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Abstract
Sparse Matrix Vector multiplication (SpMV) is an important ker-
nel in both traditional high performance computing and emerging
data-intensive applications. By far, SpMV libraries are optimized
by either application-specific or architecture-specific approaches,
making the libraries become too complicated to be used extensive-
ly in real applications. In this work we develop a Sparse Matrix-
vector multiplication Auto-Tuning system (SMAT) to bridge the
gap between specific optimizations and general-purpose usage. S-
MAT provides users with a unified programming interface in com-
pressed sparse row (CSR) format and automatically determines the
optimal format and implementation for any input sparse matrix at
runtime. For this purpose, SMAT leverages a learning model, which
is generated in an off-line stage by a machine learning method with
a training set of more than 2000 matrices from the UF sparse ma-
trix collection, to quickly predict the best combination of the matrix
feature parameters. Our experiments show that SMAT achieves im-
pressive performance of up to 51GFLOPS in single-precision and
37GFLOPS in double-precision on mainstream x86 multi-core pro-
cessors, which are both more than 3 times faster than the Intel MKL
library. We also demonstrate its adaptability in an algebraic multi-
grid solver from Hypre library with above 20% performance im-
provement reported.

Categories and Subject Descriptors F.2.1 [Numerical Algorithms
and Problems]: Computations on matrices; C.1.2 [Multiple Data
Stream Architectures (Multiprocessors)]: Parallel processors

General Terms Algorithms, Performance

Keywords sparse matrix-vector multiplication, SpMV, auto-tuning,
data mining, algebraic multi-grid

1. Introduction
Nowadays, high performance computing technologies are driv-
en simultaneously by both Exascale FLOPs (ExaFlops) and data-
intensive applications. Although the grand challenges of these ap-
plications are diverse, an interesting observation is that they share
an intersection in terms of sparse linear system solvers. For exam-
ple, the well-known ExaFlops applications, laser fusion in interna-
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tional thermonuclear experimental reactor (ITER) [3] and global
cloud system resolving climate modeling [20], spend most of the
execution time on solving large-scale sparse linear systems. Sim-
ilarly, lots of large-scale graph analysis applications like PageR-
ank [9] and HITS [26] involve sparse matrix solvers in identifying
relationships. All of these algorithms rely on a core Sparse Matrix
Vector multiplication (SpMV) kernel consuming a large percentage
of their overall execution time. For example, the algebraic multigrid
(AMG) solver [13], an iterative algorithm widely used in both laser
fusion and climate modeling, reports above 90% SpMV operation
of its overall iterations.

Since 1970s, plenty of researches have been dedicated to opti-
mizing SpMV performance for its fundamental importance, which
are generally separated into two paths, one for developing new
application-specific storage formats [7, 21, 29–32, 36], and the oth-
er for tuning on emerging processor architectures [10, 11, 16, 22,
27, 28, 34, 35]. This separation leads to low performance and low
productivity in SpMV solvers and applications:

• Low Performance: sparse solvers are not aware of the diversity
of input sparse matrices.
It is well-known that for a specific sparse matrix SpMV per-
formance is sensitive to storage formats. More than ten format-
s have been developed during the last four decades. However,
most of them show good performance only for a few specif-
ic applications, and are rarely adopted in widely used numer-
ic solvers such as Hypre [14], PETSc [6], Trilinos [18] etc. In
fact, these solvers mainly support one popular storage format
CSR (compressed sparse row, explained in Section 2.1). Thus,
they usually perform poorly in some applications whose sparse
matrices are not appropriate for the supported CSR format. Be-
sides, even considering only one application, patterns of sparse
matrices may change at runtime. Take AMG as an example a-
gain, it generates a series of different sparse matrices by the
coarsen algorithm on successive grid levels. Figure 1 illustrates
an example of the need for dynamic storage formats in Hypre
AMG solver. At the first few levels, SpMVs desire DIA or COO
format (see Section 2.1) for the optimal performance. While at
the coarser-level grids, other formats like CSR may be more de-
sirable due to high zero-filling ratio in DIA format. Therefore,
a numerical solver should be adaptive to different sparse matrix
formats for achieving better performance.

• Low Productivity: sparse libraries provide multiple interfaces
to users
An alternative solution to the above low performance issue is
to rewrite these solvers for every storage format. Unfortunate-
ly, such changes are too time-consuming for legacy software.
An easier option may be to provide an SpMV library, which
can automatically adapt to various sparse matrix formats for
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numerical solvers and real applications. However, none of the
available sparse libraries accommodate us with a consistent pro-
gramming interface to replace the original SpMV kernels. All
these libraries including Intel MKL [1] and OSKI [31] provide
different interfaces for every format supported, which leaves
the burden of determining and integrating the optimal format
to application programmers. As a consequence, although these
libraries are highly optimized by either hand-tuning or auto-
tuning techniques [4, 5, 7, 8, 10, 11, 17, 21, 29, 31, 35, 36] with
processor architectures evolving, it is still difficult to integrate
them into high level solvers or applications. This fact results in
an embarrassing situation: on one hand, there are several high
performance sparse libraries available; on the other hand, solver
or application developers seldom use them in practice.

nnz = 38681 nnz = 865nnz = 60626nnz = 2244004

Figure 1. An example of dynamic sparse matrix structures in
AMG solver and their SpMV performance using different formats.
The nnz represents the number of nonzero elements in matrices.

In this paper we propose a novel Sparse Matrix-vector mul-
tiplication Auto-Tuner (SMAT) to provide both application- and
architecture-aware SpMV kernels. A distinct feature of SMAT is
the unified programming interface for different storage formats.
Based on a comprehensive investigation (in Section 2) that shows
CSR performs the best for most sparse matrices, we define the uni-
fied interface as CSR format. In this way users only need to prepare
their sparse matrices in CSR format as the input, and SMAT auto-
matically determines the optimal storage format and implementa-
tion on a given architecture. Our auto-tuning approach takes advan-
tage of a black-box machine learning model to train representative
performance parameters extracted from the sparse matrix pattern
and architectural configuration. Once the model is trained on the
target architecture, SMAT evaluates candidate storage formats and
determines the optimal format and implementation by leveraging
either existing auto-tuning work [11, 17, 21, 29, 31, 35, 36] or avail-
able hand-tuned codes.

