is only explored for speeding up the training

of CNN across datasets.

Our contributions are two-fold. First, we introduce this

idea to HPC to support cross-architecture portability of
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CNNs, and point out its benefits in saving both data col-

lection time and CNN training time. Second, we empirically

examined the options for materializing the idea in this new

context and identified the suitable method. We next describe

the explored options and the rationale of each; Section 7 will

provide the empirical comparisons.

6.2 Options Explored
We have primarily considered two ways to materialize the

transfer learning idea for sparse matrix format selection.

Continuous evolvement. This method treats the existing

CNN as an intermediate state of the new CNN, based on

which, it feeds the new set of training data collected on the

new machine to the CNN to continue training the CNN until

a convergence. This method reuses the structure and pa-

rameters of the previous CNN. Because these parameters

have reflected certain important features of input matrices,

reusing them could provide a better starting point than ran-

dom values for the CNN construction for the new dataset.

Meanwhile, even though the labels on two machines could

differ, they usually do not differ completely. By inheriting

the parameters of the previous CNN, the training of the new

CNN could benefit from certain relations that those parame-

ters have already captured between the features of matrices

and the suitable formats.

Top evolvement. This second method inherits all parts of

the previous CNN and keeps both the structure and the

parameters unchanged, except the parameters of the top

fully connected layer. We call the output of the reused part

of the CNN the CNN codes. Because of the reuse, the CNN
codes of a matrix stay the same across machines. Therefore,

in the construction of the new CNN, this method just feeds

these codes as inputs to the top layer of the CNN and uses

the standard back propagation (on the labels collected on the

new machine) to learn the suitable parameters of this top

layer. After that layer is trained, we get the updated CNN by

putting that layer on top of the reused part of the previous

CNN. The rationale of the top evolvement method is that the

major part of a CNN can be considered as the extraction

of critical features of inputs. Because the tasks on the two

machines share a similar nature, the set of critical features

of the inputs could be similar—hence, the reuse. The top

layer combines these features together and makes the final

decision on the output and is hence closely related to the

labels of data—hence, the update.

Qualitative Comparisons Qualitatively, the top evolve-
ment involves a much smaller set of parameter changes than

the first option does. As a result, it needs fewer training data,

which entails a shorter time needed for collecting new la-

bels and also a shorter time for the CNN training algorithm

to converge. On the other hand, the continuous evolvement
allows a much larger freedom for adjustment; as a result,

Table 1. Hardware platforms used in the experiments.

Intel
®
CPU AMD

®
CPU

NVIDIA
®

GPU

CPU

Xeon CPU E5-

4603

A8-7600

Radeon R7

GeForce GTX

TITAN X

Freq. 2.4 GHz 3.1 GHz 1.08 GHz

Cores 24 4 3072

Memory

64GB DDR3

1.9 GHz

12GB DDR3

2.1 GHz

12GB GDDR5

3.5 GHz

Memory

Bandwidth

103 GB/s 25.6 GB/s 168 GB/s

OS/Driver

SUSE Linux

Server 11

Ubuntu 16.04 CUDA 8.0

Compiler icc (17.01) gcc (6.2) nvcc (8.0)

theoretically speaking, the best CNN it can provide (infi-

nite training data are allowed) shall be no worse than the

one provided by the top evolvement method. However, if the

objective is to achieve a high-quality CNN at a minimum

training cost, the answer may not be that clear. Section 7

will offer some quantitative comparison results.

7 Evaluations
To evaluate the efficacy of the technique, we run a series of

experiments and compare the CNN-based method with the

state-of-the-art method in both prediction accuracies and

resulting SpMV speeds. In addition, we report the influence

of the three kinds of input representations, the benefits of the

late-merging CNN structure, the impact of the two methods

of transfer learning, and the sensitivity of the learning results
to the granularity of the input representations.

7.1 Methodology
Baseline for Comparison The state of the art in sparse

matrix format prediction is a traditional machine learning

model produced by Li et al. [20] and Sedaghati et al. [32].

They manually came up with a set of features of matrices,

and built up a decision tree based on the features and labels

of a set of training matrices. They showed that the deci-

sion tree model outperforms previous methods in prediction

accuracies and the resulting SpMV performance.

