
An Initial Characterization of the Emu Chick

Eric Hein, Tom Conte
School of Electrical and

Computer Engineering

Georgia Institute of Technology

{ehein6,conte}@gatech.edu

Jeffrey S. Young
School of Computer Science

Georgia Institute of Technology

jyoung9@gatech.edu

Srinivas Eswar, Jiajia Li,
Patrick Lavin, Richard Vuduc, Jason Riedy

School of Computational Science and Engineering

Georgia Institute of Technology

{seswar3,jiajiali,plavin3,richie,jason.riedy}@gatech.edu

Abstract—The Emu Chick is a prototype system designed
around the concept of migratory memory-side processing. Rather
than transferring large amounts of data across power-hungry,
high-latency interconnects, the Emu Chick moves lightweight
thread contexts to near-memory cores before the beginning
of each memory read. The current prototype hardware uses
FPGAs to implement cache-less “Gossamer” cores for doing
computational work and a stationary core to run basic operating
system functions and migrate threads between nodes. In this
initial characterization of the Emu Chick, we study the memory
bandwidth characteristics of the system through benchmarks like
STREAM, pointer chasing, and sparse matrix vector multiply.
We compare the Emu Chick hardware to architectural simulation
and Intel Xeon-based platforms. While it is difficult to accurately
compare prototype hardware with existing systems, our initial
evaluation demonstrates that the Emu Chick uses available mem-
ory bandwidth more efficiently than a more traditional, cache-
based architecture. Moreover, the Emu Chick provides stable,
predictable performance with 80% bandwidth utilization on a
random-access pointer chasing benchmark with weak locality.

I. INTRODUCTION

Analysis of data represented as graphs, sparse tensors,

and other non-regular structures poses many challenges for

traditional computer architectures because the data locality

of these applications typically occurs in small bursts. While

individual data elements may have multiple associated attributes

nearby (e.g. neighbors, weights, timestamps for streaming

graph edges), analysis algorithms tend to access data in a

more random fashion. Limited spatial locality in traditional

analysis kernels means that cache lines are underutilized,

prefetch engines are confounded, and thus overall memory

bandwidth is underutilized. Furthermore, common analysis

kernels may exhibit dynamic parallelism and create many data-

dependent memory references, which can stall architectures

that cannot otherwise keep as many contexts and requests in

flight. Consequently, today’s “big data” platforms are frequently

outperformed by a single thread accessing a large SSD [1].

This state of affairs motivates novel architectures like the

Emu migratory thread system [2], the subject of this study.

The Emu is a cache-less system built around “nodelets” that

each execute lightweight threads and migrate threads to data

rather than moving data through a traditional cache hierarchy.

This paper is the first, independent characterization of the

Emu Chick prototype. Our study uses microbenchmarks and

small kernels—namely, STREAM, pointer chasing, and sparse

matrix-vector multiplication (SpMV)—as proxies that reflect

some of the key characteristics of our motivating computations,

which come from sparse and irregular applications [3], [4].

Indeed, one larger goal of our work beyond this paper

is to develop a performance-portable, Emu-compatible API

for Georgia Tech’s STINGER open-source streaming graph

framework and ParTI [5] tensor decomposition algorithms (e.g.
CP and Tucker decomposition). Mapping such applications to

the Emu architecture is difficult because the thread migration

makes programming around the locations of data critical to

reducing migrations.

This study’s specific demonstrations include

• the first characterization of the Emu Chick hardware using

custom Cilk kernels derived from optimized OpenMP

kernels;

• an analysis of memory bandwidth on the Chick system and

comparison to a more traditional cache-based architecture;

• a discussion of memory allocation, data layout, and “smart”

thread migration on the Emu architecture with respect to

SpMV kernels;

• and an initial investigation and validation of the Emu

architectural simulator for projecting larger configurations’

performance.