Apart from the conventional auto-tuning techniques consider-
ing architectural parameters, the novelty of SMAT system is co-
operatively auto-tuning between algorithms and architectures. In
other words, SMAT searches for the optimal storage format based
on sparse matrix structures at the algorithm level while generat-
ing the optimal implementation based on the processor architec-
ture. Though auto-tuning techniques for optimizing libraries and
applications have been explored for a long time, the originality of
our work lies in an input adaptive mechanism that identifies char-
acteristics of both applications and architectures. Besides, the main
contributions of this paper are:

• We enable reusable training by adopting more than 2000 sparse
matrices from real applications and systematically sampling the

parameter space, including sparse structure characteristics and
architecture configuration.

• We propose a unified interface on top of SpMV kernels to avoid
the tedious work of manually choosing among sparse storage
formats. SMAT facilitates users to adopt the tuned library for
improving performance with little extra programming effort.

• We develop a flexible and extension-free framework, with
which users can add not only new formats and novel imple-
mentations in terms of their needs, but also more features and
larger datasets.

We implement SMAT and train it using sparse matrix collection
from the university of Florida [12] on two x86 multi-core proces-
sors, Intel Xeon X5680 and AMD Opteron 6168. With sparse ma-
trices selected from various application areas, SpMV kernels gener-
ated by SMAT achieve impressive performance of up to 51GFLOP-
S in single-precision (SP) and 37GFLOPS in double-precision (D-
P). The improvement of SMAT over Intel MKL is more than 3.2
times on average. We also evaluate the adaptability of SMAT in
AMG algorithm of sparse solver Hypre [14], and the results show
above 20% performance improvement.

The rest of the paper is organized as follows. Section 2 presents
several storage formats of sparse matrices and our motivation. In
Section 3 we propose an overview of SMAT system. Then the
three important contributions are described in the following sec-
tions. Section 4 shows the parameter extraction process to build the
feature database. After that, we illustrate the machine learning and
kernel searching process in Section 5, and the runtime procedure in
Section 6. We give the performance results on representative sparse
matrices and a real application in Section 7, as well as analyze the
accuracy and overhead of SMAT. Related work is presented in Sec-
tion 8, and conclusion in Section 9.

2. Background
2.1 Sparse Matrix Storage Format
In order to reduce the complexity of both space and computation, a
compressed data structure is commonly used to only store nonzero
elements of a sparse matrix. Since sparse structure is closely re-
lated to compression effectiveness and SpMV behavior on specific
processor architectures (i.e.,vector machine, cache, etc.), more than
ten compressed data structures (i.e. formats) have been develope-
d since 1970s. However, most of them were customized only for
certain special cases. By far four basic storage formats CSR, DIA,
ELL, COO are extensively used in mainstream applications, from
which most other formats can be derived. For example, when there
exist many dense sub-blocks in a sparse matrix, the corresponding
blocking variants (i.e. BCSR, BDIA, etc.) may perform better if an
appropriate blocking factor is selected. Here, COO is specially not-
ed because it usually performs better in large scale graph analysis
applications [36]. In this proof-of-concept work, we start from the
four basic formats and make it possible to extend for supporting
other formats in our auto-tuning system.

Figure 2 illustrates a sparse matrix example represented in the
four basic formats respectively. CSR (Compressed Sparse Row)
format contains three arrays: “data” stores nonzero elements of the
sparse matrix, “indices” stores their corresponding column indices,
and the beginning positions of each row are stored in “ptr”. COO
(COOrdinate) format explicitly stores the row indices. The “rows”,
“cols” and “data” arrays store the row indices, the column indices,
and the values of all nonzero elements respectively. DIA (Diago-
nal) format stores non-zeros by the order of diagonals. “data” array
stores the dense diagonals, and “offsets” records the offsets of each
diagonal to the principal one. The idea of the ELL (ELLPACK) for-
mat is to pack all non-zeros towards left, and store the packed dense
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matrix. “data” array stores this dense matrix, and “indices” stores
the corresponding column indices. Please refer to [25] for more de-
tailed illustration. The corresponding basic implementations of the
four formats are also presented in Figure 2.

 

for (i = 0; i < num_rows; i++)  { 

  for (jj = ptr[i]; jj < ptr[i+1]; jj++)  

    y[i]  +=   x[indices[jj]] * data[jj]; 

} 

 

ptr     [0 2 4 7] 

indices  [0 1 1 2 0 2 3 1 3] 

data    [1 5 2 6 8 3 7 9 4] 

(a)  CSR SpMV 

rows  [0 0 1 1 2 2 2 3 3] 

cols   [0 1 1 2 0 2 3 1 3] 

data  [1 5 2 6 8 3 7 9 4] 

for (i = 0; i < num_nonzeros; i++)  { 

y[rows[i]] += data[i] * x[cols[i]]; 

} 

(b)  COO SpMV 

 

 

offsets 

 [-2 0 1] 

data 

for( i = 0; i < num_diags; i++)  { 

   k = offsets[i];    //diagonal offset 

   Istart = max((0,-k); 

   Jstart = max(0, k);   

   N = min (num_rows - Istart, num_cols - Jstart);   

   for( n = 0; n < N; n++)  { 

      y_[Istart+n] += data[Istart+i*stride+ n] *  

x[Jstart + n];  

   } 

} 

(c)  DIA SpMV 

 

 

for(n = 0; n < max_ncols; n++)  

{ 

  for (i = 0; i < num_rows; i++) 

    y[i] +=  

data[n*num_rows+i] * x[indices[n*num_rows+i]]; 

} 

(d)  ELL SpMV 

data 

 

indices 

Figure 2. Data structures and basic SpMV implementations

2.2 Motivation
Although it is a common sense to store sparse matrices in a prop-
er format, it is non-trivial to figure out how to automatically select
the combination of appropriate storage format and its optimal im-
plementation on a specific architecture. A distinct difference is that
previous auto-tuning techniques [11, 17, 21, 29, 31, 35, 36] only
take architectural impact into account while the storage format is
predefined by users. Actually, it is really a challenging job because
sufficient performance characteristics must be extracted from di-
verse sparse matrices and then used to quickly determine the opti-
mal format and implementation.

