
Please cite this article in press as: Y. Ma, et al., Optimizing sparse tensor times matrix on GPUs, J. Parallel Distrib. Comput. (2018),
https://doi.org/10.1016/j.jpdc.2018.07.018.

J. Parallel Distrib. Comput. () –

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Optimizing sparse tensor times matrix on GPUs
Yuchen Ma a, Jiajia Li b,∗, Xiaolong Wu c, Chenggang Yan a, Jimeng Sun b, Richard Vuduc b

a Institute of Information and Control, Hangzhou Dianzi University, Hangzhou, China
b Computational Science & Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
c Computer Science, Virginia Tech, Blacksburg, VA 24061, United States

h i g h l i g h t s

• Designed an in-place SpTTM algorithm to avoid tensor-matrix data transformation.
• Optimized SpTTM and SspTTM on GPUs.
• Implement the Tucker decomposition on a single node GPU system.
• Get better performance than state of the arts.

a r t i c l e i n f o

Article history:
Received 22 April 2017
Received in revised form 26 June 2018
Accepted 21 July 2018
Available online xxxx

Keywords:
Sparse tensors
Irregular algorithms
Tensor decomposition
GPU

a b s t r a c t

This work optimizes tensor-times-dense matrix multiply (Ttm) for general sparse and semi-sparse
tensors on CPU and NVIDIA GPU platforms. Ttm is a computational kernel in tensor methods-based
data analytics and data mining applications, such as the popular Tucker decomposition. We first design
an in-place sequential SpTtm to avoid explicit data reorganizing between a tensor and a matrix in its
conventional approach. We further optimize SpTtm on NVIDIA GPU platforms. Five approaches including
employing fine thread granularity, arranging coalescedmemory access, rank blocking, and using fast GPU
shared memory are developed for GPU-SpTtm. We also optimize semi-sparse tensor-times-dense matrix
multiply (SspTtm) to take advantage of the inside dense sub-structures. The optimized SpTtm and SspTtm
are applied to Tucker decomposition to improve its overall performance.

Our sequential SpTtm is 3–120× faster than the SpTtm from Tensor Toolbox library. GPU-SpTtm
obtains 6–19× speedup on NVIDIA K40c and 23–67× speedup on NVIDIA P100 over CPU-SpTtm re-
spectively. Our GPU-SpTtm is 3.9× faster than the state-of-the-art GPU implementation. Our SspTtm
implementations outperform SpTtms by up to 4.5×, which handles the input semi-sparse tensor in a
general way. Tucker decomposition achieves up to 3.2× speedup after applying the optimized Ttms. The
code will be publicly released in ParTI! library: https://github.com/hpcgarage/ParTI.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

This paper considers the problem of optimizing the tensor-
times-dense matrix (Ttm) operation for sparse tensors, which ap-
pearswidely in tensor-based data analytics. Such applications arise
in numerous domains, including neuroscience [13,33], healthcare
analytics [21,22,59], natural language processing [25], signal pro-
cessing [30], machine learning [1,2], and social network analyt-
ics [48]. Tensors, which are multi-way arrays, provide a natural
way to represent multi-dimensional data; analysis of a tensor usu-
ally takes the form of factorizing or decomposing the tensor into
interpretable components [23,28,46,49]. (This process is analogous
to the use ofmatrix decompositions to analyze 2-way data; tensors
generalize such analyses to the k-way case for k > 2.) The speed
of some of the most popular tensor decompositions, including the

∗ Corresponding author.
E-mail address: jiajiali@gatech.edu (J. Li).

so-called Tucker decomposition [28], depend critically on having a
fast Ttm, thereby motivating this study.1

Regarding this paper’s scope, we consider thread parallelism
and memory locality for single-node GPU platforms, and we are
particularly interested in sparse input tensors. Sparsity refers to
the tensor consisting mostly of zero entries, for which we wish
to avoid explicit storage and computation. By contrast, several
efficient methods exist for the case when a tensor is dense [45,
50,51,54]. The sparse case is especially important to data analytics
applications, since real-world data is often voluminous but sparse,
and tensor factorizations as the initial data processing stage need
to effectively and efficiently compress the data.

1 Beyond Ttm, other basic tensor operations that appear in other decomposi-
tions include tensor matricization (converting a tensor to an equivalent matrix),
element-wise tensor operations, Kronecker products, Khatri–Rao products, and
Matricized Tensor Times Khatri–Rao Product (Mttkrp).

https://doi.org/10.1016/j.jpdc.2018.07.018
0743-7315/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jpdc.2018.07.018
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
https://github.com/hpcgarage/ParTI
mailto:jiajiali@gatech.edu
https://doi.org/10.1016/j.jpdc.2018.07.018

Please cite this article in press as: Y. Ma, et al., Optimizing sparse tensor times matrix on GPUs, J. Parallel Distrib. Comput. (2018),
https://doi.org/10.1016/j.jpdc.2018.07.018.

2 Y. Ma et al. / J. Parallel Distrib. Comput. () –

In principle, a sparse Ttm is similar to a sparse matrix-times-
densematrix. Conventional SpTtm implementations, such as those
in Tensor Toolbox [4,5] and Cyclops Tensor Framework (CTF) [55],
first transform a sparse tensor into an equivalent sparsematrix and
then assume an optimized sparse matrix-times-dense matrix to
invoke. This approach is reasonable by employing highly efficient
state-of-the-art sparse matrix-times-dense matrix. However, this
conversion step incurs non-trivial cost in time and space. Besides,
the generated matrix could be extremely large in one dimension,
explicitly indexing of which – for a many-way tensor – can quickly
exceed the range of a 64-bit unsigned integer. Therefore, we are
motivated primarily to avoid any such conversion, carrying out the
sparse Ttm ‘‘natively’’ on a given input tensor.

Tucker decomposition consists of two types of sparse Ttms,
general sparse Ttm (SpTtm) and semi-sparse Ttm (SspTtm) (details
in Section 5). SpTtm, as we know, is a general sparse tensor times a
dense matrix; while SspTtm is a semi-sparse tensor times a dense
matrix. A semi-sparse tensor is a dense-structured tensor that at
least one mode is dense. For example, a tensor with its first mode
densemeans the fibers of thismode are either empty or fully dense.
For a semi-sparse tensor, as observed by Baskaran et al. [7], its
inside dense structures can be explored for better performance
rather than being treated as in general. In this work, along with
optimizing the performance of SpTtm on GPU platforms, we also
accelerate SspTtm on them.

Our proposed techniques make the following contributions:
First, we design an in-place sequential SpTtm algorithm to avoid

tensor-matrix data transformation, which is based on a structured
sparse tensor format and a certain special property. Additionally,
an auxiliary array is used to avoid memory write conflict for the
later-on parallel SpTtm algorithms. Our sequential SpTtm is 3–
120× faster than the SpTtm from Tensor Toolbox library [5] (Sec-
tions 3 and 4.1).

Second, we parallelize SpTtm on single-node GPU systems. We
propose several optimizing approaches for SpTtm onNVIDIAGPUs:
employing fine thread granularity, arranging coalesced memory
access, rank blocking, and using local (fast) memory (‘‘shared
memory’’ onGPUs). GPU-SpTtmobtains 6–19× speeduponNVIDIA
K40c and 23–67× speedup on NVIDIA P100 over CPU-SpTtm re-
spectively for real-world tensors. Our GPU-SpTtm is 3.9× faster
than the state-of-the-art GPU implementation (Section 4.2).

Third, we implement SspTtm on GPUs accordingly by better
exploring the dense sub-structures. Our SspTtm implementations
outperform SpTtms which handles the input semi-sparse tensor in
a general way by 4.5× (Section 5).

Lastly, by applying SpTtm and SspTtm to the Tucker decomposi-
tion, it outperformsCPUTucker decomposition by3.2× (Section6).

Partial work has been published in our previous paper [35]. This
paper is based on the previous work but extends it from the four
aspects below. (1) This work further optimizes SpTtm on NVIDIA
GPUs by employing five optimization approaches and providing
a more in-depth analysis of their performance. (2) SspTtm op-
timizations on these platforms are also explored, which further
speed up Ttm operations in Tucker decomposition. (3) We built a
parallel Tucker decomposition for GPUs by applying the optimized
SpTtm and SspTtm. (4) Afterwards, these algorithms are tested on
an extended sparse tensor set, including both third- and fourth-
order real-world tensors.

2. Background

This section introduces some essential tensor notations. Some
of its examples and definitions come from the overview by Kolda
andBader [28]. A list of symbols andnotation in this paper is shown
in Table 1.

Table 1
List of symbols and notations.
Symbols Description

X , Y , Z Sparse and semi-sparse tensors
ind, val Index and value arrays of X in COO format
X(n) Matricized tensor X in mode-n
A,B, C, Ã Dense matrices
ar, br, cr Dense vectors
– Weight vector
N Tensor order
I, J, K Tensor mode sizes
nnz #Nonzeros of a tensor
R Approximate tensor rank (usually a small value)
nfibs #Mode-n fibers of X
fptr The beginnings of X ’s mode-n fibers, sized nfibs
flen The average length of X ’s mode-n fibers, flen = nnz

nfibs
DY Dense mode set of a semi-sparse tensor
SY Sparse mode set of a semi-sparse tensor
nchunks #DY -chunks of Y
cptr The beginnings of Y ’s DY -chunks, sized nchunks
NTB Maximum #Threads per block
SSM Maximum shared memory size in words
NTR Maximum #Threads per block for a matrix row

2.1. Tensor representations

The orderN of anNth-order tensor is sometimes also referred to
the number ofmodes or dimensions. A first-order (N = 1) tensor is
a vector, denoted by a boldface lowercase letter, e.g., v; A second-
order (N = 2) tensor is a matrix, denoted by a boldface capital
letter, e.g., A. Higher-order tensors (N ≥ 3) are denoted by bold
capital calligraphic letters, e.g., X . A scalar element at position
(i, j, k) of a tensor X is xijk. We show an example of a sparse third-
order tensor, X ∈ RI×J×K , in Fig. 1(a).

Some tensor algorithms operate on the subsets of a tensor.
One such subset is the mode-n fiber, shown in Fig. 1(b); it is a
vector extracted by fixing the indices of all modes but mode n.
For example, the mode-1 fiber of a tensor X is denoted by the
vector f:jk = X (:, j, k), where the colon indicates all indices of
mode 1. A slice, shown in Fig. 1(c), is a 2-dimensional cross-section
(i.e., matrix) of a tensor, extracted by fixing the indices of all modes
but two, e.g. S::k = X (:, :, k).

Some other tensor algorithms operate on the equivalent matrix
by folding (or reshaping) a tensor. Matricization reshapes a tensor
into an equivalent matrix by arranging all mode-n fibers to be the
columns of amatrix. For example,mode-1matricization of a tensor
X ∈ R3×4×5 results in a matrix X(1) ∈ R3×20. (Readers may refer to
Kolda and Bader’s survey for more details [28].)