The main high-level finding is that an Emu-style architecture

can more efficiently utilize available memory bandwidth while

reducing the variability of that bandwidth to the memory access

pattern. However, achieving such results still requires careful

consideration of the interplay between data layout and its affect

on thread migration.

II. THE EMU ARCHITECTURE

The Emu architecture focuses on improved random-access

bandwidth scalability by migrating lightweight, Gossamer
threads or “threadlets” to data and emphasizing fine-grained

memory access. A general Emu system consists of the following

processing elements, as illustrated in Figure 1:

• A common stationary processor runs the operating system

(e.g. Linux) and manages storage and network devices.

• Nodelets combine narrowly banked memory with several

highly multi-threaded, cache-less Gossamer cores to

provide a memory-centric environment for migrating

threads.

These elements are combined into nodes that are connected

by a RapidIO fabric. The current generation of Emu systems

579

2018 IEEE International Parallel and Distributed Processing Symposium Workshops

978-1-5386-5555-9/18/$31.00 ©2018 IEEE
DOI 10.1109/IPDPSW.2018.00097



���������	


����
���
������

��
������������������


����
���
������

���
�����	����������

���������� ��!�

"��������	�
��������

#���������	�
�����$�� 

�������

�	�	������
����

Fig. 1: Emu architecture: The system consists of stationary
processors for running the operating system and up to four

Gossamer processors per nodelet tightly coupled to memory.

The cache-less Gossamer processing cores are multi-threaded

to both source sufficient memory references and also provide

sufficient work with many outstanding references. The coupled

memory’s narrow interface ensures high utilization for accesses

smaller than typical cache lines.

include one stationary processor for each of the eight nodelets

contained within a node. System-level storage is provided by

SSDs. We talk more specifically about some of the prototype

limitations of our Emu Chick in Section III. A more detailed

description of the Emu architecture is available elsewhere [2].

For programmers, the Gossamer cores are transparent accel-

erators. The compiler infrastructure compiles the parallelized

code for the Gossamer ISA, and the runtime infrastructure

launches threads on the nodelets. Currently, one programs the

Emu platform using Cilk [6], providing a path to running

on the Emu for simple OpenMP programs whose trans-

lations to Cilk are straightforward. The current compiler

supports the expression of task or fork-join parallelism through

Cilk’s cilk_spawn and cilk_sync constructs, with a

future Cilk Plus software release in progress that would

include cilk_for (the nearly direct analogue of OpenMP’s

parallel for). Many existing C and C++ OpenMP codes

can translate almost directly to Cilk Plus.

A launched Gossamer thread only performs local reads.

Any remote read triggers a migration, which will transfer the

context of the reading thread to a processor local to the memory

channel containing the data. Experience on high-latency thread

migration systems like Charm++ identifies migration overhead

as a critical factor even in highly regular scientific codes [7].

The Emu system keeps thread migration overhead to a minimum

by limiting the size of a thread context, implementing the

transfer efficiently in hardware, and integrating migration

throughout the architecture. In particular, a Gossamer thread

consists of 16 general-purpose registers, a program counter,

a stack counter, and status information, for a total size of

less than 200 bytes. The compiled executable is replicated

across the cores to ensure that instruction access always is

local. Limiting thread context size also reduces the cost of

spawning new threads for dynamic data analysis workloads.

Any operating system requests are forwarded to the stationary

control processors through the service queue.

The highly multi-threaded Gossamer cores, which are reading

only local memory, do not need caches nor, therefore, cache

coherency traffic. Additionally, “memory-side processors” pro-

vide atomic read or write operations that can be used to access

small amounts of data without triggering unnecessary thread

migrations. A node’s memory size is relatively large (64 GiB)

but with multiple, narrow memory channels (8 channels with

8 bit interfaces), in order to extract weak spatial locality from

data analysis kernels while maintaining low-latency read and

write operations. The high degree of multi-threading also helps

to cover the migration latency of the many threadlets. The

Emu architecture is designed from the ground up to support

high bandwidth utilization and efficiency for demanding data

analysis workloads.