Hardware We construct format prediction models for two

CPU systems and one GPU platform, detailed in Table 1. The

trainings of CNNs all happen on the GPU.

Software Platforms and Formats to Select As Figure 1

has shown, different formats require SpMV to be coded differ-

ently. To evaluate the speedups of SpMV brought by format

predictions, we need to use a SpMV library that can work

with multiple matrix formats. A SpMV library contains only

a set of procedures with each working with one of a small

set of matrix formats, which determine the set of formats we

can use in our experiments.
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On CPU, we experiment with two SpMV libraries. One

is Intel
®
MKL [39], which supports COO, CSR, DIA, and

several other formats. The other is a multi-purposed SpMV

benchmarking program (called SMATLib in this paper) from

the previous work [20], which supports COO, CSR, DIA, ELL

formats. Both libraries are multithreaded and run in parallel.

On Intel
®
MKL [39], the speedups from our prediction

over the use of the default format (CSR) is up to 53.7× (1.46×
on average). We concentrate our CPU result discussions on

the SMATLib platform rather than MKL because SMATLib

was used in the state-of-the-art study on matrix format pre-

diction [20]. Reusing it allows for a direct head-to-head com-

parison with the previous work. The framework repeats a

performance measurement for 50 times. The average is taken

as the performance. We observe some small variances across

the repeated trials; they are negligible compared to the signif-

icant performance differences between the different formats.

On GPU, we experiment with the NVIDIA
®
cuSPARSE

library [28], which supports COO, CSR, ELL, HYB and BSR

formats. A previous work reports some promising perfor-

mance of a new format CSR5 over some alternative formats

and publishes the implementation [21]. We append to cuS-

PARSE with the CUDA implementation from that work to

make it also work with CSR5 format.

The set of formats covered in this study are restricted by

the formats supported by these existing libraries. The support

of these covered formats by these (commercial) libraries

indicates their competitiveness and general applicability. The

set unavoidably leaves some formats uncovered. With the

idea verified, the approach can be easily extended to the

selection of other formats.

Dataset Our experiments use a set of 9200 matrices (total

size around 400GB). These matrices include the 2757 real-

world matrices from the SuiteSparse matrix collection [11]

(which was also used in the previous studies [20, 32]), and

some extra matrices derived from them. The derivation at-

tempts to create some variations of the existing matrices,

and at the same time, do not deviate too much from the real-

world matrices. To do this, we use some simple heuristics

like cropping, transforming and randomized combinations

of the original matrices.

Cross Validation For evaluations, we separate testing data

from training data through 5-fold cross validations. This is

a method commonly used in statistical learning for eval-

uations. It takes 20% of dataset out to form a test set and

uses the remaining for training. It repeats the process for

5 times with a different subset of the dataset taken out as

the test set. In all experiments, the results are in single pre-

cision, which was also used in the previous work [20]. Our

observations on double precision showed similar prediction

accuracy improvements and relative speedups as those on

single precision.

In the rest of this section, Sections 7.2 to 7.5 first report the

prediction accuracies of the machine learningmodels and the

speedups they brought to SpMV. Section 7.6 then discusses

the runtime overhead and the related practical usage issues.

7.2 Prediction Accuracy
This part compares the CNN models (with late merging) and

the previous Decision Tree (DT) model [20, 32] in the quality

of their predictions. We use three metrics. The first is overall
accuracy, defined as the number of correct predictions (i.e.,

the predicted best format is indeed the best) over the total

number of matrices. The other two assess the quality of the

predictions for each format: precision on format X is the

fraction of all predicted X that is correct; recall on format X

is the fraction of Sx that are predicted as X , where Sx is the

set of matrices on which format X is indeed the best.

Table 2 reports the results of our three CNN-based models

(with Binary, Binary+Density, or Histogram representations)

and the previous Decision Tree-based model (DT) [20, 32] on

the Intel
®
CPU platform. The “Binary” and “Binary+Density”

use 128×128 as the size of the representations, while the “His-

togram” uses 128 × 50 (these sizes were picked empirically.)