2.2. TTM

Tensor-Times-Matrix (Ttm) in mode n, also known as the n-
mode product, is the multiplication of a tensorX ∈ RI1×···×In×···×IN

with a matrix U ∈ RIn×R,2 denoted by Y = X ×n U. This results in
an I1 × · · · × In−1 × R× In+1 × · · · × IN tensor, and its operation is
defined as

yi1···in−1rin+1···iN =
In∑

in=1

xi1···in−1inin+1···iN uinr . (1)

Since the real application data is always sparse with a relatively
small amount of non-zero entries, we consider sparse tensor-
times-dense matrix in this paper. Sparse Ttm is a critical kernel
in tensor decomposition algorithms, such as the Tucker decom-
position. The factor matrices in tensor decomposition are usually
dense, and the number of columns of each matrix is called rank.

2 Different from Kolda and Bader’s definition [28], we use the transposed form
of the matrix U for efficient Ttm in row-majored storage pattern of C language.

Please cite this article in press as: Y. Ma, et al., Optimizing sparse tensor times matrix on GPUs, J. Parallel Distrib. Comput. (2018),
https://doi.org/10.1016/j.jpdc.2018.07.018.

Y. Ma et al. / J. Parallel Distrib. Comput. () – 3

Fig. 1. Representations of a third-order tensor X ∈ RI×J×K , where a colon indicates all indices of a mode.

We focus on the popular low-rank tensor decompositions, which
means the factor matrices all have a small number of columns,
usually less than 100.

The traditional SpTtm algorithm in Tensor Toolbox [5] first
matricizes the input sparse tensor to a sparse matrix, then does a
sparsematrix-densematrixmultiplication, afterwards, transforms
the outputmatrix back to a tensor. The explicit two-stage transfor-
mation consumes non-trivial execution time, which is about 17%
for tensor choa using sparse Ttm in Tensor Toolbox.

2.3. NVIDIA GPU architecture

NVIDIA Graphic Processor Units (GPUs) are highly parallel,
many-core processors with high memory bandwidth [14]. We
particularly consider GPUs that support CUDA, a general-purpose
parallel computing platform and programming model. A GPU con-
sists ofmanyCUDAcores,which are organized as groups of Stream-
ing Multiprocessors (SMs). The P100 GPU card used in this work
employs Pascal architecture, which integrates 56 SMs and each SM
consists of 64 CUDA cores. All cores in an SM share 64 KB config-
urable on-chip memory, L1 cache and shared memory. Three con-
figurations are available: 16 KB/48 KB, 32 KB/32 KB, and
48 KB/16 KB for L1 cache and shared memory respectively. Global
memory is cached by both L1 and L2 caches depending on the
data is writable or read-only. Writable global memory data can
only be cached by the L2 cache, read-only global memory data
also can be cached by the L1 cache by marking the data with
both ‘‘const’’ and ‘‘__restrict__’’ keywords. It is necessary to
carefully allocate memory access paths for different types of data.
CUDA has three-level thread hierarchy, grids, thread blocks, and
threads. The maximum of their sizes varies among different GPU
architectures. A P100 GPU supports up to 1024 threads per thread
block. Threads are executed simultaneously in warps, usually a
group of 32 threads. It is critical to have enough blocks and threads,
good thread behavior inside a warp, and efficient memory access
to achieve a satisfiable performance of CUDA programs.

3. Sparse tensor formats and property

Two sparse tensor formatswill be introduced alongwith a prop-
ertywhich is critical to the fast implementations of both SpTtm and
SspTtm.

3.1. Notations

We first introduce some names for tensor modes with specific
properties, which will be used in the following content.

Fig. 2. COOand sCOO formats of a semi-sparse 3× 3× 2 tensor,with densemode 3.

• Product mode: the mode in which a tensor times a matrix,
e.g., mode n in Eq. (1).
• Indexmode: the restmodes after excluding the productmode,

e.g., modes 1, . . . , n− 1, n+ 1, . . . ,N in Eq. (1).
• Dense mode: themode in which all non-empty fibers are fully

dense.
• Sparse mode: the mode in which at least one non-empty fiber

is sparse.

All the modes of a general sparse tensor are sparse modes, while at
least one dense mode exists in a semi-sparse tensor.

3.2. Sparse tensor formats

COO format. Tensors generated from real-world applications are
usually sparse with only a relatively small number of non-zero
entries (as tensors will be shown in Table 3). Therefore, a sparse
tensor is represented by a compressed format by storing only non-
zero entries. The simplest yet popular format of a sparse tensor
is coordinate (COO) format. ind and val represent the indices and
values of a sparse tensor’s non-zero entries respectively. val is an
nnz-array of floating-point numbers, ind is an N-array of integer
pointers, where every pointer stores the nnz indices of one mode.
Fig. 2(a) shows a 3 × 3 × 2 sparse tensor in the COO format. The
indices of each mode are represented as ind1, ind2, and ind3 for the
third-order tensor. We notice that replicated indices exist in ind1
(ind2, or ind3).

sCOO format. Since the indices of entries within a dense fiber
inhere in their storage location, it is unnecessary to explicitly
store the indices of dense modes using extra space for a semi-
sparse tensor. We use a simple semi-COO (sCOO) format which
only stores the indices of sparse modes and with all non-zeros in a
particular order of densemodes. For example, the tensor in Fig. 2 is

Please cite this article in press as: Y. Ma, et al., Optimizing sparse tensor times matrix on GPUs, J. Parallel Distrib. Comput. (2018),
https://doi.org/10.1016/j.jpdc.2018.07.018.

4 Y. Ma et al. / J. Parallel Distrib. Comput. () –

Fig. 3. Sparse matrix-dense matrix multiply.

actually a semi-sparse tensor with dense mode 3. Fig. 2(b) shows
the sCOO format for it, where each index pair from ind1 and ind2
indexes a densemode-3 fiber. The idea of distinguishing dense and
sparse modes was first proposed by Baskaran et al. [7]. For this toy
example tensor, sCOO format saves 50% storage compared to COO
format. Assume integer and floating-point values have the same
bit-length, sCOO format saves at least 25% storage for a third-order
semi-sparse tensor with one dense mode and at least k

N+1 storage
space for anNth-order semi-sparse tensorwith kdensemodes. The
storage saving is because (1) sCOO does not store all the indices
of dense modes. (2) The rest index arrays of sCOO usually become
shorter because of index compression, which saves more space.

3.3. Sparse tensor property

Property. SpTtm outputs a semi-sparse tensor whose product mode
is dense, while index modes remain unchanged.

Proof. Assume an SpTtm takes a sparse tensor X , a dense matrix
U as inputs and a tensor Y as output. Mode-n fibers of X and Y
tensors are defined as

fXn = X (i1, . . . , in−1, :, in+1, . . . , iN),

fYn = Y(i1, . . . , in−1, :, in+1, . . . , iN),
where i1, . . . , in−1, in+1, . . . , iN are given. fXn is a sparse fiber be-
cause of the sparsity of X . Thus, Eq. (1) is equal to

f Yn (r) =
In∑

in=1

f Xn (in)uinr . (2)

When r is fixed, element fYn (r) is a dot-product of fiber fXn andu(:, r),
a column of U. Since u(:, r) is a dense vector, each f Yn (r) is non-
zero if at least one non-zero exists in fiber fXn . That is, a non-empty
fiber fXn generates a dense fiber fYn . For each pair of fixed indices
(i1, . . . , in−1, in+1, . . . , iN), we compute amode-n fiber ofY , which
shows the indices i1, . . . , in−1, in+1, . . . , iN are unchanged for the
resulting tensor Y . Fig. 3 shows the behavior of a second-order
sparse tensor (sparse matrix) times a dense matrix. The product
mode j is a dense mode in the resulting matrix, while its index
mode i is the same with the input sparse matrix, except it indexes
dense fibers of the output.

4. Sparse tensor times matrix

4.1. SpTtm on CPUs

Based on COO and sCOO formats, we implement sequential
SpTtm by directly operating on non-zero entries without explicit
transformation between a tensor and a matrix.

Given a sparse tensor X ∈ RI1×I2×···×IN and a dense matrix
U ∈ RIn×R, we know the resulting tensor Y is a semi-sparse tensor
from the above property (Section 3.3). The intuitive algorithm for
SpTtmwithout explicit transformation is to loop all non-zeros ofX
bymultiplying each with its corresponding row ofU. Then all rows

having the same index pair (i1, . . . , in−1, in+1, . . . , iN) are sum-
reduced to get a fiber of Y (fYn).

This algorithmhas two issues: First, in the sum-reduction stage,
there is an implicit index comparing operation even if X is pre-
sorted. The complexity of the index comparison is high especially
for higher-order tensors. An extra comparison operation for an
additional mode increases the SpTtm complexity by nnzX , which
is non-trivial especially for low-rank tensor decompositions with
a small R. Second, the sum-reduction stage is hard to parallelize
and may lead to severe memory contention.

To solve these problems, we design our sequential SpTtm algo-
rithm (Algorithm1) to avoid expensive index comparison andwith
inherent good parallelism. Each mode-n fiber of Y (fYn) is a sized-R
dense vector, we record nfibs as the number of fYn . Then the number
of non-zeros of Y: nnzY = nfibs × R. We use an extra array fptr to
identify the beginning locations of every mode-n fiber of X (fXn),
then iterate all nfibs fibers of Y . Comparing to iterating X in the
intuitive algorithm, we avoid the expensive index comparison in
the sum-reduction stage.

Our SpTtm has two stages, preprocessing and computing. The
preprocessing stage includes three steps: sorting X , calculating
fptr , and pre-allocating semi-sparse tensor Y . X is first sorted
according to the product mode n, then fptr is allocated and cal-
culated to identify the beginning locations of nfibs mode-n fibers
of X (fXn). From SpTTM’s property (Section 3.3), the semi-sparse
tensor’s index modes remain unchanged, so the number of fYn is
also nfibs. Based on the pre-sorted X , we pre-allocate exact space
for Y and only for its non-zero entries, because X ’s (N − 1)
indices can be reused by Y . During the computation stage of
Algorithm 1, each fYn = valY (i, :) locates the corresponding fXn =
valX (fptr (i), . . . , fptr (i + 1) − 1). Then fYn is the sum of rows u(k, :)
scaled by each non-zero of fiber fXn .

Algorithm 1: CPU sequential SpTtm algorithm (SEQ-SpTtm).