III. EXPERIMENTAL SETUP

A. Emu Chick Prototype

The Emu Chick prototype is still in active development. The

current hardware iteration uses an Arria 10 FPGA on each

node card to implement the Gossamer cores, the migration

engine, and the stationary cores. Several aspects of the system

are scaled down in the prototype Emu system versus the next-

generation Emu system which will use larger and faster FPGAs

to implement computation and thread migration. Here we

describe the current status and limitations of the current Emu

Chick prototype:

• Our system has only one Gossamer Core (GC) per nodelet

with a concurrent max of 64 threadlets. The final system

will have four GC’s per nodelet, supporting 256 threadlets

per nodelet.

• Our GC’s are clocked at 150MHz rather than the planned

300MHz in the next-generation Emu system.

• The DDR4 DRAM modules are clocked at 1600MHz

rather than the full 2133MHz allowed by the specification.

• Firmware bugs in the inter-node routing engine limit us to

using one node (8 nodelets, single-node) at a time, rather

than the full 8 nodes (64 nodelets, multi-node) in the Emu

Chick.

• The current Emu software version provides support for

C++ but does not yet include functionality to translate

Cilk Plus features like cilk_for or Cilk reducers to

Emu threads. For this reason, all benchmarks are currently

implemented using cilk_spawn. However, the use of

cilk_spawn does allow for more control over spawning

strategies.

All experiments are run using Emu’s 17.11 compiler and

simulator toolchain, and the Emu Chick system is running the

1.0 firmware.

B. Emu Simulator

Emu provides a simulator along with the compiler toolchain

to aid in testing and evaluating software before running on

580



the hardware. The simulator counts key performance events

such as the number of thread spawns, migrations, and memory

operations per nodelet. This work employs two configurations

of the simulator: one to simulate the performance of the

Emu Chick as it was designed to be at full speed (Figure

11 in Section IV-D), and one configuration that aims to match

the characteristics of our current hardware for validation. We

also compare simulation results with the actual hardware in

Section IV-D.

C. CPU-based Comparison Platform

In order to make an initial comparison of the Emu’s memory

bandwidth characteristics with commodity hardware, each

benchmark is also run on one of two Intel multi-socket server

systems. STREAM and pointer chasing benchmarks are run on

a system that has a dual-socket Intel Xeon E5-2670 with 64GiB

of DDR3 memory (referred to as Sandy Bridge Xeon).

This processor has a 20MiB shared L3 cache and is clocked at

2.6GHz. Four memory channels clocked at 1600MHz lead to

a peak theoretical bandwidth of 51.2 GB/s. SpMV is tested on

a four-socket Xeon E7-4850 v3 (Haswell) machine with 2 TiB

of DDR4 (referred to as Haswell Xeon). The CPUs on the

Haswell server are each clocked at 2.20GHz and each have a

35 MiB L3 cache, while the memory is clocked at 1333 MHz

(although it is rated for 2133 MHz). Each socket has a peak

theoretical bandwidth of 85 GB/s.

For each benchmark, Emu-specific intrinsics (e.g. mallocs)

are swapped out for their x86 equivalents, and the benchmarks

are compiled with GCC 5.4.0. The Cilk keywords are left

unchanged, allowing GCC’s Cilk runtime to implement the

parallel functionality.

D. Metrics for Comparing the Emu Prototype with Common
Hardware

The architectural design choices that enable the Emu compu-

tational model (migrate threads instead of data, narrow memory

channels, limited thread context) and the base platforms for

the prototype (FPGAs with lower clock frequencies) make it

difficult to accurately compare the Emu and CPU- or GPU-

based systems in terms of execution or runtime.

Additionally, the Emu platform uses Narrow-Channel DRAM

(NCDRAM) which reduces the width of the DRAM bus to 8

bits. Otherwise, the memory uses standard DDR4 chips. An

8-byte word can be transferred in a single burst. The smaller

bus means that each channel of NCDRAM has only 2GB/s of

bandwidth, but the system makes up for this by having many

more independent channels. Because of this, it can sustain more

simultaneous fine-grained accesses than a traditional system

with fewer channels and the same peak memory bandwidth

specification.