For extracting characteristics and showing potential benefits
from tuning storage format based on sparse structures, we con-
duct comprehensive experiments on the UF collection [12], which
consists of more than 2000 sparse matrices from real application-
s covering extensive application areas. For simplicity without loss
of accuracy, we exclude the matrices with complex values and too
small size, and eventually studied 2386 sparse matrices in total in
this work. Table 1 lists their application areas spread in more than
20 domains.

Table 1 also summarizes the distribution of the optimal storage
formats for all 2386 sparse matrices. Column 2 − 5 represent the
number of sparse matrices that have affinity with CSR, COO, DIA,
and ELL formats, respectively. The last row calculates the propor-
tion of the matrices have affinity with each format to the whole
matrix set respectively. Apparently, CSR is favored by most sparse
matrices. Furthermore, for highlighting performance variance and
plotting legible graphs, we select 16 representatives from the 2386
matrices and compare the performance in GFLOPS among the four
storage formats without meticulous implementations. As shown in
Figure 3 the largest performance gap is about 6 times. The reason-
s for the variance will be explained in Section 4. Obviously it is
not reasonable to apply only one storage format in sparse numeric
solvers.

Given a specific format, there are already well-studied auto-
tuning tools or libraries [11, 17, 21, 29, 31, 35, 36], which can
be leveraged to generate the optimal SpMV implementation on a

specific platform. If the matrix structure stays the same during the
whole lifetime of an application, even a brute-force search algo-
rithm might be reasonable to generate the best candidate. As noted
in Section 1, certain applications like AMG dynamically change
sparse matrix structures (see Figure 1). Therefore, two key issues
will be addressed in this paper: (i). determine the optimal storage
format for any input sparse matrix; (ii). generate the optimal com-
bination of format and implementation at runtime with low over-
head.

Table 1. Application and distribution of affinity to each format
Application Domains CSR COO DIA ELL Total

graph 187 114 6 27 334
linear programming 267 52 3 5 327

structural 224 14 35 4 277
combinatorial 122 50 10 84 266

circuit simulation 110 149 0 1 260
computational fluid dynamics 110 8 47 3 168

optimization 113 15 8 2 138
2D 3D 64 21 19 17 121

economic 67 4 0 0 71
chemical process simulation 47 14 2 1 64

power network 45 15 0 1 61
model reduction 29 34 6 1 60

theoretical quantum chemistry 21 0 26 0 47
electromagnetics 17 1 12 3 33

semiconductor device 28 1 3 1 33
thermal 19 3 3 4 29

materials 12 3 11 0 26
least squares 10 2 0 9 21

computer graphics vision 8 1 1 2 12
statistical mathematical 2 1 3 4 10

counter-example 3 4 1 0 8
acoustics 5 0 2 0 7
robotics 3 0 0 0 3

Percentage 63% 21% 9% 7% 2386

Figure 3. Performance variance among different storage formats
for 16 representative matrices.

3. SMAT Overview
We develop SpMV Auto-Tuner (SMAT) to choose the optimal s-
torage format and implementation of SpMV, whose framework is
shown in Figure 4. We consider both architecture parameters (such
as TLB size, cache and register size, prefetch, threading policy, etc.,
details in [35]) and application parameters (such as matrix dimen-
sion, diagonal situation, nonzero distribution, etc., to be described
in Section 4) to optimize an SpMV kernel and evaluate its perfor-
mance on sparse matrices from different applications. The large
parameter space makes it difficult to find the most suitable sparse
matrix format and optimization method on a specific architecture.
For this reason, we generate a learning model using data mining to
find the optimal result.
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Figure 4. SMAT architecture

Since each sparse matrix has different SpMV behaviors, we
train the corresponding parameter values using UF collection to
generate a feature record for each matrix. Data mining is used to
generate a learning model from the feature database. Besides, s-
ince a variety of kernel optimization methods consider architecture
parameters (like cache blocking, register blocking, parallelization,
etc.), a large kernel library is built. The optimal kernel implemen-
tation is searched based on particular architecture characteristics.
Thus, a learning model, which combines application features and
architecture characteristics together, is built to generate high per-
formance kernels quickly.

Given a sparse matrix in the most popular CSR format, SMAT
extracts its sparse features first. The feature values are used to pre-
dict the optimal format and implementation of SpMV. However,
there are still some cases that the learning model may fail to make
the right prediction. A confidence factor is added to rule the mod-
el. When the confidence factor is larger than the threshold, we de-
termine the optimal SpMV format with the optimal implementa-
tion through the model. Otherwise, an execution-measure process
is triggered to benchmark available candidates and outputs the one
with the highest performance. In this way, users do not need to think
about which format and implementation should be chosen. All they
need to do is to input the sparse matrix in CSR format and then
SMAT will give the optimal answer. Figure 5 compares application
programming interfaces between Intel MKL [1] and SMAT. MKL
implements six storage formats and provides the same number of
function calls to users, while SMAT exposes only one function in
CSR format, as most sparse matrices favor CSR according to sta-
tistical results (see Table 1).

MKL SMAT

mkl_xcsrgemv

SMAT_xCSR_SpMV

mkl_xdiagemv

mkl_xbsrgemv

mkl_xcscmv

mkl_xcoogemv

mkl_xskymv

Figure 5. Application programming interface. The character “x”
denotes numerical precision (single- or double-precision).