Input: A sparse tensor X ∈ RI1×I2×...×IN , a dense matrix U ∈ RIn×R, and
an integer n;

Output: A semi-sparse tensor Y ∈ RI1×...×In−1×R×In+1 ...×IN ;
1: nfibs: the number of mode-n fibers of Y
2: fptr : the beginnings of each X mode-n fiber, size nfibs.
3: for i = 0, . . . , nfibs do
4: for j = fptr (i), . . . , fptr (i+ 1)− 1 do
5: k = indXn (j)
6: for r = 0, . . . , R− 1 do
7: valY (i, r)+ = valX (j)× u(k, r)
8: end for
9: end for
10: end for
11: Return Y;

The number of floating-point operations (flops) of sequential
SpTtm (Algorithm 1) is

flops = 2 · nnzX · R, (3)

where nnzX is the number of non-zeros of X . Algorithm 1 elim-
inates the index comparison. For a third-order sparse tensor, our
SpTtm only uses nfibs extra space for fptr . Since nfibs ≤ nnzX ,
the extra space is much smaller than the matricized tensor of X
(3·nnzX) in the traditional algorithmswhere tensor transformation
is needed.

We parallelize SpTtm on the multicore CPU architecture using
OpenMP. Since our sequential SpTtm iterates all independent fibers
of Y , we can easily parallelize this loop by assigning CPU threads,
i.e., parallelize the outermost for loop. Each thread computes a size-
R fiber fYn independently and shares dense matrix U. Because our
SpTtm algorithm limits the sum-reduction dependency inside a

Please cite this article in press as: Y. Ma, et al., Optimizing sparse tensor times matrix on GPUs, J. Parallel Distrib. Comput. (2018),
https://doi.org/10.1016/j.jpdc.2018.07.018.

Y. Ma et al. / J. Parallel Distrib. Comput. () – 5

thread, parallelized SpTtm naturally avoids locks and utilizes CPU
caches well for writingY . We use CPU-SpTtm to represent parallel
CPU SpTtm implementation in the following contents.

4.2. SpTtm on GPUs

To fully explain our optimizations on GPU algorithm, we first
start by describing a naïve implementation, then propose four
more parallelization and optimization approaches for SpTtm by
incrementally considering GPU architecture characteristics. The
five implementations are: naïve implementation, employing fine
thread granularity, arranging coalescedmemory access, rankblock-
ing, and using fast shared memory.

In this work, we assume the sparse tensor X and the dense
matrix U both reside in GPU memory. We assume all the division
operations below are fully divisible.

4.2.1. Naïve implementation
As shown in Algorithm 2, we assign each CUDA thread to one

mode-n fiber of Y (fXn) and a fiber of X (fXn). Each thread performs
multiplication on every non-zero of fiber fXn with its corresponding
rows of u(k, :). When launching the kernel, we set dimGrid = NTB
and dimBlock = nfibs/NTB, where NTB is the number of threads per
block. We tune the value of NTB for the best performance.

Algorithm 2: Naïve SpTTM algorithm on GPU (GPU-SpTtm-Naïve).
Input: A sparse tensor X ∈ RI1×I2×...×IN , a dense matrix U ∈ RIn×R, an

integer n, the beginnings of nfibs X mode-n fiber fptr , and GPU thread
hierarchy dimGrid = NTB and dimBlock = nfibs/NTB;

Output: A semi-sparse tensor Y ∈ RI1×...×In−1×R×In+1 ...×IN ;
1: tidx = threadIdx.x;
2: i = blockIdx.x× blockDim.x+ tidx; ▷ i: global index of a mode-n Y

fiber.
▷ j: global index of the non-zeros of mode-n X fiber.

3: for j = fptr (i), . . . , fptr (i+ 1)− 1 do
4: k = indXn (j)
5: for r = 0, . . . , R− 1 do
6: valY (i, r)+ = valX (j)× u(k, r)
7: end for
8: end for
9: Return Y;

Some inefficient spots are observed:

• Uncoalesced and redundant memory transfers. The memory
transfers for matrix U are in strided-R pattern, and the data
transferred are much larger than the size of U because of
irregular memory access.
• Coarse-grained task granularity. Algorithm 2 assigns a fiber

per CUDA thread to do flen computations with sized-R rows of
U, where flen is the average length of the fibers. For lightweight
GPU threads, it might be better to allocate fine-grained tasks
for each thread.
• Not utilizing fast memory. Algorithm 2 accesses data only

from global memory without well utilized fast scratch-pad
memory (shared memory or L1 cache) for writable data,
since NVIDIA Kepler and later GPUs cannot use L1 cache for
writable data automatically.

To deal with the inefficiency, we propose optimizations de-
scribed below.

4.2.2. Fine thread granularity
Instead of one-dimensional thread blocks, we assign two-

dimensional thread blocks, so both rows and columns of U are
parallelized in Algorithm 3. However, if the matrix row size R is
a little large, say 128, the number of threads in x-dimension can

be only up to 8, which leads to imbalanced parallelism for x and
y dimensions. To prevent this issue, we set a threshold NTR to
limit the number of threads allocated to each matrix column, and
compute a segment of a column in one iteration.

When launching Algorithm 3, we set dimBlock = (NTB/NTR,NTR)
and dimGrid = nfibs/NTB.

Algorithm3: SpTtm algorithmwith fine thread granularity onGPU
(GPU-SpTtm-FG).
Input: A sparse tensor X ∈ RI1×I2×...×IN , a dense matrix U ∈ RIn×R, an

integer n, the beginnings of nfibs X mode-n fiber fptr , and GPU thread
hierarchy dimGrid = nfibs/NTB and dimBlock = (NTB/NTR,NTB);

Output: A semi-sparse tensor Y ∈ RI1×...×In−1×R×In+1 ...×IN ;
1: nr

loops =
R

blockDim.y ▷ #Iterations for large R.
2: tidx = threadIdx.x;
3: tidy = threadIdx.y;
4: i = blockIdx.x× blockDim.x+ tidx; ▷ i: global index of a mode-n Y

fiber.
▷ j: global index of the nonzeros of mode-n X fiber.

5: for j = fptr (i), . . . , fptr (i+ 1)− 1 do
6: k = indXn (j)
7: for lr = 0, . . . , nr

loops do
8: r = tidy+ lr × blockDim.y
9: valY (i, r)+ = valX (j)× u(k, r)
10: end for
11: end for
12: Return Y;

4.2.3. Coalesced memory access
From Algorithm 3, we observe a memory access pattern where

thememory access of tensor indices and values are contiguous and
coalesced but that of matrix U is not. In Algorithm 3, threads in a
warp, (0, 0), (1, 0), . . . , (32, 0) (x-dimensiondominates), fetch ele-
ments from randomaddresses because of different k indices,which
leads to an uncoalesced memory access. To solve this problem, we
swap thread dimensions x and y, thus x-dimension points to ranks
(columns ofU) and y-dimension operates on fibers ofX andY . The
algorithm is named GPU-SpTtm-MC.

When launching this algorithm, we set dimBlock = (NTR,

NTB/NTR) and dimGrid = nfibs/NTB. Therefore, one warp fetches
coalesced global memory addresses of tensor indices, values, and
matrix elements.

4.2.4. Rank blocking
The above algorithms consider the spatial data locality within a

fiber, but not the temporal locality between fibers. In Algorithm 3,
different fibersmay have the same k index, whichmeans accessing
the same row of U. Rank blocking strategy is proposed to increase
the reuse of row data. Since the computation in-between matrix
columns are independent, we exchange the loop order to ensure
the loop over ranks (matrix columns) goes before the loop over
fiber elements. This strategy enlarges the chance of short rows
staying in caches.

Its algorithm (named GPU-SpTtm-RB) can be obtained by swap-
ping tidx and tidy usage and the two loops in Algorithm3. However,
for each batch of short size-NTR matrix rows, the index ks and
values of the tensors need to be reloaded from global memory.
The benefit of rank blocking depends on the non-zero distribution
of the input tensor, it is not easy to determine whether rank
blocking is beneficial compared with the above memory coalesced
algorithm (GPU-SpTtm-MC).

4.2.5. Using shared memory
Obviously, the output valY is reused R times for each fiber of

X . As we mentioned, the writable valY of Y cannot be cached
in the L1 cache for Kepler and later NVIDIA GPU architectures,

Please cite this article in press as: Y. Ma, et al., Optimizing sparse tensor times matrix on GPUs, J. Parallel Distrib. Comput. (2018),
https://doi.org/10.1016/j.jpdc.2018.07.018.

6 Y. Ma et al. / J. Parallel Distrib. Comput. () –

Algorithm 4: SpTTM algorithm using GPU shared memory (GPU-
SpTTM-SM).
Input: A sparse tensor X ∈ RI1×I2×...×IN , a dense matrix U ∈ RIn×R, an

integer n, the beginnings of each X mode-n fiber fptr , sized nfibs, and
GPU thread hierarchy dimGrid = NTB and dimBlock = (NTR,NTB/NTR);

Output: A semi-sparse tensor Y ∈ RI1×...×In−1×R×In+1 ...×IN ;
1: yshr: shared memory space for Y .
2: nr

loops =
R

blockDim.x
3: tidx = threadIdx.x;
4: tidy = threadIdx.y;
5: i = blockIdx.x× blockDim.y+ tidy; ▷ i: global index of a Y mode-n

fiber.
6: for lr = 0, . . . , nr

loops do
7: r = tidx+ lr × blockDim.x
8: yshr (tidy, tidx) = 0;
9: __sync();

▷ j: global index of the nonzeros of X mode-n fiber.
10: for j = fptr (i), . . . , fptr (i+ 1)− 1 do
11: k = indXn (j)
12: yshr (tidy, tidx)+ = valX (j)× u(k, r)
13: end for
14: __sync();

15: valY (i, r) = yshr (tidy, tidx);
16: __sync();
17: end for
18: Return Y;

but can only reside in the slower L2 cache. Therefore, we store
the output in shared memory first and then write them back to
global memory all at once. In this way, we reduce global memory
transfers. Its algorithm is shown in Algorithm 4. , When launching
this algorithm, we set dimBlock = (NTR,NTB/NTR), dimGrid =
nfibs/NTB and set shared memory size SSM = NTB words because the
size of yshr is dimBlock.y × dimBlock.x. Since nTB ≤ 1024 for the
GPUs we used, the needed shared memory space is smaller than
8KB. That means only the configuration of 48 KB L1 cache/16 KB
shared memory is used for Algorithm 4.

5. Semi-Sparse tensor times matrix

SspTtm is defined as the Ttm product of a semi-sparse tensor
and a dense matrix, the former being the result of an SpTtm.
Although it is possible to convert the semi-sparse tensor back to
fully sparse so that SspTtm can be performedwith the above SpTtm
algorithm, we propose a tailored SpTtm algorithm optimized spe-
cially for semi-sparse tensors.

Given a semi-sparse tensor Y ∈ RI1×I2×···×IN with DY ⊂

{1, 2, . . . ,N} being a set of dense modes of Y and a dense matrix
U ∈ RIn×R, requiring n /∈ DY , the SspTtm algorithm also computes
Z = Y ×n U. We use SY to represent the sparse modes of Y ,
SY = {1, 2, . . . ,N} − DY .