The second column in Table 2 gives the number of matrices of

each format label from the overall 9200 sparse matrices. The

results show that all three CNN models outperform the DT

model, in almost all metrics. CNN with histograms achieves

the best results, with an overall accuracy of 93%; DT gets

only 85% accuracy. CNN also shows higher recall rates and

precisions for all the formats.

The results differ for different formats. There are two

major factors: the amount of training data and the complexity

of patterns. CSR, for instance, has much better prediction

results than other formats have thanks to the largest number

of matrices carrying the CSR label, which allows CNN to

learn it more sufficiently. COO and ELL have the similar

amounts of data, but COO has much worse prediction results

than ELL has. Our detailed analysis shows that matrices

favoring ELL tend to have a similar pattern (rows in the

matrix have similar numbers of non-zeros), while COO does

not show clear patterns.

Table 3 reports the results on the GPU platform. As GPU

memory is more limited, only 4218 of the matrices can run on

it. As GPU cuSPARSE supports more formats than SMATLib,

the table shows results on six formats. For space limit, we

include only CNN with histograms and DT results. Among

the six formats, format COO never wins on GPU, while the

other five all win on some matrices
2
. Overall, CNN again

outperforms DT significantly in both the overall accuracy

(90% versus 83%) and the per-format metrics.

2
BSR uses a 4 × 4 block size [37].
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Table 2. Prediction quality on Intel
®
CPU (bottom decimals show overall accuracies)

Format

Ground

Truth

CNN+Binary CNN+Binary+Density CNN+Histogram DT

Recall Precis. Recall Precis. Recall Precis. Recall Precis.

COO 667 0.53 0.70 0.71 0.74 0.71 0.78 0.53 0.61

CSR 6947 0.94 0.92 0.94 0.94 0.97 0.96 0.90 0.88

DIA 894 0.82 0.83 0.82 0.85 0.93 0.93 0.83 0.75

ELL 692 0.79 0.78 0.82 0.80 0.90 0.85 0.71 0.85

Overall 9200 0.88 0.90 0.93 0.85

Table 3. Prediction results on the GPU platform.

Format

Ground

Truth

CNN+Histogram DT

Recall Precis. Recall Precis.

CSR 1340 0.87 0.89 0.86 0.83

ELL 282 0.73 0.73 0.58 0.58

HYB 170 0.61 0.64 0.38 0.45

BSR 1806 0.93 0.90 0.90 0.90

CSR5 620 0.87 0.91 0.83 0.88

COO 0 - - - -

Overall 4218 0.90 0.83

7.3 Speedup
This section reports the speedups of SpMVs by using our

CNN model predicted formats over using the DT model’s

predictions. Figure 8 shows the speedup distribution over

testing matrices on which the two models give different

predictions of the suitable formats. The horizontal line at 1

explicitly separates the matrices achieving speedups using

CNN model and those not showing speedups compared to

the DT model. The CNN model helps improve the SpMV

performance on 86%matrices over the DTmodel. The SpMVs

using the CNN model predicted formats achieve an average

of 1.73× and themaximum of 5.2× speedups over those of the

DT model. This result further confirms that sparse formats

are critical to SpMV performance. This comparison shows

the performance improvement of our work over the state of

the art[20]. Furthermore, we also tested the SpMV speedups

with our CNN model over the default CSR format, which

are 2.23× on average and 14.9× in maximum. For the GPU

platform, the CNN model achieves an average of 1.7× and

the maximum of 22.5× speedup of the default CSR format.

7.4 Model Migrations
Figure 9 reports the effect of the two transfer learning meth-

ods. The methods try to migrate the CNN model trained on

Intel
®
platform to AMD

®
platform. The benefits of the meth-

ods are obvious. On less training data, they achieve much

better accuracy than the “from scratch” method does. Note

that the time to migrate a model consists of the retraining

time of the CNN model as well as the time to collect the

labels on the new platform. The latter takes most of the time.
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Figure 8. Speedups from CNN over DT-based predictions.

In our experiments, the collection of the labels for the 9200

matrices takes about 75 hours as it requires the executions

of SpMV on each of the matrices many times.

