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Abstract—In this work, we conduct a systematic exploration
on the promise and challenges of deep learning for the sparse
matrix format selection. We propose a set of novel techniques
to solve special challenges to deep learning, including input
matrix representations, a late-merging deep neural network
structure design, and the use of transfer learning to alleviate
cross-architecture portability issues.

Index Terms—SpMV, sparse matrix storage format, deep
learning

I. INTRODUCTION

Sparse matrix vector multiplication (SpMV) is one of the

most important kernels in many scientific applications and also

often the performance bottlenecks.

One of the most important optimization for SpMV perfor-

mance is the selection of the proper format to represent sparse

matrices in memory. This is a challenging task for programmer

since the proper format of a sparse matrix depends on its

matrix size, nonzero distribution, architecture characteristics,

and so on. It is also challenging to use traditional machine

learning due to the difficulties in coming up with the right

features of matrices for learning and the complex relations

between SpMV performance and the proper format of a sparse

matrix,

By treating a matrix as an image, the problem could map to

an image classification problem. The success of Deep Neural

Networks (DNN) in image recognition suggests the promise

of DNN for sparse matrix format selection. However, there

are some special challenges on input matrix representation,

DNN structure design, and the needs for cross-architecture

migrations of the learned models. This paper presents our

research results for addressing these challenges. Our work is

based on four basic formats CSR, COO, DIA, ELL, which are

extensively used in numerous applications. The solution can

be extended to more formats.

II. OVERVIEW

The overall process consists of four steps: 1) collecting

labels by running SpMVs on combinations of the training

matrices and the four formats. For each matrix, it labels it with

the format with which SpMV runs the fastest, 2) normalizing

each of the matrices to one size as required by CNN, 3)

designing the structure of CNN, and 4) running the standard

CNN training algorithm.

For prediction, a given matrix is first normalized to the fixed

size and then fed into the trained CNN, the output nodes give

the probabilities for each of the formats to be the best choice.

III. CHALLENGES AND SOLUTIONS

A. Input representation

For various sized matrices to work with CNN, they have

to be normalized to a single size. This is called matrix

normalization. It is important that the normalization keeps

features of the original matrix that are critical.

We start with applying the image scaling method to ma-

trices. It maps non-zero elements in the original matrix to

elements in the normalized matrix based on the scale ratio. A

region containing one or more non-zero elements becomes 1

in the normalized matrix, and 0 otherwise. This results in a

binary matrix.

Scaling keeps the coarse-grained patterns but may lose some

subtle but useful info. Thus we introduce a new representation,

density representation, to complement the binary image repre-

sentation. Instead of producing zero or one for each region of

the original image, it records the number of nonzero entries

in a region divided by the region size. We will use both

representations as the input of the CNN model.

B. DNN structure design

In our design, we come up with a late-merging structure.

As Figure 1 illustrates, the structure consists of two separate

convolutional networks with each processing the info from

one source, and only at the very last stage, the outputs of

the two networks are merged as joint features, fed to the

fully connected layer for the final output. The two convolution

networks can be regarded as processes to extract the critical

features from each of the two sources of input information.

The final layer combines these features together to make the

final prediction.

C. Cross-architecture adaptations

Except for the matrix pattern, the performance of SpMV

is also dependent on the machine (e.g., memory bandwidth,
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Fig. 1. Proposed late-merging CNN structure.

TABLE I
THE PREDICTION ACCURACY, RECALL, AND PRECISION (B/D:

BINARY/DENSITY, DT: DECISION TREE).

Format
Ground
Truth

CNN+B/D DT
Recall Precise Recall Precise

COO 667 0.71 0.74 0.53 0.61
CSR 6947 0.94 0.94 0.90 0.88
DIA 894 0.82 0.85 0.83 0.75
ELL 692 0.82 0.80 0.71 0.85

Total /
Accuracy

9200 0.90 0.85

cache size, number of cores). Thus, a prediction model built

for one machine will not work well for another.

On the other hand, training a new CNN on a platform

includes the collection of labels by rerunning SpMV on

each matrix on the new machine and rerunning the CNN

training algorithm to determine the appropriate parameters.

This process is time consuming.

To efficiently migrate a model across systems, we explore

the use of transfer learning. We use two methods. The first is

called continuous evolvement where we initialize a new model

with parameters trained on previous machine and continue to

train it with new data collected on this machine. The second

method is called top evolvement, where we fixed all early

layers and only retrain the top fully connected layer.

IV. EVALUATION

To evaluate the efficacy of the technique, we compare

with the state-of-the-art method [1], which involves manually

designed set of features of matrices and a decision tree model.

In addition, we report the impact of the two methods of

transfer learning.

Our experiments use a set of 9200 matrices including

the 2757 real-world matrices from the SuiteSparse matrix

collection [2] and others derived from them.

Table I shows the precision and recall values of four formats

of our CNN-based models and the previous Decision Tree-

based model (DT) [1], where the CNN model uses 128× 128
as the size of the representations.

Figure 2 shows the speedup distribution over testing matri-

ces on which the two models give different predictions. The

DNN model helps improve the SpMV performance on 86%

matrices over the DT model. The SpMVs using the DNN

model predicted formats achieve an average of 1.73× and the

maximum of 5.2× speedups over those of the DT model.

86%

14%

(X
)

Fig. 2. The speedup with respect to the DT-based prediction.

Fig. 3. Prediction accuracies of different retraining methods on a new platform
(Intel Xeon E5-4603 to AMD A8-7600 Radeon R7).

Figure 3 illustrates the effect of the two transfer learning

methods compared to the training from scratch in terms of

prediction accuracy. With “top evolvement”, it takes only

about a quarter of the time the “from scratch” method takes.

V. CONCLUSION

We present a systematic exploration on closing the gap be-

tween DNN and sparse matrix format selection. The resulting

predictive model significantly reduces the prediction errors and

brings substantial speedups for SpMV compared to the state

of the art techniques. As one of the pioneering studies on

bridging the gap between DNN and HPC, this work provides

a set of insights that can potentially help the adoption of DNN

in solving many other HPC problems.
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