Analogous to SpTtm, our SspTtm also has two stages, prepro-
cessing and computing. To beginwith,we sort values and indices of
Y in a specific mode order s.t. SY ≺ n ≺ DY . For example, if modes
1, 3, 5 are sparse, mode 2,4 is dense, 1 ≺ 5 ≺ 3 ≺ 2 ≺ 4 would be
a valid sorting order for an SspTtm in mode 3. The purpose of this
sorting is to gather elements sharing identical sparse mode indices
together in a dense ‘‘chunk’’. In the example above, a chunk of Y
is a dense array of size I2 × I4, which is a generalization of fibers
in SpTtm algorithms. Based on the sparse tensor property (Section
3.3),Z will have the shape of I3×I2×I4 for all chunks by converting
mode 3 to a dense mode and enlarging its chunks.

However, different from SpTtm, SspTtm in Tucker decompo-
sition does not need the expensive sorting step of preprocess-
ing stage. In the Tucker decomposition, an (N − 1)-Ttm-chain (a

sequence of Ttms, refer to Section 6) can be ordered the same with
the sorting order of the input sparse tensor X , and an SpTtm or
SspTtm keeps the same order for their sparse modes. Then, only
one sorting per Ttm-chain for a sparse tensor X is needed for
the first SpTtm. The input semi-sparse tensors for the following
SspTtms remain sorted. For an N-mode Tucker decomposition,
there are N different sorting orders throughout the entire algo-
rithm, which can be reused among iterations. We cache the N
preprocessed tensors in CPU memory and transfer them to GPU
memory when necessary to speed up the preprocessing process
and save the precious GPU memory.

The CPU parallel algorithm of SspTtm is Algorithm 5, where the
outmost loop-i is parallelized to launch multiple OpenMP threads.
For SspTtm GPU implementations, we map a CUDA thread block
into a chunk, because the access pattern of the values within
a Z chunk only depends on the continuously stored Y chunks
from the previous sorting stage, so inter-chunk calculations can be
safely parallelized without data race. In a Tucker decomposition
application, where a typical R = 16, the number of threads per
block can vary from 16 to 65536. The first Ttm in the Tucker de-
composition is an SpTtm, the rest SspTtms handle CUDA block sizes
in a typical range of 256–65536, large enough to make full use of
the StreamingMultiprocessors. We adjust the block size according
to CUDA’s restriction of 1024 threads per block, by calculating
chunks in batch. The amount of values per block is small enough
to fit into L1/L2 caches so we do not apply shared memory to this
algorithm.

Algorithm 5: CPU parallel SspTtm algorithm (CPU-SspTtm).

Input: A semi-sparse tensor Y ∈ RI1×I2×...×IN with dense modes DY , a
dense matrix U ∈ RIn×R, and an integer n;

Output: A semi-sparse tensor Z ∈ RI1×...×In−1×R×In+1 ...×IN ;
1: nZ

chunks: the number of chunks in Z
2: sYchunk: the size of a chunk in Y
3: sZchunk: the size of a chunk in Z
4: cptr : the beginnings of each chunk of Y , size nZ

chunks.
5: parfor i = 0, . . . , nZ

chunks − 1 do
6: for j = cptr (i), . . . , cptr (i+ 1)− 1 do
7: r = indYn (j);
8: for c = 0, . . . , R− 1 do
9: for k = 0, . . . , sYchunk − 1 do
10: valZ (i× sZchunk + r × sYchunk + k)+ = valY (j× sYchunk + k)×

u(r, c);
11: end for
12: end for
13: end for
14: end parfor
15: Return Z;

6. Tucker decomposition

Based on our optimizations of SpTtm and SspTtm, we design
Tucker decomposition for a heterogeneous CPU–GPU platform.

6.1. Tucker-ALS

Tucker decomposition approximates a tensor as a product of a
small core tensor and a set of factor matrices: X ≈ G ×1 U1 ×

U2 × · · · × UN , where X ∈ RI1×···×IN , G ∈ RR1×···×RN is the core
tensor and Ui ∈ RIi×Ri , i = 1, . . . ,N are factor matrices. The
number of columns of each factor matrix is also called a rank of
Tucker decomposition, say rank-(R1, . . . , RN) tensor decomposi-
tion. Ri, i = 1, . . . ,N is usually small for low-rank decomposition,
and they can be different from each other.

Please cite this article in press as: Y. Ma, et al., Optimizing sparse tensor times matrix on GPUs, J. Parallel Distrib. Comput. (2018),
https://doi.org/10.1016/j.jpdc.2018.07.018.

Y. Ma et al. / J. Parallel Distrib. Comput. () – 7

Table 2
Experimental platforms configuration.
Parameters Intel NVIDIA

Xeon CPU E5-2650 v4 Tesla K40c Tesla P100

Microarchitecture Broadwell-EP Kepler Pascal
Frequency 2.2GHz 0.75GHz 0.72GHz
#Physical cores 12 2880 3584
Peak SP performance 845GFlop/s 4290GFlop/s 9300GFlop/s
Last-level cache 30MB 1.6MB 4MB
Memory size 792GB 12GB 16GB
Memory bandwidth 77GB/s 288GB/s 732GB/s
Compiler gcc 5.4.1 nvcc 9.0 nvcc 9.0

Higher-Order Orthogonal Iteration (HOOI) algorithm [18], as
a popular Tucker decomposition algorithm, is an iteration algo-
rithm with each iteration updating all factor matrices once at a
time. In this paper, we study HOOI based on the alternating least
squares paradigm (Algorithm 6). HOOI algorithm takes random
factor matrices or a decomposition produced by Higher-Order SVD
(HOSVD) [17] as the initial settings and iterates until a pre-defined
convergence rate satisfied or exhausting the maximum number
of iterations. For an iteration, each factor matrix is updated by a
Ttm-chain and an SVD operation in its corresponding mode. After
all factor matrices are acceptable, the core tensor G is computed.
Therefore, Ttm-chain and SVD are the dominant computations of
the Tucker decomposition.

Algorithm 6: Tucker decomposition algorithm (HOOI) with ALS.

Input: A sparse tensor X ∈ RI1×I2×...×IN , and a set of ranks R1, . . . , RN ;
Output: Factor matrices U1, . . . ,UN and a core tensor G;
1: Initialize Un ∈ RIn×R, n = 1, . . . ,N randomly or using HOSVD
2: do
3: for n = 1, . . . ,N do
4: Y ← X ×1 U1 . . .×(n−1) U(i−1) ×(n+1) U(n+1) . . .×N UN
5: Un ← Rn leading left singular vectors of Y (n)
6: end for
7: while fit ceases to improve or maximum iterations exhausted
8: G← X ×1 U1 . . .×N UN
9: Return G,U1, . . . ,UN ;

6.2. Ttm-Chain

The Ttm-chain for a sparse input tensor consists of two types
of Ttms—SpTtm and SspTtm. The first Ttm in Line 4 of Algo-
rithm 6 is an SpTtm, and the following Ttms are all SspTtms. We
use our fastest CUDA implementations of them to accelerate the
Ttm-chains. The output tensor of every Ttm (SpTtm or SspTtm)
resides in GPU memory, thus no memory transfer is needed inside
a Ttm-chain.

6.3. SVD

According to the property in Section 3.3, the output Y of
Ttm-chain is dense in all except mode n. We treat it as a dense
tensor, then Y(n) is a dense matrix. For the SVD operation, we
employ svd function (‘‘sgesvd’’) from OpenBLAS library [47] on
CPUs, while use SVD function (‘‘cusolverDnSgesvd’’) from cu-
SOLVER [15]. However, from our experiments, the SVD function of
cuSOLVER is not as efficient as OpenBLAS version, mainly because
of the irregular shape of the matricized Y(n).

7. Experiments

We test our algorithms on three platforms, one Intel multicore
CPU platform and two GPU platforms. Our SpTtm performance is
compared with state-of-the-art Tensor Toolbox [28] library and a
recent sparse Ttm implementation [43] on GPUs. We also analyze

Table 3
Description of sparse tensors.
Tensors Order Mode sizes NNZ Density

choa 3 712K × 10K × 767 27M 5.0× 10−06

nell2 3 12K × 9K × 29K 77M 1.3× 10−05

fb-m 3 23M × 23M × 166 100M 1.1× 10−09

fb-s 3 39× 39× 532 140M 1.7× 10−10

deli 3 533K × 17M × 2M 140M 6.1× 10−12

nell1 3 3M × 2M × 26M 144M 9.1× 10−13

nips 4 2K × 3K × 14K × 17 3M 1.8× 10−06

uber 4 183× 24× 1140× 1717 3M 3.8× 10−04

enron 4 6K × 6K × 244K × 1K 54M 5.5× 10−09

flickr 4 320K × 28M × 2M × 731 113M 1.1× 10−14

deli4d 4 533K × 17M × 2M × 1K 140M 4.3× 10−15

ourGPUoptimizationmethods incrementally and the performance
behavior by varying product modes and rank sizes.

7.1. Platforms and dataset

We use Intel Xeon CPU E5-2650 v4 and NVIDIA Tesla K40c
and P100 platforms, their configurations are shown in Table 2.
NVIDIA Tesla K40c and P100 havemuch higher peak floating-point
performance and memory bandwidth than the Intel Xeon CPU.
All experiments perform single-precision floating-point values and
the performance numbers are averaged over five runs. Without
further specification, R is set to 16.

We use third-order and fourth-order sparse tensors from real
applications, collected in FROSTT [52] and HaTen2 [24]. Tensors
consist of medical data from Children’s Healthcare of Atlanta
project (choa with patient-medication-diagnosis), Never Ending
Language Learning (NELL) project [11] (nell1 and nell2 with
noun-verb-noun), Freebase RDF data [24] ‘‘freebase-music’’ and
‘‘freebase-sampled’’ (fb-m and fb-s with entity-entity-relation),
data crawled from tagging systems [20] (deliwith user-item-tag
and deli4d with user-item-tag-date), Enron emails (enron with
sender-receiver-word-date), Uber pickup data in 2016 (uberwith
date-hour-latitude-longitude), NIPS papers published from 1987
to 2003 (nips with id-author-word-year), and tags from Flickr
(flickr with user-item-tag-date). The tensor property is shown
in Table 3. Please refer to the original datasets [24,52] for further
information.

7.2. Overall performance

We first show the speedups of our GPU-SpTtm algorithms over
the OpenMP parallelized CPU-SpTtm in Fig. 4 and compare their
performance to FCOO-SpTtm performance [43] on the GPU P100
platform.3 The speedup numbers of each tensor are averaged
among all its modes. SpTtm GPU performance is shown using the
best one of all the five GPU implementations in Section 4.2. GPU-
SpTtm achieves up to 67× speedups over CPU-SpTtm. Compared to
the state-of-the-art work [43], our GPU-SpTtm implementations
overperform FCOO-SpTtm by up to 3.9×. From our experiments,
the best speedup of GPU-SpTtm is mostly obtained by GPU-SpTtm-
SM (Algorithm 4), which verifies our optimizations. The detailed
analysis on the five approaches will be given afterward. CPU-
SpTtm’s performance is obtained by using 12 threads.