Due to difficulties in comparing differently clocked ar-

chitectures with different memory controller configurations,

we focus our initial characterization not on runtime but on

memory bandwidth (MB/s) and effective memory bandwidth

utilization (% of measured peak memory bandwidth). In a CPU-

based system, this might be analogous to effective cacheline

utilization while in the Emu it correlates more closely to how

much bandwidth can be achieved with respective to other

system overheads, such as thread migration and queuing delays.

E. Benchmarks

As discussed in Section III-A, the Emu Chick toolchain

currently does not support all of Cilk Plus. However, we present

several benchmarks that use Cilk semantics to characterize the

performance of the system, specifically focusing on kernels that

expose the memory bandwidth characteristics of the system and

test important kernels like SpMV that are key for applications

like sparse tensor decomposition. For each benchmark result,

we present the average memory bandwidth (usually expressed

as megabytes per second) over ten trials.

STREAM: The STREAM [8] benchmark is ported and

tuned for the Emu hardware in order to measure raw memory

bandwidth. The ADD kernel computes the vector sum of two

large arrays of 8-byte integers, storing the result in a third array.

On the Emu, these arrays are striped across all the nodelets in

the system.

Several variants of this benchmark are developed to de-

termine the most efficient way to spawn threads on this

architecture. Since cilk_for is not yet supported, we use

hand-written loops to implement various kinds of spawn trees

to saturate the system. These spawn trees are briefly described

as follows:

• serial spawn: threads spawn locally on a single nodelet

using a for loop,

• recursive spawn: threads are spawned locally using

recursive calls,

• serial remote spawn: threads are spawned on each

nodelet, which in turn uses a for loop to spawn threads

locally, and

• recursive remote spawn: threads are spawned recur-

sively across all nodelets, and then each nodelet recursively

spawns new threads locally.

Pointer Chasing: In this benchmark, each thread sums

up all the elements in a linked list. Each element con-

sists of an 8-byte payload and an 8-byte pointer to the

next element. After the elements of this linked list are

grouped into blocks, their ordering is randomized. This

permutation may be applied to the ordering of the elements

within each block (intra_block_shuffle), or the order-

ing of the blocks themselves (block_shuffle), or both

(full_block_shuffle). The block size is also varied to

emulate different levels of spatial locality that may arise in a

workload. Figure 2 explains the list initialization further.

The pointer chasing benchmark was designed to have three

key properties.

• Data-dependent loads: Memory-level parallelism is

severely limited since each thread must wait for one

pointer dereference to complete before accessing the next

pointer

• Fine-grained accesses: Spatial locality is restricted since

all accesses are at a 16B granularity. This is smaller than

581



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 2: (top) An ordered linked list, in which consecutive elements have sequential memory addresses, (middle) A linked list

with a intra-block shuffle permutation applied to randomize the ordering of elements within a block. Note that all elements

within a block are accessed before jumping to the next block. (bottom) A linked list with a full block shuffle permutation

applied. Not only are the elements within a block shuffled, but the traversal order of the blocks themselves has also been

randomized.

Local 1D 2D

1  nodelet 8+  nodelets 8+  nodelets

X

row

v
col

= xY

X

Y =
x

Y

Xx

=

Fig. 3: Emu-specific layout for CSR SpMV

a 64B cache line on x86 platforms, and much smaller

than a typical DRAM page size.

• Random access pattern: Since each block of memory is

read exactly once in random order, caching and prefetching

are mostly ineffective.

The pointer chasing benchmark simulates a worst-case mem-

ory fragmentation scenario that can arise in memory intensive

workloads such as streaming graph analytics. When small list

elements are dynamically allocated and deallocated from a

shared memory pool, the resulting data structure will exhibit

all three of these characteristics when it is traversed. The pointer

chase benchmark is quite similar to the GUPS/RandomAccess

benchmark[9], however GUPS lacks data-dependent loads, and

pointer chase does not modify the list.