In addition to the benefit of the unified programming interface,
there are two more advantages of SMAT – reusability and porta-
bility: First, on a specific architecture, SMAT generates the learn-
ing model once in off-line stage, and use this model repeatedly for
different input matrices; Second, SMAT extends well to differen-
t architectures as the architecture features have been considered
already. Besides, SMAT performs beyond existing auto-tuners by
employing the performance of SpMV implementations to quantize
architecture features, instead of using architecture features direct-
ly. This innovation brings two advantages: First, it makes SMAT
smoothly compatible to new architectures, which is the most im-

portant thing to auto-tuners and the biggest difference from other
ones; Second, it is more accurate to conduct learning using perfor-
mance values instead of a band of architecture features, to narrow
down the parameter space while considering both application and
architecture features.

Another main advantage of SMAT is extensibility. With the
nature of data mining methods, SMAT is really easy for users to add
new algorithms and/or more meticulous implementation. Besides,
it is also open to add new matrices and corresponding records into
the database to improve the prediction accuracy. Third, if there is a
need to balance accuracy and training time, it is also convenient to
add or remove parameters from the learning model with SMAT.

In the following sections, three compositions of SMAT will be
discussed, which are respectively parameter extraction, learning
model generation, and runtime process.
4. Parameter Extraction
SMAT is an application and architecture aware auto-tuner, and it
can apparently leverage the well-studied architecture-aware auto-
tuners [17, 21, 31, 36] to extract architecture parameters. In this
section, we present how to extract sparse structure feature parame-
ters. To build an application-aware auto-tuner, we extract feature
parameters from more than 2000 sparse matrices of UF collec-
tion [12]. Table 2 summaries a complete list of sparse structure
parameters used in SMAT system.

Firstly, four parameters are used to represent the basic structure
of a sparse matrix applicable to all four formats (marked by

√
):

M (the number of rows), N (the number of columns), NNZ (the
number of non-zeros), and aver RD (the average number of non-
zeros per row). Besides, a couple of advanced parameters are added
to describe SpMV behavior for non-default formats in SMAT such
as DIA, ELL and COO. Note: the up(down) arrows indicate that the
corresponding SpMV performance gets higher once the parameter
becomes larger(smaller), .

The advantages of DIA and ELL formats come from regular da-
ta access behavior to the matrix, especially the X-vector. Since DIA
and ELL store matrices in a diagonal and column major layout re-
spectively, DIA reads continuous elements of X-vector, while ELL
has a large possibility to reuse X-elements. However, these two for-
mats also suffer from the following drawbacks: First, when there
are only a few elements distributed in a diagonal(row), DIA(ELL)
will fill up these diagonals(rows) with zero-padding and has to
do useless computation on zero elements, which will dramatically
hurt the overall performance. Second, the diagonal(column)-order
loop requires Y-elements to be written once per diagonal(column),
which will produce frequent cache evict and memory write back
operation for large sparse matrices. In order to address these is-
sues, four parameters ({Ndiags, max RD, ER DIA, ER ELL} in
Table 2) are extracted to represent the DIA and ELL kernels’ be-
havior.
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Table 2. Feature parameters of a sparse matrix and the relationship with the formats
Parameter Meaning Formula DIA ELL CSR COO

Matrix Dimension M the number of rows -
√ √ √ √

N the number of columns -
√ √ √ √

Diagonal Situation Ndiags the number of diagonals - ↓
NTdiags ratio the ratio of “true” diagonals to

total diagonals
NTdiags ratio= number of “true diagonals”

Ndiags ↑

Nonzero Distribution

NNZ the number of nonzeros -
√ √ √ √

aver RD the number of nonzeros per row aver RD = NNZ
M

√ √ √ √

max RD the maximum number of
nonzeros per row

max RD=maxM
1 {number of nonzeros per row} ↓

var RD the variation of the number of
nonzeros per row

var RD =
ΣM
1 |row degree−aver RD|2

M ↓

Nonzero Ratio ER DIA the ratio of nonzeros in DIA da-
ta structure

ER DIA= NNZ
Ndiags×M ↑

ER ELL the ratio of nonzeros in ELL da-
ta structure

ER ELL = NNZ
max RD×M ↑

Power-Law R a factor of power-law distribu-
tion

P (k) ∼ k−R [1, 4]

Our methodology is to perform a statistical analysis based on
experiments on UF sparse matrix collection, by plotting the distri-
bution of beneficial matrices to reflect the parameter influence and
then defining their ranks accordingly. In Figure 6(a) X-axis gives
the intervals of Ndiags and max RD, and the distribution of DIA
and ELL matrices among the intervals is presented on Y-axis in
percentage. When Ndiags or max RD becomes larger, less num-
ber of matrices gain performance benefits from DIA or ELL format,
which means small Ndiags and max RD indicate good performance
for DIA and ELL. Similarly, Figure 6(b) shows the beneficial ma-
trix distribution among nonzero ratio intervals, from which we can
conclude that large nonzero ratio is good for DIA (less obvious)
and ELL formats.

However, we also observe exceptions from these two figures
above. For ER DIA parameter there are still nearly half of matrices
benefiting from DIA format even when the nonzero ratio is no more
than 50%. To improve the combinational accuracy of the rules, we
introduce two more parameters – NTdiags ratio and var RD. We
firstly define a new type of diagonal – “true diagonal”, to repre-
sent one occupied mostly with non-zeros. A “true diagonal” fea-
tures continuous X access pattern, minor part of zero-padding, and
writing Y-vector only once, which will show competitive SpMV
performance. We use the ratio of “true diagonals” out of all diag-
onals (NTdiags ratio) as another parameter. The beneficial DIA
matrix distribution is shown in Figure 6(c), which indicates DIA
also gains higher performance with larger NTdiags ratio just as
ER DIA parameter. However, NTdiags ratio shows more obvious
rules than ER DIA so that it captures application features more ac-
curately. Similarly, we add var RD parameter for ELL format. As
we know, if a sparse matrix has a significantly variable number of
non-zeros per row, its SpMV performance degrades due to a lot of
zero-padding operations. So we introduce var RD to represent the
variation of the number of non-zeros per row. Figure 6(d) indicates
that small var RD value is good for ELL SpMV performance. Fi-
nally, we learn from [36] that COO format gains good performance
on small-world network. Thus, we choose power-law distribution
P (k) ∼ k−R as its criterion. Figure 6(e) depicts the distribution
on R, of which the interval [1, 4] is preferred by COO matrices.