Therefore, the large reduction of the needed retraining

data by the transfer learning methods significantly shortens

the model migration process. Suppose that we want to get

a model on the new platform with a 90% accuracy. From

Figure 9, we can see that with “top evolvement”, it takes

only about a quarter of the time the “from scratch” method

takes, and two thirds of the time the “continuous evolvement”

method takes. Overall, “continuous evolvement” achieves a

slightly higher accuracy than “top evolvement” after relearn-

ing 4000 inputs, while “top evolvement” provides a faster

learning process.

7.5 Impact of CNN Structures
This part compares late-merging and early-merging (Fig-

ures 6 and 7 in Section 5.) Figure 10 shows the CNNof the late-

merging structure. It involves 13 layers. The early-merging

model has the same structure except that the networksmerge

the use of the different channels at the beginning of the net-

works (the input layer uses one INPUT(128 x 128 x 2) rather

than two separate INPUTs(128 x 128)).

Figure 11 shows the loss function curves of the two CNN

models. Here, loss function is defined as the cross-entropy
between the true labels and the predicted ones [27]. Cross-

entropy is a measure of the similarity between the distri-

butions; the smaller it is, the closer the two distributions
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Figure 9. Prediction accuracies of different retraining meth-

ods on a new platform (AMD
®
platform). (Accuracies at x=0

are without retraining.)
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Figure 10. CNN late-merging structure (layer shapes in

parentheses).

are. The loss function of late-merging structure decreases

much faster than that of the early-merging structure. The

late-merging structure uses about 7000 steps to converge

to the loss value around 0.1, while early-merging structure

converges to 0.4 after 10000 steps. By using only 1000 time

steps, the loss function’s value of late-merging is half of that

of early-merging. In addition, the late-merging structure be-

haves more steadily than early-merging does. These results

confirm that the late mixing of the different sources of in-

formation simplifies the prediction problem, and avoids the

negative impact from the mixture.

7.6 Overhead and Uses in Practice
Training a CNNmodel based on collected data is about 27min.

It is a one-time effort for a given platform.

Prediction overhead is worth more discussions. In both

our CNN method and the previous DT-based method, the

prediction for a matrix includes two steps: 1) input represen-

tation or feature extraction; 2) feeding the feature vector to

the predictive model to get the prediction. In terms of the

time taken by one iteration of SpMV (on the CSR format),

the overhead for CNN method is (on average) 0.96× for step

1 and 0.13× for step 2, 1.09× in total. The overhead for the

DT method is 3.4× for step 1 and 0.0085× for step 2, 3.4× in

total. Another source of overhead is the format conversions.
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Figure 11. Comparison of the loss function convergence for

two different structural designs.

Converting one existing format of a matrix to another format

could take a number of SpMV iterations’ time.

These overhead entails different ways to use the CNN

method in different settings. First, the runtime prediction

overhead of the CNN method is much smaller than the DT-

based method, which gives the CNNmethod an extra edge in

addition to its better prediction accuracy. However, because

SpMV is often called on a matrix repeatedly (e.g., a linear

solver takes hundreds or thousands of iterations [5]), the 1–3

iterations of overhead is negligible compared to the time the

better formats help save (see more proof in [35]).

Both methods are subject to format conversion overhead,

which could bemore significant than the prediction overhead.

If the collection of matrices are to be used by many users

(on the same or different platforms) for many SpMV-based

computations, a one-time process can be used to generate

and store all the candidate formats of the matrices. That can

save the runtime needs for format conversions, and hence

avoid the influence of format conversion overhead on the

usage of the predictive models.

In a setting where new sparse matrices are generated

and consumed throughout an execution, the predictions and

storage conversions may both need to be invoked on the

fly. A way to deal with it is to count these overhead when

measuring the performance of a format during the label

collection stage (i.e., step 1 in Figure 3). In this way, the

predictive model will try to predict the format that minimizes

the overall time including the overhead and the SpMV time.

To implement the on-the-fly usage, wemay leverage either

a compiler-based approach or a library-based approach. In

the former, a compiler may transform some existing code by

inserting invocations of the prediction model into the code

along with calls to some procedures to do the matrix format

conversion at runtime. In the latter, the predictive model

can be also integrated into a sparse matrix library; when the

procedure is called by a program, the model takes effects.