Sparse Matrix Vector Multiply (SpMV): In addition to

being a fundamental kernel for graph analytics and sparse tensor

decomposition applications, SpMV provides an opportunity to

investigate data layout strategies on the Emu’s global physical

address space. Emu provides a “local” malloc similar to a

traditional contiguous malloc (mw_localmalloc) as well

as a “striped” malloc (mw_malloc1dlong) that places data

in a round-robin fashion across nodelets and a 2D malloc

(mw_malloc2d), that stripes entire data structures across

nodelets.

Figure 3 demonstrates the three layouts that are tested with

inputs in Compressed Sparse Row (CSR) format. In the local

case, contiguous mallocs are used to place the output matrix,

Y, the input CSR matrix, V, the row pointer and column index

arrays and the vector, X, all on a single node. For the 1D

layout, mw_malloc1dlong is used to stripe the input matrix

and row and column arrays across the nodelets (and across

nodes in the multi-node case) while the output matrix is on

nodelet 0 and X is replicated across all nodelets. For the 2D

allocation, we use a two-stage allocation rather than Emu’s

2D malloc to partition V across multiple nodelets. First, the

lengths of each row that is assigned to a nodelet are computed

and then data for V and the column index array is allocated

on each nodelet using mw_malloc1dlong. X is replicated

across each nodelet and the output is placed on nodelet 0 in

both the 1D and 2D cases.

This benchmark uses these different layout strategies to test

performance for placing all data within a nodelet and striping

it in a 1D and 2D fashion across multiple nodelets. In the 2D

case no thread migrations occur when accessing elements in

the same row as opposed to a migration for every element

within a row in the 1D layout. Synthetic Laplacian matrix

inputs are created corresponding to a d-dimensional k-point

stencil on a grid of length n in each dimension. For the tested

synthetic matrices, d = 2 and k = 4, resulting in a n2 ∗ n2

Laplacian with 5 diagonals. CPU tests are run on Haswell
Xeon, using SpMV from Intel’s Math Kernel Library (MKL)

with MKL_MAX_THREADS set at 56 (the number of physical

cores in the system as opposed to total threads). We include

two Cilk SpMV kernels for comparison, labeled cilk_for
and cilk_spawn, which are written with the respective

Cilk primitives, compiled using GCC 5.4.0, and run with

CILK_NWORKERS set to 56. Data is distributed across NUMA

regions using numactl --interleave=0-3.

Future work with SpMV will investigate new state-of-the-art

SpMV formats and algorithms such as SparseX, which uses

the Compressed Sparse eXtended (CSX) format for storing

matrices[10].

582



Ping Pong: Simulation validation results (Section IV-D)

demonstrate a need for a more fine-grained microbenchmark to

illustrate potential differences between hardware and simulated

hardware Emu platforms. To explore the cause of this discrep-

ancy, we present another small benchmark called ping pong

migration. This micro-benchmark measures the bandwidth of

thread migrations on the Emu Chick. In each trial, N threads

simply migrate back and forth between two nodelets several

thousand times.

IV. RESULTS

Fig. 4: Memory bandwidth achieved on a single node of

the Emu Chick. Threads are created using a serial loop or

a recursive spawn tree.

A. STREAM

Figure 4 shows the results from running the STREAM

benchmark on a single Emu nodelet. Performance scales

up with thread count through 32 threads and then plateaus.

Two methods of thread creation are tested here. In the

serial_spawn strategy, a single thread uses a for loop to

create each worker thread, while recursive_spawn uses a

recursive spawn tree. There is not much difference between the

two approaches, indicating that thread creation is not terribly

expensive on the Emu platform.