So far, we extract 11 feature parameters to abstract sparse matrix
structure and draw several rules to achieve higher SpMV perfor-
mance with a certain format. However, it is still far from predicting
the optimal format and implementation only based on rules with the
thresholds generated from the simple observations in Table 2. First,
for each format there are multiple parameters which are not com-
pletely orthogonal to each other. That makes it hard to set accurate
threshold values for decision making. Second, from Figure 6, there
are quite a few exceptions to the simple rules, which may bring

too many wrong predictions. Last, a careful balance is needed for
determining the threshold values. Since a rule has both advantages
and disadvantages, although it can predict accurately for its favored
format, it might hurt the prediction accuracy of other formats. For
example, if we conclude a rule of var RD < 0.5 from Figure 6(d),
even when the matrix satisfies this rule SpMV performance with
ELL format still may be lower than CSR format. In this case, it
is necessary to balance the overall accuracy of four formats rather
than only one. Therefore, we introduce a data mining method based
on the parameters in Table 2 to build a learning model, with which
SMAT can generate practical and reliable prediction.

5. Machine Learning Model
In this section, we discuss details of the data mining method used to
the generate learning model and search for optimal implementation
from the kernel library.

5.1 Model Generation
We define an attribute collection {M, N, Ndiags, NTdiags ratio,
NNZ, max RD, var RD, ER DIA, ER ELL, R, Best Format}
for each matrix, where “Best Format” is the target attribute.
Through training with 2055 UF matrices, we get accurate param-
eter values of all training matrices. For example, matrix t2d q9
(in training set) has a record of parameter values as {9801, 9801,
9, 1.0, 87025, 9, 0.35, 0.99, 0.99, inf, DIA}, where “inf” means
the power-law distribution cannot calculate the R value from this
matrix since it has no attribute of scale-free network. All of these
records together constitute the matrix feature database.

As the target attribute, “Best Format” is used to classify possi-
ble candidates (DIA, ELL, CSR, COO) for a particular sparse ma-
trix. Thus, a mapping from the parameters set to the “Best Format”
needs to be built. This falls into a classification problem that
can be solved by data mining tools. The formulation of map-
ping is described in Equation 1, where x⃗i(i = 1, . . . , n) rep-
resents the set of parameters of a sparse matrix in the training
set, and T⃗H stands for the set of thresholds for each attribute.
Cn(DIA,ELL,CSR,COO) represents one of the four cate-
gories. With the help of data mining method, T⃗H is generated
along with the decision tree.

f(x⃗1, x⃗2, . . . , x⃗n, T⃗H) → Cn(DIA,ELL,CSR,COO) (1)

SMAT system uses C5.0 [2] data mining tool to generate the
decision tree from the training matrix set. With its user-friendly
design, little knowledge besides the feature database is needed to
generate the model. The tool extracts informative patterns from the
input data and outputs the learning model.
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(a) Ndiags and max RD (b) ER DIA and ER ELL (c) NTdiags ratio (d) var RD (e) R

Figure 6. The distribution of the beneficial matrices (gain SpMV performance benefit using the corresponding formats) with different
parameter values, where Y-axis shows the percentage of matrices falling into each parameter value interval.

As we know, C5.0 can generate either decision tree or ruleset
pattern. Though the two patterns represent similar information, we
eventually chose ruleset for two reasons. First, ruleset classifiers are
most likely more accurate than decision tree. Although this higher
accuracy increases the execution time of the data mining method,
it only impacts the off-line stage of SMAT and is reusable after
one time decision. Second, it is convenient to convert the rules to
IF-THEN sentences, so ruleset is more straightforward to integrate
with our system. In order to reduce model inaccuracy, we guide
C5.0 to generate a confidence factor along with each rule. The
confidence factor is the ratio of the number of correctly classified
matrices to the number of matrices falling in this rule, the range of
which is between 0 and 1. The larger the confidence factor is, the
more reliable the rule is. We will show the role of this confidence
factor in Section 6.

Using a matrix feature database, SMAT generates a learning
model in ruleset pattern with a confidence factor. The usage of the
ruleset model will also be discussed in Section 6.

5.2 Kernel Searching
Previous literature [10, 11, 22, 31, 35] discussed architectural op-
timization strategies (such as blocking methods, software prefetch-
ing, SSE intrinsic usage, multi-thread, etc.) for specific architec-
tures. In SMAT a collection of strategies are grouped together as a
large kernel library in Figure 4. It is important to narrow down the
optimization implementations of the library to find potential opti-
mal kernels on a given architecture. SMAT can leverage existing
auto-tuning tools to facilitate search in off-line stage.

Kernel searching is conducted with a performance record table
and scoreboard algorithm. We run all possible implementations (up
to 24 in current SMAT system) and record corresponding perfor-
mance in a table. The implementations are arranged in a specific
order in this table, and each performance number in a record can
be indexed by all of the optimization strategies it used. Based on
the performance table, a scoreboard is created to find the most ef-
ficient strategy according to SpMV behavior on the target architec-
ture. Beginning from the implementation with a single optimization
method, if it shows performance gain compared with basic imple-
mentation, the corresponding optimization method is marked as 1
on the scoreboard, otherwise it is marked by -1. When performance
gap between two implementations is less than 0.01, we consider
this optimization strategy showing no effect on this architecture and
neglect it by default. In this way, an implementation with multiple
optimization strategies should compare its performance with those
that have just one less optimization strategy. Thus, we eventually
obtain the score of each optimization strategy, and then the score of
each implementation can be calculated by summing the scores of
strategies used in it. Through these two algorithms, the implemen-
tation with the highest score is considered to be the optimal one for
the corresponding format on the architecture. The optimal kernels
will be invoked when the data mining method builds the learning
model and the execute-measure module runs.