The detailed explorations are left for the future.
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8 Insights
This section summarizes three key insights and their general

implications for other HPC tasks. The first is that CNN has

some good potential for helping improve the decisions in

HPC. Beyond the sparse matrix format selection problem,

we envision that CNN may help other problems: selecting

the proper solvers for solving a linear system (which also

typically take sparse matrices as inputs)[3, 4, 7], choosing the

proper compilation flags, finding good scheduling policies,

and so on. Using CNN for them could face some challenges

as those encountered in this work, such as cross-architecture

portability, CNN structure designs, input representation is-

sues. The findings reported in this work can shed some light

on solving the issues in these other HPC scenarios.

The second insight is the importance of tailoring the rep-

resentations of HPC data inputs according to the nature of

the problem in the HPC domain. The representations we

have proposed in this work could be useful for other sparse

matrix algorithms beyond SpMV. Meanwhile, this work also

shows the importance of thinking out of box when applying

CNN to HPC, reflected by the benefits of the unconventional

CNN structure (late-merging structure) driven by the special

properties of the input representations.

The third insight is the benefits of transfer learning in

saving time required for porting learned models across ar-

chitectures. This technique is especially useful for HPC due

to the widely existing architectural sensitivity.

9 Related Work
The work closest to this study is the SMAT work [20, 35]

which builds up a decision tree for selecting the best storage

format for a sparse matrix storage. The previous sections

have provided quantitative comparisons with that work. A

similar classification-tree–based model was built in another

recent study [32] with a 65-84% accuracy. In addition, a pre-

vious work has proposed a hybrid format for sparse matri-

ces [6, 33]. It allows the use of different formats for repre-

senting different subsets of a large sparse matrix. To select

the format for each sub-matrix, it uses interpolation over a

large offline collected performance database to estimate the

performance if a certain format is used, based on its local

features.

There are some other efforts trying to optimize the com-

putations over sparse matrices, including hand-tuning input-

or architecture-related features [6, 25, 41], designing new

sparse formats [6, 17, 33], and building automatically perfor-

mance tuning (auto-tuning) systems [10, 20, 32, 38].

In a broader scope, there has been a large body of work

applying machine learning techniques to solve program op-

timization difficulties. Examples include some that focus on

improving lower-level compiler optimizations [1, 2, 14, 29],

some on algorithmic selections [3, 12], and some on dynamic

compilations and adaptations [36].

To the best of our knowledge, this work is the first that

explores the special challenges of applying CNN to HPC

problems. Due to the special attributes of CNN, its usage

in HPC faces some special complexities that prior applica-

tions of machine learning to HPC do not have, including

the CNN structure designs and the input representations. It

also brings some special opportunities, such as the use of

transfer learning for alleviating cross-architecture portability
difficulties. Explorations on these novel aspects are where

the key contributions of this current work reside.

10 Conclusions
In this paper, we present a systematic exploration on closing

the gap between CNN and sparse matrix format selection. It

points out three-fold special challenges sparse matrix format

selection poses to the applications of CNN: input matrix rep-

resentation, CNN structure design, and the needs for cross-

architecture migrations of the learned models. To tackle each

of the challenges, it makes a set of innovations—including

several novel matrix representations, use of late-merging

CNN structure, and the use of transfer learning for reduc-

ing the large cost of cross-architecture model migrations.

Meanwhile, it conducts a series of empirical measurements

to unveil the influences of the various input representations,

CNN structures, and transfer learning methods. The result-

ing predictive model demonstrates significant reductions of

the prediction errors and brings substantial speedups for

SpMV compared to the state-of-the-art technique. As one of

the pioneering studies on bridging the gap between CNN

and HPC, this work provides a set of insights that may help

the adoption of CNN in other HPC problems.
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A Artifact appendix
A.1 Abstract
Our artifact provides Python programs implementing the

CNN-based prediction model for sparse matrix format selec-

tion as described in the paper. With the included dataset, it

can be used to evaluate the prediction performance. It also

provides interface to predict the best format for a given ma-

trix. We also provide shell script to automatically run some

tests for fast evaluation convenience.