In Figure 5, we extend the STREAM benchmark

to run on eight nodelets (one node card) of the

Emu Chick. Two new thread creation strategies

are introduced here, serial_remote_spawn and

recursive_remote_spawn. A remote spawn on Emu

means that the thread is created on a remote nodelet, rather

than being created locally and allowed to migrate to the

remote data. The “remote” thread creation strategies first

create a thread on each nodelet (either one at a time or with

a recursive spawn tree), and then perform a second level of

spawning on the local nodelet, as in the single nodelet case.

The results show that remote spawns are essential to achieving

maximum bandwidth on Emu.

In comparison to the Emu, our reference Xeon system

(Sandy Bridge) achieves close to the nominal bandwidth of

Fig. 5: Memory bandwidth achieved on eight nodelets of the

Emu Chick. The remote spawn variants create a thread on each

nodelet which subsequently creates the local worker threads.

51.2 GB/s on the STREAM benchmark while the Emu Chick

has a maximum STREAM bandwidth of 1.2 GB/s on a single

node card. An initial test of the full 8-node configuration

of the Emu Chick yielded 6.5 GB/s, but this configuration

was not stable enough to collect further results at the time of

writing. Future Emu systems are planned to have much higher

bandwidth than the initial prototypes, with up to 160 GB/s of

bandwidth. However even with this prototype system we can

observe improvements in other benchmarks where the memory

access pattern is not as linear and predictable as it is with

STREAM.

B. Pointer Chasing

Figures 6 and 7 compare the performance of the Emu

Chick against our Sandy Bridge Xeon server system for the

pointer chasing benchmark. These results reveal important

characteristics of both systems and highlight the unique

advantages of the Emu Chick.

Pointer chasing on the Xeon architecture performs poorly

for several reasons. For small block sizes, the memory system

bandwidth is used inefficiently. An entire 64-byte cache line

must be transferred from memory, but only 16 bytes will

be used. The best performance is achieved with a block size

between 256 and 4096 elements. This corresponds to a memory

chunk of about 8KiB, the size of one DRAM page. Regardless

of the size of the access, an entire DRAM row must be

activated for each element traversed. Adding more threads at

this point increases the number of simultaneous row activations.

As the block size grows beyond the size of a DRAM page,

performance declines again.

Performance on Emu remains mostly flat regardless of block

size. Emu’s memory access granularity is 8 bytes, so it never

transfers unused data in this benchmark. As long as a block

fits within a single nodelet’s local memory channel, there is no

penalty for random access within the block. However, block

size of 1 provides an interesting case; here Emu threadlets

583



Fig. 6: Pointer chasing performance on a single node of the Emu Chick.

Fig. 7: Pointer chasing performance on Sandy Bridge Xeon

are likely to migrate on every access, and so performance is

greatly reduced. But performance recovers when even as few

as four elements are accessed between each migration.

Figure 8 shows the normalized bandwidth usage (i.e.,

effective bandwidth usage) for the Sandy Bridge and Emu

systems. The performance of each system has been normalized

to the peak measured bandwidth of the system (i.e. the best

result on the STREAM benchmark). In the pointer chasing

benchmark, the Emu system is much better at using the

available system bandwidth, using 80% of available system

bandwidth in most cases and 50% in the worst cases. The Sandy

Bridge Xeon uses less than 25% of peak bandwidth in most

cases, relying on multi-kilobyte levels of locality to efficiently

transfer the data. These results bode well both for the targeted

streaming graph and tensor decomposition applications which

have pointer chasing behavior and rely on random accesses

Fig. 8: Bandwidth utilization of pointer chasing, compared

between Sandy Bridge Xeon and Emu

584



to compute SpMV and SpMM (sparse matrix-matrix product)

operations, respectively.

C. Sparse Matrix-Vector Multiply

Figure 9 shows the memory bandwidth achieved by SpMV

using each of the three data layout strategies on the Emu

versus three different CPU implementations. A Laplacian size

of n specifies a sparse matrix corresponding to a 5-point,

2-D, n × n stencil, which is a matrix of n2 ∗ n2 with 5

diagonals. The local layout on the Emu suffers from a limited

amount of thread parallelism while the 1D layout suffers

from a large number of thread migrations, resulting in max

bandwidths of close to 50 MB/s and 100 MB/s, respectively.