An interesting phenomenon is the speedup difference between
tensor deli and deli4d. From Table 3, deli4d has the same
number of non-zeros with deli, but with an extra ‘‘date’’ mode,
whereas GPU-SpTtm achieves higher speedup on the fourth-order
deli4d. One main reason is that of the load imbalance between
CUDA threads incurred bydifferent fiber lengths of the input tensor

3 We do not compare with Tensor Toolbox [5] and CTF [55] because they lack
GPU parallel implementations for sparse tensors.

Please cite this article in press as: Y. Ma, et al., Optimizing sparse tensor times matrix on GPUs, J. Parallel Distrib. Comput. (2018),
https://doi.org/10.1016/j.jpdc.2018.07.018.

8 Y. Ma et al. / J. Parallel Distrib. Comput. () –

Fig. 4. Our GPU-SpTtm and FCOO-SpTtm [43] speedups over CPU-SpTtm.

Fig. 5. GPU-SpTtm performance in GFlop/s.

Table 4
Sequential SpTtm performance comparison.
Time (s) Tensor Toolbox SEQ-SpTtm

choa 7.39 2.78
nell2 86.50 7.33
nips 120.07 0.58

X . We calculate the standard deviation of fiber lengths for each
tensor mode. deli4d has a standard deviation 2.54× 104 about a
half magnitude less than deli’s 1.21× 105.

Fig. 5 gives the actual SpTtm floating-point operations per sec-
ond (flop/s) of ‘‘GPU-P100’’ and ‘‘GPU-K40c’’. ‘‘GPU-P100’’ achieves
better performance, 16–51 GFlop/s, while ‘‘GPU-K40c’’ obtains less
than 10 GFlop/s. The performance numbers obtained in this work
on P100 are better than the FCOO-SpTtm [43] and sparse matrix-
densematrixmultiplication [40]. However, compared to either the
peak machine performance or the attainable performance limited
bymemory bandwidth, our performance is far below these bounds.
There is space for further performance tuning.

7.3. Analysis

This work is analyzed from different aspects: incremental GPU
optimization effects, sequential algorithm comparison to show the
advantage of our SpTtm algorithm, SspTtm and SpTtm comparison
for semi-sparse tensors, mode behavior, and rank behavior. After
all, we apply our optimized algorithms to Tucker decomposition.

7.3.1. GPU optimization comparison
We analyze the five GPU SpTtm approaches in Section 4.2:

naïve implementation, fine thread granularity, coalesced memory
access, rank blocking, and using shared memory, in Fig. 6 on a
GPU P100. The times are normalized to the naïve GPU implemen-
tation and are averaged over all modes for every tensor. As the
optimization methods incrementally applied to SpTtm, we tend
to get shorter execution time. Naïve SpTtm is the simplest and
slowest GPU implementation. SpTtm performance is incremen-
tally improved: 53% by integrating fine thread granularity, 29%
by arranging coalesced memory access, 7% by rank blocking, and
40% by using shared memory for writable data, on average of
all tensors. Therefore, fine thread granularity and using shared
memory optimizations are the two most effective optimizations
for SpTtm, arranging coalescedmemory access also improves some
performance, while the effect of rank blocking depends on the

Fig. 6. GPU optimization methods comparison on GPU P100.

Fig. 7. GPU-SpTtm and GPU-SspTtm speedups over corresponding OpenMP paral-
lelized CPU implementations on two NVIDIA GPU platforms.

given sparse tensors. We also test these approaches by setting R to
32. SpTtm performance is incrementally improved: 74% (+FG), 37%
(+MC),−20% (+RB), and 43% (+SM), on average of all tensors. This
shows rank blocking is more beneficial for small ranks, because
of the re-loads of index ks and values, which coincides with our
analysis in Section 4.2.

7.3.2. Sequential SpTtm comparison
We test the SpTtm from Tensor Toolbox [5] on only three small

tensors without exceeding memory in Table 4.4 Our SEQ-SpTtm
achieves 3–120× speedup over Tensor Toolbox. One reason is
Tensor Toolbox is built onMATLABenvironment, thismay generate
some extra overhead. For the fourth-order tensor nips, though it
only has 3millionnonzeros, Tensor Toolbox runsmuch slower than
we expect. This shows Tensor Toolbox may be not friendly enough
for higher-order tensors.

Table 5 shows the storage of Tensor Toolbox compared to our
SpTtm in mode 1. Tensor Toolbox consumes about twice storage
space than SpTtm.

7.3.3. SspTtm v.s. SpTtm for Semi-Sparse Tensors
We compare the performance of GPU-SspTtmwith GPU-SpTtm

for semi-sparse tensors in Fig. 7. We use the second Ttm operation
in the Ttm-chain of Tucker decomposition (Algorithm 6) to ensure
the input tensor is semi-sparse. SpTtm handles the semi-sparse
input tensor as a general sparse tensor. Since the input semi-
sparse tensors could be easily as large as the tensors in Table 3
because of the introduced dense mode. We can only run SpTtm for
this operation on small tensors. GPU-SspTtm achieves up to 74×
and 12× speedups on GPU P100 and K40c platforms respectively.
Compared to SpTtm, which treats semi-sparse tensors as general
sparse tensors, SspTtm achieves up to 4.5× speedup. This figure
shows the usefulness of the SspTtm algorithm for semi-sparse
tensors.

7.3.4. Mode behavior
We compare the ‘‘GPU-P100’’ SpTtm behavior in different

modes, using the best execution time of the five approaches. Fig. 8

4 Since Cyclops Tensor Framework (CTF) [55] indexes a sparse tensor using a
one-dimensional long index to help distribute nonzero elements in a certain way in
distributed platforms, all tensors we tested cannot be represented after vectoriza-
tion, so they cannot run using CTF except in distributed memory environment.

Please cite this article in press as: Y. Ma, et al., Optimizing sparse tensor times matrix on GPUs, J. Parallel Distrib. Comput. (2018),
https://doi.org/10.1016/j.jpdc.2018.07.018.

Y. Ma et al. / J. Parallel Distrib. Comput. () – 9

Table 5
Total storage (GB) of sparse tensors.
Tensors choa nell2 fb-m fb-s deli nell1 nips uber enron flickr deli4d

TTBox 2.72 2.30 30.35 44.90 20.69 11.80 0.40 0.09 1.77 13.81 46.07
SpTtm 1.55 1.32 17.34a 25.65a 11.82 6.74 0.23 0.05 1.01 7.89 19.75a

aSince an Ttm only needs one index instead of all, these tensors can fit into GPU memory.

Fig. 8. Relative SpTtm time in different modes.

Fig. 9. Execution time of small tensors in different rank sizes.

takes mode-1 SpTtm as the baseline, then computes the SpTtms
in other modes normalized to it. Some tensors have very diverse
SpTtm performance in different modes. From our observations, the
modes in which fibers’ length has a small standard deviation tend
to be faster compared to other modes. For example, tensor choa
has small fiber sizes in mode 2 and 3, so their SpTtm performance
is much better than that in mode 1.

7.3.5. Rank behavior
Fig. 9 shows the relative performance of mode-1 ‘‘GPU-P100’’

SpTtm on tensors choa, nell2, uber, and enron by increasing the
rank-size. We only test on small tensors because when rank-size is
32 or 64, some tensors are too large to reside in GPU memory. As
the rank-size increases, the performance increases for R from 8 to
16 but stops increasing after 16.

7.3.6. Tucker decomposition
Table 6 shows the execution time of the Tucker decomposition

by applying our optimized SpTtm and SspTtm algorithms. Due to
space limitation, large tensors cannot run on GPU platforms due
to the non-trivial intermediate results. The optimized Tucker de-
composition achieves up to 3.2× speedup. From Tucker decompo-
sitions, we observed that SVD and Ttm-chain performance are both
important to Tucker performance.We test SVD by using OpenBLAS
and cuSOLVER. However, SVD of cuSOLVER cannot achieve as good
performance as OpenBLAS, especially for truncated SVD. Therefore,
we use OpenBLAS to solve SVD and include the memory transfer
time into our GPU Tucker implementation.

8. Related work

Several other libraries also implemented fundamental sparse
tensor operations, such as Tensor Toolbox [5] and Cyclops Tensor
Framework (CTF) [55]. Tensor Toolbox is implemented in MATLAB
environment, and CTF is implemented in C++ language. From algo-
rithm aspect, Tensor Toolbox implements SpTtm by converting a
sparse tensor into a sparse matrix and converting the matrix back
to a sparse/dense tensor after a sparse matrix and a dense matrix

Table 6
Tucker decomposition performance.

CPU (s) GPU (s)

choa 49.3 15.6
nell2 48.6 16.7
enron 389.6 290.3

multiplication. The conversion consumes non-trivial time. CTF is
a parallel framework of tensor contraction for distributed CPU
systems, and it indexes a sparse tensor using a one-dimensional
long index. Even for a reasonable large sparse tensor, CTF may
exceed the range of 64-bit long unsigned integer. Our in-place
SpTtm algorithms directly operate on the coordinate format of a
sparse tensor, which avoids the indexing problem, and the result-
ing tensor is stored in a hybrid format (sCOO) to save space.

Some work proposed efficient storage formats for a sparse
tensor, such as the Compressed Sparse Fiber (CSF) format [53] and
the ‘‘mode-generic sparse storage format’’ [7]. Our sCOO format is
a simple version of the ‘‘mode-generic sparse storage format’’ pro-
posed by Baskaran et al., with densemodes fixed on the last several
modes. CSF is a hierarchical, fiber-centric format by extending the
popular CSR format to sparse tensors, and it is memory-efficient
and shows high speedups on theMttkrp and Ttm operations over
the COO format. However, when operating on a non-root mode,
the recursive algorithm based on CSF format may be not suitable
for GPU architecture. Another recent work [43] proposed F-COO
format and implemented Ttm operations based on it on GPUs. Our
optimized SpTtm uses the most popular COO format and achieves
better performance. Besides, it is the first try by implementing
Tucker decomposition on GPUs.

Some work on sparse matrix formats [8,12,19,29,31,32,36,37,
42,56,57,60–62,64] and sparse matrix–matrix multiplication [3,6,
9,10,16,27,38–41,44,58,63] is also related to our work. However,
our focus is to avoid unnecessary transformation, which is a prob-
lem only for tensors. The optimization methods of sparse matrix–
matrix multiplication can be referred for our future optimization.