6. Runtime Process
In this section, we discuss runtime components (labeled by red
arrows in Figure 4) of SMAT. This procedure depends on a black-
box machine learning model with details depicted in Figure 7.
We also discuss several optimization methods to reduce runtime
overhead.
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Figure 7. Runtime procedure of SMAT

Feature Extraction In this component the parameters listed
in Table 2 are calculated without actually running SpMV in two
separated steps: First, we extract diagonal information for DIA
format. For reducing the number of times we traverse the whole
matrix, we count the diagonals and nonzero distribution together.
Thus, we extract the parameter values of DIA, ELL, and CSR
formats in this step. Second, we need to evaluate parameter R for
COO format, which will spends non-trivial time due to the heavy
computation of power-law distribution. From the feature extraction
process, we learn that the two separated steps are independent,
which will be useful to accelerate the runtime process as described
in the next paragraph.

Rule Tailoring and Grouping C5.0 generates tens of rules
in the learning model. As many of these rules are suitable for
only a small group of matrices and inaccuracy, we re-order them
according to corresponding estimated contribution (a concept from
C5.0) to the overall training set. That is, rules reducing error rate the
most appear first, and rules contributing the least appear last. Then
we tailor rules top-down until the subset of rules achieve predictive
accuracy close to whole ruleset (1% accuracy gap is acceptable).
From our experiments, we choose rules No.1-15 on Intel platform,
which decrease the error rate to 9.6%, which is very close to the
result 9.0% achieved by the whole ruleset of 40 rules.

After finishing the rule tailoring step, we assign the rules to dif-
ferent format groups. According to the rule confidence factor gener-
ated with learning model, we pick the largest one within the same
format group as format confidence factor. The format confidence
factor reflects the reliability when a corresponding format is cho-
sen by the model, and we compare it with the threshold to decide
the reliability of the prediction.
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Since it is quite time-consuming when executing all steps in or-
der, we employ an optimistic strategy to accelerate this process. The
basic idea is that we can make the decision and do not need to go
through all rules if the prediction has sufficiently high confidence.
For example, after the feature parameters are calculated in the first
step, the learning model will check DIA rule group and get DI-
A confidence. If DIA confidence is larger than the threshold, DIA
format and its optimal implementation will be output as the result.
With this strategy, the format group order should be carefully set.
As we know, DIA achieves the highest performance (Figure 3) once
a matrix satisfies specific conditions, so we arrange DIA rule group
in the first place for high performance. ELL takes the second place
for its regular and easy-to-predict behavior, which is followed by
CSR as the parameters needed have been calculated already (with
DIA and ELL), and COO takes the last place. With this order, the
prediction procedure reduces quite a lot of time while retaining pre-
diction accuracy.
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7. Experiments and Analysis
In this section, we evaluate the performance of SMAT by running
benchmark matrices and a real application, followed by accuracy
and overhead analysis.

7.1 Experimental Setup
Platform The experiments are conducted on two x86 multi-

core processors: One is a Intel Xeon X5680 with 12 3.3GHz cores,

12MB shared last-level cache, and 31GB/s memory bandwidth;
and the other one is AMD Opteron 6168 with 12 1.9GHz cores,
12MB shared last-level cache, and 42GB/s memory bandwidth. All
executions are configured to run with 12 threads.

Benchmark The off-line data mining component processes
a training set of 2055 sparse matrices randomly chosen from UF
sparse matrix collection. Excluding the training matrices, we use
the rest 331 matrices for performance evaluation, and 16 matrices
(described in Figure 8) of them for plotting visualized graphs of
their contents.

Application To demonstrate the usability of SMAT, we inte-
grate it with Hypre [14], a scalable linear solver library from LLNL.
Wherein, Algebraic Multigrid (AMG) is used as a preconditioner
such as conjugate gradients to solve large-scale scientific simula-
tion problems on unstructured grids. As noted in Section 1, the
sparse matrices show dynamic patterns to some extent among d-
ifferent levels. We anticipate it will benefit from SMAT’s co-tuning
approach.

7.2 Performance
We measure SpMV performance in GFLOPS, which is a ratio of
the number of floating-point operations to execution time. Figure 9
plots GFLOPS of both single- and double-precision on the two plat-
forms. X-axis represents the matrix number as listed in Figure 8
and Y-axis gives the performance of SpMV generated by SMAT.
The highest SMAT performance on Intel platform is 51GFLOP-
S with an efficiency of 32% in single-precision and 37GFLOP-
S (23%) in double-precision. On AMD platform, SMAT achieves
38GFLOPS (42%) in single-precision and 22GFLOPS (24%) in
double-precision. This peak performance is even higher than the
reported maximum performance of 18 GFLOPs on GPU [7].

(a) Intel (b) AMD

Figure 9. SMAT performance in single- and double-precision on
the two platforms

Figure 9 shows up to 5 times performance variation among the
matrices, which proves it is worth adopting SMAT in different ap-
plications owing to its adaptability to diverse sparse matrices. For
matrices that have affinity to DIA, ELL or COO format (No.1-8 and
No.13-16), the corresponding SpMVs achieve higher performance
than those in CSR format (No.9-12). The performance gap indi-
cates that it is meaningful to implement a high performance SpMV
library being aware of sparse structures (applications).