As cilk_for is not yet supported on the Emu hardware, the

cilk_spawn CPU version mostly closely resembles the Emu

SpMV implementation. While Figure 9b demonstrates a higher

maximum bandwidth, it is interesting to note that the Emu

system provides good scaling of bandwidth at lower values of

n, especially for the 2D memory layout, which scales up to

250 MB/s for n=100.

On the Haswell system (Figure 9b), both MKL and

cilk_for show good scaling with matrix size, while

cilk_spawn performance depends largely on grain size, or

number of elements per spawn. A large grain size of 16,384

for cilk_spawn works best for CPU-based SpMV while a

much smaller grain size of 16 elements per spawn is most

effective for the Emu implementation. A smaller grain size on

the Emu results in more active threads but also better work

balance while the larger grain size on the CPU-based system

results in lower overhead and fewer overall thread spawns.

D. Emu Simulation Validation and Prediction

We wish to predict the performance of an Emu Chick system

operating at full speed as well as larger configurations by using

the provided Emu simulator. First we validate the simulated

measurements by configuring it to match the specifications of

our current hardware system. The results of this evaluation

are displayed in Figure 10. While the STREAM benchmark

results match well for both single nodelet and multi-nodelet

operation, the pointer chase benchmark results do not. Despite

the error in magnitude, the shape of the results matches well.

To help explain this difference, Figure 10 also shows results

from the hardware and simulated ping pong benchmark. While

the simulator can perform 16 million migrations per second, the

hardware is currently limited to only 9 million migrations per

second. Since pointer chasing is a migration-heavy benchmark,

the performance of the thread migration engine affects its

performance to a much greater degree than STREAM. Our

experiments indicate that the latency for a single thread

migration on the current system is approximately 1-2 μs.

Finally, Figure 11 plots simulation results for the full-speed

configuration of a 64 node Emu system running the pointer

chasing benchmark. Despite the increase in scale, the system

performance is still not sensitive to the granularity of spatial

locality, and bandwidth scales well even up to thousands of

threads.

V. DISCUSSION

This initial characterization raises important topics for

programming memory-centric architectures like the Emu Chick

and also for building realistic comparisons between prototype

novel architectures and existing architectures.

A. Impacts of Data Location and Thread Migration

While the results from SpMV demonstrate that data layout

can have an impact on performance on the Emu, application

performance also depends on where threads are spawned and

how many migrations occur between nodes and nodelets. In the

initial development of our benchmarks, we debated explicitly

minimizing thread movement and keeping computation local

to a specific node. However, this strategy both goes against

the “lightweight, migrating threadlets” model of computation

with the Emu, and it is hard to implement in practice.

For this reason, we have settled on a strategy of “smart

thread migration” for future benchmarking and application

development with the Emu system. In short, this means 1) using

“smart” thread spawn techniques like the two-level recursive

remote spawn as in Section IV-A, 2) using replicated allocations

for commonly used inputs like the vector X in the SpMV

benchmark, and 3) picking the appropriate layout strategy for

the application. In this last case, it is likely that good application

performance will be most easily achieved through proper

data layouts like with CSR SpMV’s striped allocation across

nodelets and per-nodelet secondary allocation for different-

length rows. In this sense, we have created our own custom 2D

allocator for SpMV, but we expect that higher-level memory

allocation constructs will eventually be supported to help use

the Emu’s novel global address space layout.