A.2 Artifact check-list (meta-information)
• Algorithm: Automatic sparse matrix format se-
lection for SpMV.

• Program: Tensorflow, sparse matrix (all sources
and testing data included).

• Compilation: Not required.
• Binary: No binary needed, Python APIs are pro-
vided.

• Data set: Preprocessed matrices from the SuiteS-
parse matrix collection (they are included in the
sources).

• Run-time environment: Python3 with required
packages (included in the virtualmachine image).

• Hardware: Platform supporting Virtualbox.
• Output: Prediction accuracy and predicted for-
mat.

• Workflow frameworks used?: Linux shell scripts.
• Publicly available?: Yes.
• Artifacts publicly available?: Yes. The submission
includes a wrap-up for important models.

• Artifacts functional?: Yes.Weprovide PythonAPI
and wrap scripts for easy execution.

• Artifacts reusable?: Yes.
• Results validated?: Yes. Some major results will
be validated.

A.3 Description
A.3.1 How delivered
We provide a Virtual Machine image to include source and

data for evaluation.

A.3.2 Hardware dependencies
We have measured the performance and collected the data

on Nvidia GeForce TITAN X GPU. The collection of the

performance data require 500G size of matrices and several

days of running the experiment. So we provide the collected

performance data in our delivery so the reviewers can skip

the data collection part. As a result, there is no particular

hardware restriction for the evaluation. Any platform which

can run a recent Virtualbox can be used to evaluate it.

A.3.3 Software dependencies
VirtualBox We used VirtualBox 5.0.40 to prepare the im-

age. It should also be compatible with similar versions.

Inside the image For the environment of virtual machine

image, it mainly includes the following software:

• The guest OS is Ubuntu 17.10.
• Python 3.6 is the main programming language.

• Tensorflow 1.0 is the framework used for the deep

learning model.

• Python packages Numpy, cffi are required for the ex-

ecution.

• Datasets are generated from the original matrices and

split as training data and testing data.

A.3.4 Data sets
The data sets are the representation extracted from the sparse

matrix collection as well as the SpMV performance measured

on each sparse matrix with four formats (COO, CSR, DIA,

ELL). They are included in the data directory.

A.4 Installation
If the virtual machine image is used for evaluation, the image

just needs to be imported to the installed Virtualbox software.

Both the username and password for the GuestOS is ubuntu.
The working directory is /home/ubuntu/dnnspmv, which is

also the root directory for the source code and dataset.

A.5 Experiment workflow
For a quick evaluation, just run the provided shell script:

Listing 1. Run the wrapping script

cd /home/ubuntu/dnnspmv
./run.sh

The program dnnspmv/dnnspmv/model/spmv_model.py
contains the main model and APIs for the selection model.

It also provides wrapper interface to run as a script in three

modes:

Trainingmode The script first trains the CNN-model

with the training dataset

dnnspmv/dnnspmv/data/train-data.npz.

The computation graph and the state of the trained

model will be saved for reuse since the training time

is expensive. The command is:

Listing 2. Train the model

cd /home/ubuntu/dnnspmv
python3 dnnspmv/model/spmv_model.py train

Testing mode The script loads and restores the state

of themodel. Then it tests themodel against the testing

dataset

dnnspmv/dnnspmv/data/test-data.npz.

The command is:
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Listing 3. Test the model

cd /home/ubuntu/dnnspmv
python3 dnnspmv/model/spmv_model.py test

Predict mode Given a sparse matrix inmatrix market
format (.mtx), the script predicts the best format and

output the result. The command is:

Listing 4. Run prediction

cd /home/ubuntu/dnnspmv/dnnspmv
python3 model/spmv_model.py predict data/
↪→ example.mtx

A.6 Evaluation and expected result
Run the wrapping script in Listing 1 will results in two out-

put.

1. The accuracy of the predictionmodel on the test dataset.

The accuracy should be larger than 90%.

2. The predicted format for a given matrix. It shows one

of the COO, CSR, DIA, ELL. For the example.mtx, it
should output CSR.

A.7 Note
The above virtual image is only for quick artifact evalua-

tion. The complete workflow and dataset will be released on

GitHub (https://github.com/yzhao30/dnnspmv) in the future.
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