Moreover, we give performance comparison between SMAT
and Intel MKL multi-threaded library in Figure 10 in single- and
double-precision on Intel platform. MKL performance shown in
this figure is the maximum performance number of DIA, CSR,
and COO SpMV functions in this library. Compared with MK-
L, SMAT obtains the maximum speedup of 6.1 times in single-
precision and 4.7 times in double-precision. Although this figure
only shows 16 representative matrices, we do collect experimental
data for all 331 matrices and the average speedup over MKL is 3.2
times in single-precision and 3.8 times in double-precision. SMAT
shows big advantages in performance due to the following reasons.
First, we take advantage of optimized SpMV implementations us-
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Table 3. Analysis of SMAT
Matrix Matrix Model Execution SMAT Actual Model SMAT Overhead

Number Name Prediction Format Prediction Format Best Format Accuracy (times of CSR-SpMV)
1 pcrystk02 DIA - DIA DIA R 2.28
2 denormal DIA - DIA DIA R 2.09
3 cryg10000 DIA - DIA DIA R 2.11
4 apache1 DIA - DIA DIA R 1.94
5 bfly ELL - ELL ELL R 1.18
6 whitaker3 dual ELL - ELL ELL R 4.89
7 ch7-9-b3 ELL - ELL ELL R 2.25
8 shar te2-b2 ELL - ELL ELL R 2.24
9 pkustk14 confidence < TH CSR+COO CSR CSR W 16.39
10 crankseg 2 confidence < TH CSR+COO CSR CSR W 16.28
11 Ga3As3H12 confidence < TH CSR+COO CSR CSR W 16.2
12 HV15R confidence < TH CSR+COO CSR CSR W 15.43
13 europe osm COO - COO COO R 2.3
14 D6-6 COO - COO COO R 5.79
15 dictionary28 COO - COO COO R 2.05
16 roadNet-CA COO - COO COO R 2.38

“R” and “W” represent Right and Wrong prediction respectively.

ing SIMDization, branch optimization, data prefetch, and task par-
allelism policy. Second, as SMAT can determine the optimal for-
mat and implementation, the highest SpMV performance achieved
by these optimization methods is eventually revealed. We also ob-
serve one matrix (No.8) shows lower performance than MKL due
to inaccuracy of SMAT. We will analyze accuracy and prediction
overhead of SMAT in the next section.

(a) float (b) double

Figure 10. The performance of SMAT V.S. MKL

7.3 Analysis
Accuracy Table 3 shows the details of on-line decision making

process and its accuracy. When a sparse matrix is input to SMAT
system, the learning model performs prediction on-line and out-
puts the predicted format (noted by “Model Prediction Format”).
However, there are some exceptions that the learning model cannot
predict their formats confidently. SMAT actually executes SpMV
kernels for once and measures the performance for part of formats,
which is noted as “Execution” in this table. For example, the ex-
ecution process runs CSR- and COO- based SpMVs to determine
the final format for matrix No.9-12. In this table “Best Format”
represents the best result of exhaustive search. Though the learning
model cannot predict correctly in some cases due to relatively in-
tricate features of CSR as the most general format, SMAT still can
obtain good results on the 16 matrices. For all 331 matrices, the ac-
curacy is 92% (SP) and 82% (DP) on Intel platform, and 85% (SP)
and 82% (DP) on AMD platform respectively.

Prediction Overhead Table 3 also shows the “SMAT Over-
head” in the last column, which is represented by ratio of the over-
all execution time to the basic CSR-SpMV execution time. In most
cases, the overhead is no more than 5 times, which is very competi-
tive comparing to existing auto-tuning tools [11, 17, 17, 21, 29, 31,
35, 36] and practical for real applications. But when the learning
model fails to get a confident prediction, SMAT overhead increas-
es to about 15 times. This is acceptable when an application exe-
cutes an SpMV kernel hundreds of times. In fact, compared with

the overhead of existing auto-tuners – OSKI (40 times), clSpMV
(1-20 times), the overhead of SMAT appears acceptable.

As a straightforward way to search for the optimal result, one
option is to run SpMV kernels for all formats one by one. De-
spite plenty of implementation variants of one format, the simplest
search across basic implementations of the four formats takes more
time than SMAT. The overhead of this search method comes from
format conversion and SpMV execution. For example, the conver-
sion from CSR to ELL consumes 39.6 times of CSR-SpMV for
the No.11 matrix. The overhead of simple search reaches up to
45 times even if only four implementations are explored, which is
much higher than the case (16.2) in Table 3. Remember that SMAT
is only a proof of concept system, and its adoption of reusable ma-
chine learning model makes it feasible to extend for more formats
and implementations.

7.4 SMAT-based AMG
Considering a problem of solving equation Au = f with certain
precision criterion, where A is a large sparse matrix, u and f are
dense vectors, Hypre AMG solves this by building N levels of vir-
tual grids with a series of grid operators (A0, ...AN−1) and grid
transfer operators (P0, ...PN−2) in a setup process. Figure 11 illus-
trates a typical V-cycle in AMG. Apparently, P-operators perform
SpMV between adjacent grids, and A-operators are used to do re-
laxations like Jacobi and Gauss-Seidel methods with SpMV kernel,
too. Without a doubt, SpMV consumes most of the V-cycle’s exe-
cution time. We observe an interesting phenomenon that the two se-
ries of sparse matrices dynamically show different sparse features
from the original input matrix A. Thus, SMAT is useful on deter-
mining the optimal format and implementation for the operators at
each level, and improving the overall performance.

Level 1

Level 2

Level 3

Level 4

Figure 11. V-cycle involved with SpMV kernels in AMG solver.

We perform experiments on cljp and rugeL coarsen methods in
the setup process to generate A-operators with different structures.
The input matrices are generated by 7-point and 9-point Laplacian
methods, respectively. Instead of using CSR format all the time,
SMAT chooses DIA format for A-operators at the first few levels,
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and ELL format for most P-operators. To do this, we simply replace
the SpMV kernel codes with SMAT interfaces with no changes to
the original CSR data structure in Hypre. As shown in Table 4, the
solving part of SMAT AMG achieves more than 20% performance
gain than Hypre AMG.