9. Conclusion

This paper presents an optimized design and implementation
of tensor-times-dense matrix multiply (Ttm) for sparse and semi-
sparse tensors on CPU and GPU platforms. This primitive is a
critical bottleneck in tensor decompositions, such as the Tucker
decomposition. We design and implement sequential SpTtm and
SspTtm to avoid data transformation, and further optimize them
onmulticore CPU andGPU systems. Five approaches are developed
for SpTtm on GPUs, including employing fine thread granularity,
arranging coalescedmemory access, rank blocking, and using local
(fast) memory (‘‘shared memory’’ on GPUs). Our sequential SpTtm
is 3–120× faster than the SpTtm in Tensor Toolbox. Our GPU par-
allel algorithms achieve good speedups on NVIDIA P100 over our
OpenMP-parallelized CPU-SpTtm and also outperform the state-of-
the-art GPU implementation by 3.9×. From our analysis, different
input sparse tensors, ranks, and operating on different modes all
influence SpTtm performance. Adaptive parameters of the SpTtm
algorithms will be helpful to achieve fairly good performance for a
particular input sparse tensor.

In the future,wewill further improve the Tucker decomposition
by overlapping some preprocessing stages and memory transfer
with the Ttm computation time. We also intend to do further

Please cite this article in press as: Y. Ma, et al., Optimizing sparse tensor times matrix on GPUs, J. Parallel Distrib. Comput. (2018),
https://doi.org/10.1016/j.jpdc.2018.07.018.

10 Y. Ma et al. / J. Parallel Distrib. Comput. () –

optimization on SpTtm to better handle the load-balance issue.
We will extend our algorithms to multi-GPU platforms to support
larger sparse tensors. Some tensor work [26,34] is orthogonal to
our work, which can be applied to Tucker decomposition.

Acknowledgments

This material is based upon work supported by the U.S. Na-
tional Science Foundation (NSF) AwardNumber 1533768, Zhejiang
Province Nature Science Foundation of China LR17F030006, Na-
tional Nature Science Foundation of China (61671196, 61327902),
IBM Ph.D. Fellowship Award, and the Laboratory Directed Re-
search and Development program at Sandia National Laboratories,
a multi-mission laboratory managed and operated by National
Technology and Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration
under contract DE-NA0003525. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of NSF, NSFC,
IBM, or Sandia National Laboratories.

References

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A.
Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M.
Isard, Y. Jia, R. Jozefowicz, L. Kaiser,M. Kudlur, J. Levenberg, D.Mané, R.Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever,
K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P.
Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow: Large-Scale
Machine Learning on Heterogeneous Systems, 2015. Software available from
www.tensorflow.org.

[2] A. Anandkumar, R. Ge, D. Hsu, S.M. Kakade, M. Telgarsky, Tensor decompo-
sitions for learning latent variable models, J. Mach. Learn. Res. 15 (1) (2014)
2773–2832.

[3] A. Azad, G. Ballard, A. Buluç, J. Demmel, L. Grigori, O. Schwartz, S. Toledo, S.
Williams, Exploiting Multiple Levels of Parallelism in Sparse Matrix-Matrix
Multiplication, Tech. Rep. 1510.00844, arXiv, October 2015.

[4] B.W. Bader, T.G. Kolda, Efficient MATLAB computations with sparse and
factored tensors, SIAM J. Sci. Comput. 30 (1) (2007) 205–231, http://dx.doi.
org/10.1137/060676489.

[5] B.W. Bader, T.G. Kolda, et al., MATLAB Tensor Toolbox (Version 2.6), Available
online. February 2015. URL http://www.sandia.gov/~tgkolda/TensorToolbox/.

[6] G. Ballard, A. Druinsky, N. Knight, O. Schwartz, Hypergraph Partitioning for
Sparse Matrix-Matrix Multiplication, Tech. Rep. 1603.05627, arXiv 2016.

[7] M. Baskaran, B. Meister, N. Vasilache, R. Lethin, Efficient and scalable com-
putations with sparse tensors, in: High Performance Extreme Computing
(HPEC), 2012 IEEE Conference on, 2012, pp. 1–6, http://dx.doi.org/10.1109/
HPEC.2012.6408676.

[8] A. Buluç, J.T. Fineman, M. Frigo, J.R. Gilbert, C.E. Leiserson, Parallel sparse
matrix-vector and matrix-transpose-vector multiplication using compressed
sparse blocks, in: Proceedings of the Twenty-first Annual Symposium on
Parallelism in Algorithms and Architectures, SPAA ’09, ACM, New York, NY,
USA, 2009, pp. 233–244, http://dx.doi.org/10.1145/1583991.1584053, URL
http://doi.acm.org/10.1145/1583991.1584053.

[9] A. Buluç, J.R. Gilbert, On the representation andmultiplication of hypersparse
matrices, in: 2008 IEEE International Symposium on Parallel and Distributed
Processing, 2008, pp. 1–11, http://dx.doi.org/10.1109/IPDPS.2008.4536313.

[10] A. Buluç, J.R. Gilbert, Parallel sparse matrix-matrix multiplication and index-
ing: Implementation and experiments, SIAM J. Sci. Comput. 34 (4) (2012)
C170–C191, http://dx.doi.org/10.1137/110848244.

[11] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. Hruschka, T. Mitchell, Toward
an architecture for never-ending language learning, 2010.

[12] J.W. Choi, A. Singh, R.W. Vuduc, Model-driven autotuning of sparse matrix-
vector multiply on GPUs, in: Proceedings of the 15th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, PPoPP ’10, ACM,
New York, NY, USA, 2010, pp. 115–126, http://dx.doi.org/10.1145/1693453.
1693471, URL http://doi.acm.org/10.1145/1693453.1693471.

[13] A. Cichocki, Tensor decompositions: A new concept in brain data analysis?
2013. arXiv preprint arXiv:1305.0395.

[14] CUDA C Best Practices Guide, 2017. URL http://http://docs.nvidia.com/cuda/
cuda-c-best-practices-guide/.

[15] cuSOLVER v9.0, 2018. URL http://docs.nvidia.com/cuda/cusolver/index.html.
[16] S. Dalton, L. Olson, N. Bell, Optimizing sparse matrix–matrix multiplication

for the GPU, ACM Trans. Math. Software 41 (4) (2015) 25:1–25:20, http:
//dx.doi.org/10.1145/2699470.

[17] L. De Lathauwer, B. De Moor, J. Vandewalle, A multilinear singular value
decomposition, SIAM J. Matrix Anal. Appl 21 (2000) 1253–1278.

[18] L. De Lathauwer, B. DeMoor, J. Vandewalle, On the best Rank-1 and Rank-(R1,
R2, . . . , RN) approximation of higher-order tensors, SIAM J. Matrix Anal. Appl.
21 (4) (2000) 1324–1342, http://dx.doi.org/10.1137/S0895479898346995.

[19] J.P. Ecker, R. Berrendorf, F. Mannuss, New efficient general sparse matrix
formats for parallel SpMV operations, in: F.F. Rivera, T.F. Pena, J.C. Cabaleiro
(Eds.), Euro-Par 2017: Parallel Processing, Springer International Publishing,
Cham, 2017, pp. 523–537.

[20] O. Görlitz, S. Sizov, S. Staab, PINTS: Peer-to-peer infrastructure for tagging
systems, in: Proceedings of the 7th International Conference on Peer-to-peer
Systems, IPTPS’08, USENIX Association, Berkeley, CA, USA, 2008, pp. 19–19.

[21] J.C. Ho, J. Ghosh, S.R. Steinhubl, W.F. Stewart, J.C. Denny, B.A. Malin, J. Sun,
Limestone: High-throughput candidate phenotype generation via tensor fac-
torization, J. Biomed. Inform. 52 (2014) 199–211.

[22] J.C. Ho, J. Ghosh, J. Sun,Marble: High-throughput phenotyping fromelectronic
health records via sparse nonnegative tensor factorization, in: Proceedings
of the 20th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’14, ACM, New York, NY, USA, 2014, pp. 115–124,
http://dx.doi.org/10.1145/2623330.2623658.

[23] F. Huang, N. Niranjan U., I. Perros, R. Chen, J. Sun, A. Anandkumar, Scalable
latent tree model and its application to health analytics, 2014. ArXiv e-prints,
arXiv:1406.4566.

[24] I. Jeon, E.E. Papalexakis, C.F. U Kang, HaTen2: Billion-scale Tensor Decompo-
sitions (Version 1.0), 2015. Available from http://datalab.snu.ac.kr/haten2/.

[25] U. Kang, E. Papalexakis, A. Harpale, C. Faloutsos, Gigatensor: scaling tensor
analysis up by 100 times - algorithms and discoveries, in: Proceedings of
the 18th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’12, ACM, New York, NY, USA, 2012, pp. 316–324,
http://dx.doi.org/10.1145/2339530.2339583.

[26] O. Kaya, B. Uçar, High-performance Parallel Algorithms for the Tucker Decom-
position of Higher Order Sparse Tensors, Tech. rep., Inria - Research Centre
Grenoble – Rhone-Alpes, 2015.

[27] P. Koanantakool, A. Azad, A. Buluç, D. Morozov, S.Y. Oh, L. Oliker, K. Yelick,
Communication-avoiding parallel sparse-dense matrix-matrix multiplica-
tion, in: 2016 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS), 2016, pp. 842–853, http://dx.doi.org/10.1109/IPDPS.2016.117.

[28] T.G. Kolda, B.W. Bader, Tensor decompositions and applications, SIAM Rev. 51
(3) (2009) 455–500.

[29] K. Kourtis, V. Karakasis, G. Goumas, N. Koziris, CSX: An extended compression
format for Spmv on shared memory systems, in: Proceedings of the 16th
ACM Symposium on Principles and Practice of Parallel Programming, PPoPP
’11, ACM, New York, NY, USA, 2011, pp. 247–256, http://dx.doi.org/10.1145/
1941553.1941587, URL http://doi.acm.org/10.1145/1941553.1941587.

[30] D. Lahat, T. Adalý, C. Jutten, Challenges in multimodal data fusion, in: Signal
Processing Conference (EUSIPCO), 2014 Proceedings of the 22nd European,
2014, pp. 101–105.

[31] D. Langr, I. Šimeček, P. Tvrdík, Storing sparse matrices to files in the adaptive-
blocking hierarchical storage format, in: 2013 Federated Conference on Com-
puter Science and Information Systems, 2013, pp. 479–486.

[32] D. Langr, I. Šimeček, P. Tvrdík, T. Dytrych, J. Draayer, Adaptive-blocking hier-
archical storage format for sparsematrices, in: 2012 Federated Conference on
Computer Science and Information Systems, FedCSIS, 2012, pp. 545–551.

[33] C.-F.V. Latchoumane, F.B. Vialatte, J. Solé-Casals, M. Maurice, S.R.
Wimalaratna, N. Hudson, J. Jeong, A. Cichocki, Multiway array decomposition
analysis of EEGs in Alzheimer’s disease, J. Neurosci. Methods 207 (1) (2012)
41–50.

[34] J. Li, J. Choi, I. Perros, J. Sun, R. Vuduc, Model-Driven sparse cp decomposition
for higher-order tensors, in: 2017 IEEE International Parallel and Distributed
Processing Symposium, IPDPS, 2017, pp. 1048–1057. http://dx.doi.org/10.
1109/IPDPS.2017.80.

[35] J. Li, Y. Ma, C. Yan, R. Vuduc, Optimizing sparse tensor times matrix on multi-
core and many-core architectures, in: Proceedings of the Sixth Workshop
on Irregular Applications: Architectures and Algorithms, IA3̂ ’16, IEEE Press,
Piscataway, NJ, USA, 2016, pp. 26–33, http://dx.doi.org/10.1109/IA3.2016.10.

[36] J. Li, G. Tan, M. Chen, N. Sun, SMAT: An input adaptive auto-tuner for sparse
matrix-vector multiplication, in: Proceedings of the 34th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI ’13,
ACM, New York, NY, USA, 2013, pp. 117–126, http://dx.doi.org/10.1145/
2491956.2462181, URL http://doi.acm.org/10.1145/2491956.2462181.

[37] Y. Liang, W.T. Tang, R. Zhao, M. Lu, H.P. Huynh, R.S.M. Goh, Scale-free
sparse matrix-vector multiplication on many-core architectures, IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 36 (12) (2017) 2106–2119, http:
//dx.doi.org/10.1109/TCAD.2017.2681072.

[38] W. Liu, Parallel and scalable sparse basic linear algebra subprograms, (Ph.D.
thesis), University of Copenhagen, 2015.

[39] J. Liu, X. He, W. Liu, G. Tan, Register-based implementation of the sparse
general matrix-matrix multiplication on GPUs, in: Proceedings of the 23rd
ACMSIGPLANSymposiumonPrinciples andPractice of Parallel Programming,
PPoPP ’18, ACM, New York, NY, USA, 2018, pp. 407–408, http://dx.doi.org/10.
1145/3178487.3178529, URL http://doi.acm.org/10.1145/3178487.3178529.

http://www.tensorflow.org
http://refhub.elsevier.com/S0743-7315(18)30516-1/b2
http://refhub.elsevier.com/S0743-7315(18)30516-1/b2
http://refhub.elsevier.com/S0743-7315(18)30516-1/b2
http://refhub.elsevier.com/S0743-7315(18)30516-1/b2
http://refhub.elsevier.com/S0743-7315(18)30516-1/b2
http://dx.doi.org/10.1137/060676489
http://dx.doi.org/10.1137/060676489
http://dx.doi.org/10.1137/060676489
http://www.sandia.gov/~tgkolda/TensorToolbox/
http://dx.doi.org/10.1109/HPEC.2012.6408676
http://dx.doi.org/10.1109/HPEC.2012.6408676
http://dx.doi.org/10.1109/HPEC.2012.6408676
http://dx.doi.org/10.1145/1583991.1584053
http://doi.acm.org/10.1145/1583991.1584053
http://dx.doi.org/10.1109/IPDPS.2008.4536313
http://dx.doi.org/10.1137/110848244
http://dx.doi.org/10.1145/1693453.1693471
http://dx.doi.org/10.1145/1693453.1693471
http://dx.doi.org/10.1145/1693453.1693471
http://doi.acm.org/10.1145/1693453.1693471
http://arxiv.org/abs/1305.0395
http://http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
http://http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
http://http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
http://docs.nvidia.com/cuda/cusolver/index.html
http://dx.doi.org/10.1145/2699470
http://dx.doi.org/10.1145/2699470
http://dx.doi.org/10.1145/2699470
http://refhub.elsevier.com/S0743-7315(18)30516-1/b17
http://refhub.elsevier.com/S0743-7315(18)30516-1/b17
http://refhub.elsevier.com/S0743-7315(18)30516-1/b17
http://dx.doi.org/10.1137/S0895479898346995
http://refhub.elsevier.com/S0743-7315(18)30516-1/b19
http://refhub.elsevier.com/S0743-7315(18)30516-1/b19
http://refhub.elsevier.com/S0743-7315(18)30516-1/b19
http://refhub.elsevier.com/S0743-7315(18)30516-1/b19
http://refhub.elsevier.com/S0743-7315(18)30516-1/b19
http://refhub.elsevier.com/S0743-7315(18)30516-1/b19
http://refhub.elsevier.com/S0743-7315(18)30516-1/b19
http://refhub.elsevier.com/S0743-7315(18)30516-1/b20
http://refhub.elsevier.com/S0743-7315(18)30516-1/b20
http://refhub.elsevier.com/S0743-7315(18)30516-1/b20
http://refhub.elsevier.com/S0743-7315(18)30516-1/b20
http://refhub.elsevier.com/S0743-7315(18)30516-1/b20
http://refhub.elsevier.com/S0743-7315(18)30516-1/b21
http://refhub.elsevier.com/S0743-7315(18)30516-1/b21
http://refhub.elsevier.com/S0743-7315(18)30516-1/b21
http://refhub.elsevier.com/S0743-7315(18)30516-1/b21
http://refhub.elsevier.com/S0743-7315(18)30516-1/b21
http://dx.doi.org/10.1145/2623330.2623658
http://arxiv.org/abs/1406.4566
http://datalab.snu.ac.kr/haten2/
http://dx.doi.org/10.1145/2339530.2339583
http://refhub.elsevier.com/S0743-7315(18)30516-1/b26
http://refhub.elsevier.com/S0743-7315(18)30516-1/b26
http://refhub.elsevier.com/S0743-7315(18)30516-1/b26
http://refhub.elsevier.com/S0743-7315(18)30516-1/b26
http://refhub.elsevier.com/S0743-7315(18)30516-1/b26
http://dx.doi.org/10.1109/IPDPS.2016.117
http://refhub.elsevier.com/S0743-7315(18)30516-1/b28
http://refhub.elsevier.com/S0743-7315(18)30516-1/b28
http://refhub.elsevier.com/S0743-7315(18)30516-1/b28
http://dx.doi.org/10.1145/1941553.1941587
http://dx.doi.org/10.1145/1941553.1941587
http://dx.doi.org/10.1145/1941553.1941587
http://doi.acm.org/10.1145/1941553.1941587
http://refhub.elsevier.com/S0743-7315(18)30516-1/b33
http://refhub.elsevier.com/S0743-7315(18)30516-1/b33
http://refhub.elsevier.com/S0743-7315(18)30516-1/b33
http://refhub.elsevier.com/S0743-7315(18)30516-1/b33
http://refhub.elsevier.com/S0743-7315(18)30516-1/b33
http://refhub.elsevier.com/S0743-7315(18)30516-1/b33
http://refhub.elsevier.com/S0743-7315(18)30516-1/b33
http://dx.doi.org/10.1109/IPDPS.2017.80
http://dx.doi.org/10.1109/IPDPS.2017.80
http://dx.doi.org/10.1109/IPDPS.2017.80
http://dx.doi.org/10.1109/IA3.2016.10
http://dx.doi.org/10.1145/2491956.2462181
http://dx.doi.org/10.1145/2491956.2462181
http://dx.doi.org/10.1145/2491956.2462181
http://doi.acm.org/10.1145/2491956.2462181
http://dx.doi.org/10.1109/TCAD.2017.2681072
http://dx.doi.org/10.1109/TCAD.2017.2681072
http://dx.doi.org/10.1109/TCAD.2017.2681072
http://refhub.elsevier.com/S0743-7315(18)30516-1/b38
http://refhub.elsevier.com/S0743-7315(18)30516-1/b38
http://refhub.elsevier.com/S0743-7315(18)30516-1/b38
http://dx.doi.org/10.1145/3178487.3178529
http://dx.doi.org/10.1145/3178487.3178529
http://dx.doi.org/10.1145/3178487.3178529
http://doi.acm.org/10.1145/3178487.3178529

Please cite this article in press as: Y. Ma, et al., Optimizing sparse tensor times matrix on GPUs, J. Parallel Distrib. Comput. (2018),
https://doi.org/10.1016/j.jpdc.2018.07.018.

Y. Ma et al. / J. Parallel Distrib. Comput. () – 11

[40] W. Liu, B. Vinter, An efficient GPUgeneral sparsematrix-matrixmultiplication
for irregular data, in: Proceedings of the 2014 IEEE 28th International Parallel
and Distributed Processing Symposium, IPDPS ’14, IEEE Computer Society,
Washington, DC, USA, 2014, pp. 370–381, http://dx.doi.org/10.1109/IPDPS.
2014.47.

[41] W. Liu, B. Vinter, A framework for general sparsematrix-matrixmultiplication
on GPUs and heterogeneous processors, J. Parallel Distrib. Comput. 85 (C)
(2015) 47–61, http://dx.doi.org/10.1016/j.jpdc.2015.06.010.

[42] W. Liu, B. Vinter, CSR5: An efficient storage format for cross-platform
sparse matrix-vector multiplication, in: Proceedings of the 29th ACM In-
ternational Conference on Supercomputing, ICS ’15, ACM, 2015, pp. 339–
350, http://dx.doi.org/10.1145/2751205.2751209, URL http://doi.acm.org/10.
1145/2751205.2751209.

[43] B. Liu, C. Wen, A.D. Sarwate, M.M. Dehnavi, A unified optimization approach
for sparse tensor operations on GPUs, in: 2017 IEEE International Conference
on Cluster Computing (CLUSTER), 2017, pp. 47–57. http://dx.doi.org/10.1109/
CLUSTER.2017.75.

[44] M. McCourt, B. Smith, H. Zhang, Sparse matrix-matrix products executed
through coloring, SIAM J. Matrix Anal. Appl. 36 (1) (2015) 90–109, http://dx.
doi.org/10.1137/13093426X, arXiv:https://doi.org/10.1137/13093426X.

[45] E.D. Napoli, D. Fabregat-Traver, G.Q. -Ortí, P. Bientinesi, Towards an efficient
use of the BLAS library for multilinear tensor contractions, Appl. Math. Com-
put. 235 (2014) 454–468, http://dx.doi.org/10.1016/j.amc.2014.02.051.

[46] A. Novikov, D. Podoprikhin, A. Osokin, D. Vetrov, Tensorizing neural networks,
2015. CoRR, abs/1509.06569.

[47] OpenBLAS : An optimized BLAS library, 2017. URL https://github.com/xianyi/
OpenBLAS.

[48] E.E. Papalexakis, C. Faloutsos, N.D. Sidiropoulos, ParCube: Sparse paralleliz-
able tensor decompositions, in: Proceedings of the 2012 European Conference
on Machine Learning and Knowledge Discovery in Databases - Volume Part
I, ECML PKDD’12, Springer-Verlag, Berlin, Heidelberg, 2012, pp. 521–536,
http://dx.doi.org/10.1007/978-3-642-33460-3_39.

[49] I. Perros, R. Chen, R. Vuduc, J. Sun, Sparse hierarchical Tucker factorization
and its application to healthcare, in: IEEE International Conference on Data
Mining (ICDM), 2015.