Table 4. SMAT-based AMG execution time (millisecond)
Coarsen Rows Hypre AMG SMAT AMG Speedup
cljp 7pt 50 125K 3034 2487 1.22
rugeL 9pt 500 250K 388 300 1.29

8. Related Work
There has been a flurry of work related to optimizing sparse matrix
vector multiplication performance. While we could not hope to
provide a comprehensive set, we attempt to contrast our work with
several key representatives.

Storage Format Basically, SMAT discovers optimal storage
formats for sparse matrices. This idea is reflected in previous work.
By far, more than ten storage formats [7, 21, 25, 28, 29, 31] have
been proposed, most of which are either application-specific or
architecture-specific so that their applicable domains are limited.
Recently, several hybrid storage formats have been developed. Bor-
Yiing Su et al. [29] proposed a Cocktail format that splits a matrix
and represents these sub-matrices in different formats according to
relative advantages of different sparse matrix formats. Similarly, on
NVIDIA GPU CuSparse [23] stores one sparse matrix with a hy-
brid format HYB, which is a combination of two basic formats.
These new hybrid storage formats show much better performance
than conventional formats for certain sparse matrices. The major d-
ifference from SMAT is that the hybrid formats are determined stat-
ically and not applicable to dynamic sparse structures as shown at
different levels of AMG solver. In the other aspect, researchers are
developing relatively flexible formats. Richard Vuduc et al. [31] im-
proved BCSR format to VBR to explore dense blocks with different
sizes. Kourtis et al. [21] proposed CSX to exploit dense structures
not limited to dense blocks, but also 1-dimension bars and dense di-
agonals by compressing metadata. However, the process of search-
ing sub-blocks costs too much to be conducted on-line. In contrast,
in terms of storage format optimization, SMAT selects the optimal
format from the existing formats, instead of designing a new one.
The machine learning model makes an on-line decision feasible. It
is possible to add new formats by extracting novel parameters and
integrating its implementations in kernel library in SMAT.

Auto-tuning Approach For developing a domain-specific
performance-critical library, auto-tuning approach is promising
to resolve both performance and portability problems. There are
several successful auto-tuning libraries, such as ATLAS [33],
FFTW [15], SPIRAL [24], and OSKI [31], widely used in scientific
computing area. Specifically for SpMV, auto-tuning techniques are
actively investigated. Eun-jin Im et al. [19] created BCSR format to
better develop the performance of dense blocks in a sparse matrix.
Richard Vuduc et al. [31] built OSKI to tune the block size for a
matrix in BCSR or VBR formats. Williams et al. [35] deployed a
hierarchical strategy to choose the optimal architectural parame-
ter combinations. Choi et al. [11] implemented Blocked Compress
Sparse Row (BCSR) and Sliced Blocked ELLPACK (SBELL) for-
mats on Nvidia GPUs, and tuned the block sizes of them. X.Yang
et al. [36] proposed a mixed format and automatically chose the
partition size for each format with the help of a model. A common
feature of these auto-tuning designs is to focus on implementa-
tion tuning on diverse processing architectures only for a single
pre-defined storage format. In addition to architectural auto-tuning,
SMAT extends to cooperatively tune storage formats by extracting
key performance parameters from input sparse matrices. In fact,

algorithm and architecture co-tuning was advocated in PetaBrick-
s compiler [4]. Our work further proves the value of auto-tuning
techniques.

Prediction Model A core component of SMAT is the machine-
learning based prediction model for determining the optimal format
and implementation. It is a common strategy to apply prediction
model in auto-tuning approach. ATLAS [33] performed an empir-
ical search to determine optimal parameter values bounded by ar-
chitecture features. But an actual run of generated code is needed
to measure and record its performance to choose the best imple-
mentation. This empirical search has been proven efficient to gen-
erate high quality BLAS codes, although the search process takes a
lot of time. Recently, many arising auto-tuners adopt model-driven
method such as [11, 21, 29, 31, 36] without the need of actually
running the code. Though the model-driven method decreases the
prediction time, the generated code performance is considered low-
er than empirical search in most cases. Kamen Yotov et. al. [37] did
experiments on ATLAS and got this conclusion on ten platforms.
Our SMAT system combines learning model and empirical search
invoked rarely that ensures the code performance and reduces pre-
diction time at the same time. Although clSpMV [29] also used a
prediction model to tune its Cocktail format, there are certain cru-
cial differences from SMAT. First and foremost, in on-line decision
making stage, clSpMV uses the maximum GFLOPS measured in
offline stage. Unfortunately, as our experiments on UF collection
shows (see Table 1 and Figure 3) the maximum performance of
one format is not representative enough to reflect the SpMV perfor-
mance of all the matrices suitable in this format. It is more accurate
to use the features of each input matrix to determine its own best
format rather than using a single maximum performance for each
format. Second, we extract more features from real matrices in UF
collection, which can feed more training data to data mining tool-
s so as to generate more reliable rules for the learning model. W.
Armstrong et al. [5] uses reinforcement learning to choose the best
format, but users should decide the factor values which influence
the accuracy of the learning model. SMAT system is more conve-
nient to automatically generate the model and still achieve similar
prediction accuracy.

9. Conclusion
In this paper, we propose SMAT, an input adaptive SpMV auto-
tuner, which encompasses several statistical and machine learning
techniques to enable both application- and architecture-dependent,
incremental model training and black-box performance prediction.
In particular, we provide a unified interface to eliminate tedious
work on determining optimal formats and implementations for di-
verse sparse matrices. Due to cooperatively auto-tuning with both
algorithms and architectures, SMAT achieves impressive perfor-
mance of up to 51 (38) GFLOPS in single-precision and 37 (22)
GFLOPS in double-precision on Intel (AMD) multi-core proces-
sor. The average speedup is above 3 times over Intel MKL sparse
library. SMAT is also used to improve the performance of alge-
braic multi-grid algorithm from Hypre sparse linear system solver
by about 20%. Our work suggests that algorithm and architecture
co-tuning is a promising approach for developing domain-specific
auto-tuning libraries or tools.
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