[50] S. Rajbhandari, A. Nikam, P.-W. Lai, K. Stock, S. Krishnamoorthy, P. Sadayap-
pan, A communication-optimal framework for contracting distributed ten-
sors, in: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’14, IEEE Press, Piscataway,
NJ, USA, 2014, pp. 375–386, http://dx.doi.org/10.1109/SC.2014.36.

[51] Y. Shi, U.N. Niranjan, A. Anandkumar, C. Cecka, Tensor contractions with
extended BLAS kernels on CPU and GPU, 2016. CoRR, abs/1606.05696.

[52] S. Smith, J.W. Choi, J. Li, R. Vuduc, J. Park, X. Liu, G. Karypis, FROSTT: The
Formidable Repository of Open Sparse Tensors and Tools, 2017. URL http:
//frostt.io/.

[53] S. Smith, G. Karypis, Tensor-matrix productswith a compressed sparse tensor,
in: Proceedings of the 5thWorkshop on Irregular Applications: Architectures
and Algorithms, ACM, 2015, p. 7.

[54] E. Solomonik, J. Demmel, T. Hoefler, Communication Lower Bounds for Tensor
Contraction Algorithms, Tech. rep., 36, ETH Zürich, 2015.

[55] E. Solomonik, T. Hoefler, Sparse tensor algebra as a parallel programming
model, 2015. arXiv preprint arXiv:1512.00066.

[56] G. Tan, J. Liu, J. Li, Design and implementation of adaptive SpMV library for
multicore and manycore architecture, ACM Trans. Math. Software (2018).

[57] R. Vuduc, Automatic performance tuning of sparse matrix kernels, (Ph.D.
thesis), University of California, Berkeley, 2003.

[58] R. Vuduc, J. W.D.emmel, K. A.Y.elick, OSKI: A library of automatically tuned
sparse matrix kernels, J. Phys. Conf. Ser. 16 (1) (2005) 521, URL http://stacks.
iop.org/1742-6596/16/i=1/a=071.

[59] Y. Wang, R. Chen, J. Ghosh, J.C. Denny, A. Kho, Y. Chen, B.A. Malin, J. Sun,
Rubik: Knowledge guided tensor factorization and completion for health data
analytics, in: Proceedings of the 21th ACM SIGKDD International Conference
on Knowledge Discovery and DataMining, KDD ’15, ACM, New York, NY, USA,
2015, pp. 1265–1274, http://dx.doi.org/10.1145/2783258.2783395.

[60] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, J. Demmel, Optimization
of sparse matrix–vector multiplication on emerging multicore platforms, in:
Revolutionary Technologies for Acceleration of Emerging Petascale Appli-
cations, Parallel Comput. 35 (3) (2009) 178–194, http://dx.doi.org/10.1016/
j.parco.2008.12.006, URL http://www.sciencedirect.com/science/article/pii/
S0167819108001403.

[61] B. Xie, J. Zhan, X. Liu, W. Gao, Z. Jia, X. He, L. Zhang, CVR: Efficient vectoriza-
tion of SpMV on x86 processors, in: Proceedings of the 2018 International
Symposium on Code Generation and Optimization, CGO 2018, ACM, New
York, NY, USA, 2018, pp. 149–162, http://dx.doi.org/10.1145/3168818, URL
http://doi.acm.org/10.1145/3168818.

[62] S. Yan, C. Li, Y. Zhang, H. Zhou, yaSpMV: Yet another SpMV framework on
GPUs, in: Proceedings of the 19th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP ’14, ACM, New York, NY, USA,
2014, pp. 107–118, http://dx.doi.org/10.1145/2555243.2555255, URL http:
//doi.acm.org/10.1145/2555243.2555255.

[63] R. Yuster, U. Zwick, Fast sparse matrix multiplication, ACM Trans. Algorithms
1 (1) (2005) 2–13, http://dx.doi.org/10.1145/1077464.1077466, URL http://
doi.acm.org/10.1145/1077464.1077466.

[64] Y. Zhao, J. Li, C. Liao, J. Li, X. Shen, Bridging the gap between deep learning
and sparse matrix format selection, in: Proceedings of the 23rd ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming, PPoPP
’18, ACM, New York, NY, USA, 2018, pp. 94–108, http://dx.doi.org/10.1145/
3178487.3178495, URL http://doi.acm.org/10.1145/3178487.3178495.

Yuchen Ma is an under-graduate student at Zhuoyue
Honors College, Hangzhou Dianzi University, China.

Jiajia Li is a Ph.D. student in the School of Computational
Science and Engineering, Georgia Tech. Her research in-
terest includes high performance computing, parallel al-
gorithms, computational data mining.

Xiaolong Wu is a Ph.D. student in the School of Com-
puter Science, Virginia Tech. His research interest in-
cludes cloud computing, operating system, and computer
architecture.

Chenggang Clarence Yan is a Professor of Department
of Automation, Hangzhou Dianzi University, China. He
received his Ph.D. from the Institute of Computing Tech-
nology, Chinese Academy of Sciences, China in 2013. He
was a post-doctoral research fellowwith the Department
of Automation, Tsinghua University, China. His research
interests include parallel computing, video coding, com-
putational photography, computer vision, and multime-
dia communication.

Jimeng Sun is an Associate Professor of School of Com-
putational Science and Engineering at College of Com-
puting at Georgia Institute of Technology. His research
interests are on data mining and machine learning
for health applications especially analysis of electronic
health records (EHR): computational phenotyping from
electronic health records, deep learning for healthcare,
tensor analysis.

Rich Vuduc is an associate professor in the School of
CSE, Georgia Tech. His research lab, the HPC Garage (hpc-
garage.org), is interested in all-things-high-performance-
computing, with an emphasis on parallel algorithms,
performance analysis, and performance tuning. He is a
member of the DARPA Computer Science Study Panel,
received the NSF CAREER Award, and co-recipient of the
Gordon Bell Prize (2010). His lab’s work has received a
number of best paper nominations and awards, including
most recently the 2012 Best Paper Award from the SIAM
Conference on Data Mining.

http://dx.doi.org/10.1109/IPDPS.2014.47
http://dx.doi.org/10.1109/IPDPS.2014.47
http://dx.doi.org/10.1109/IPDPS.2014.47
http://dx.doi.org/10.1016/j.jpdc.2015.06.010
http://dx.doi.org/10.1145/2751205.2751209
http://doi.acm.org/10.1145/2751205.2751209
http://doi.acm.org/10.1145/2751205.2751209
http://doi.acm.org/10.1145/2751205.2751209
http://dx.doi.org/10.1109/CLUSTER.2017.75
http://dx.doi.org/10.1109/CLUSTER.2017.75
http://dx.doi.org/10.1109/CLUSTER.2017.75
http://dx.doi.org/10.1137/13093426X
http://dx.doi.org/10.1137/13093426X
http://dx.doi.org/10.1137/13093426X
http://arxiv.org/abs/https://doi.org/10.1137/13093426X
http://dx.doi.org/10.1016/j.amc.2014.02.051
http://arxiv.org/abs/abs/1509.06569
https://github.com/xianyi/OpenBLAS
https://github.com/xianyi/OpenBLAS
https://github.com/xianyi/OpenBLAS
http://dx.doi.org/10.1007/978-3-642-33460-3_39
http://dx.doi.org/10.1109/SC.2014.36
http://arxiv.org/abs/abs/1606.05696
http://frostt.io/
http://frostt.io/
http://frostt.io/
http://refhub.elsevier.com/S0743-7315(18)30516-1/b53
http://refhub.elsevier.com/S0743-7315(18)30516-1/b53
http://refhub.elsevier.com/S0743-7315(18)30516-1/b53
http://refhub.elsevier.com/S0743-7315(18)30516-1/b53
http://refhub.elsevier.com/S0743-7315(18)30516-1/b53
http://refhub.elsevier.com/S0743-7315(18)30516-1/b54
http://refhub.elsevier.com/S0743-7315(18)30516-1/b54
http://refhub.elsevier.com/S0743-7315(18)30516-1/b54
https://arxiv.org/abs/1512.00066
http://refhub.elsevier.com/S0743-7315(18)30516-1/b56
http://refhub.elsevier.com/S0743-7315(18)30516-1/b56
http://refhub.elsevier.com/S0743-7315(18)30516-1/b56
http://refhub.elsevier.com/S0743-7315(18)30516-1/b57
http://refhub.elsevier.com/S0743-7315(18)30516-1/b57
http://refhub.elsevier.com/S0743-7315(18)30516-1/b57
http://stacks.iop.org/1742-6596/16/i=1/a=071
http://stacks.iop.org/1742-6596/16/i=1/a=071
http://stacks.iop.org/1742-6596/16/i=1/a=071
http://dx.doi.org/10.1145/2783258.2783395
http://dx.doi.org/10.1016/j.parco.2008.12.006
http://dx.doi.org/10.1016/j.parco.2008.12.006
http://dx.doi.org/10.1016/j.parco.2008.12.006
http://www.sciencedirect.com/science/article/pii/S0167819108001403
http://www.sciencedirect.com/science/article/pii/S0167819108001403
http://www.sciencedirect.com/science/article/pii/S0167819108001403
http://dx.doi.org/10.1145/3168818
http://doi.acm.org/10.1145/3168818
http://dx.doi.org/10.1145/2555243.2555255
http://doi.acm.org/10.1145/2555243.2555255
http://doi.acm.org/10.1145/2555243.2555255
http://doi.acm.org/10.1145/2555243.2555255
http://dx.doi.org/10.1145/1077464.1077466
http://doi.acm.org/10.1145/1077464.1077466
http://doi.acm.org/10.1145/1077464.1077466
http://doi.acm.org/10.1145/1077464.1077466
http://dx.doi.org/10.1145/3178487.3178495
http://dx.doi.org/10.1145/3178487.3178495
http://dx.doi.org/10.1145/3178487.3178495
http://doi.acm.org/10.1145/3178487.3178495

	Optimizing sparse tensor times matrix on GPUs
	Introduction
	Background
	Tensor Representations
	TTM
	NVIDIA GPU architecture

	Sparse Tensor Formats and Property
	Notations
	Sparse Tensor Formats
	Sparse Tensor Property

	Sparse Tensor Times Matrix
	SpTtm on CPUs
	SpTtm on GPUs
	Naive implementation
	Fine thread granularity
	Coalesced memory access
	Rank Blocking
	Using Shared Memory

	Semi-Sparse Tensor Times Matrix
	Tucker Decomposition
	Tucker-ALS
	Ttm-Chain
	SVD

	Experiments
	Platforms and Dataset
	Overall Performance
	Analysis
	GPU Optimization Comparison
	Sequential SpTtm comparison
	SspTtm v.s. SpTtm for Semi-Sparse Tensors
	Mode behavior
	Rank behavior
	Tucker Decomposition

	Related Work
	Conclusion
	Acknowledgments
	References