B. Performance Models and Comparisons to Existing Archi-
tectures

One of the challenges in evaluating a drastically different

architecture like the Emu is performing a realistic comparison

between a prototype architecture and existing platforms using

CPUs or other mainstream accelerators. Many aspects of the

prototype Emu Chick present challenges. The Chick is a

cacheless architecture and uses thread migration and atomic

operations to avoid buffering large chunks of data. Even

when compared with accelerators like GPUs, the low-latency

access of the Chick, different memory clock speeds and data

widths, and the lack of shared memory or caches provide a

challenge for modeling how much more “efficient” the Chick

is in terms of memory bandwidth. Additionally, the Chick

is a full-scale prototype built using FPGA devices, which

are useful for their flexibility and customization capabilities

but naturally are slower than a traditional, hardwired ASIC.

Firmware upgrades to the Chick prototype can also affect

application performance dramatically by changing the gossamer

cores’ maximum frequency and by adding new functionality.

These comparison challenges are common not only to the

Emu Chick but also to other new, experimental hardware like

neuromorphic and quantum computing platforms. We may need

585



(a) Emu SpMV BW (b) CPU SpMV BW

Fig. 9: Effective bandwidth for the Emu and Xeon E7-4850 platform running with synthetic inputs with 512 and 56 threads,

respectively.

Fig. 10: Emu hardware performance compared with simulator results

586



Fig. 11: Simulated results for the pointer chasing benchmark running on an Emu Chick at full speed.

to define additional metrics to supplement traditional character-

ization metrics like performance (FLOPS), memory bandwidth

balance (FLOPS/B), and power efficiency (FLOPS/W). While

we do not yet have enough application experience with the Emu

Chick to fully define new metrics, we propose that there may

be promise in focusing on comparison metrics that highlight

the differences listed above. For example, a cache-less system

like the Emu Chick may not actually move data physically

across the system, but a comparable metric to a traditional

CPU-based system might be some combination of network

traffic (ie, threads migrated measured using context size and

time, or B/s) and cache misses avoided (B/s). We plan to

investigate how to better model and define these types of

differences in future work to effectively quantify not just the

high-level application benefits of novel architectures like the

Chick but also the fundamental qualities that help define which

applications are the best fit for these new architectures.

VI. RELATED WORK

Advances in memory and integration technologies provide op-

portunities for profitably moving computation closer to data[11].

Some proposed architectures return to the older processor-in-

memory (PIM) and “intelligent RAM”[12] ideas. Simulations

of architectures focusing on near-data processing[13] including

in-memory[14] and near-memory[15] show great promise for

increasing performance while also drastically reducing energy

usage. Few of these architectures have been implemented in

hardware, even FPGAs, limiting the data scales on which

applications can be evaluated.

Other hardware architectures have tackled massive-scale data

analysis to differing degrees of success. The Cray XMT[16]

could provide high bandwidth utilization by tolerating long

memory latencies in applications that could produce enough

threads. Another approach is to push memory-centric aspects to

an accelerator like Sparc M7’s data analytics accelerator[17] for

database operations or Graphicionado[18] for graph analysis.

Moving computation to data via software has had a suc-

cessful history in supercomputering via Charm++[7], which

manages dynamic load balancing on distributed memory

systems by migrating the computational objects. Previously

data analysis systems like Hadoop had moved computation

to data when the network was a data bottleneck, but that no

longer appears to be useful[19].

VII. CONCLUSION

The initial evaluation of the Emu Chick demonstrates some

of the limitations of the existing prototype system as well as

some potential benefits for massive data analytics applications

like streaming graph analytics and sparse tensor decomposition.

We demonstrate multi-nodelet performance for a variety of

benchmarks including STREAM, pointer chasing, and SpMV.

Initial results demonstrate low overall bandwidth for the Emu

system but illustrate that it can achieve a high percentage

of effective memory bandwidth even in a worst-case access

scenario like pointer chasing. The pointer chasing benchmark

in Section IV-B achieves a stable 80% bandwidth utilization

across a wide range of locality parameters. These results and

initial results on how data layouts can improve random access

with SpMV provide a template for future benchmarking and

application developmen and show how application memory

layouts and “smart” thread migration can be used to maximize

performance on the Emu system.

VIII. ACKNOWLEDGMENTS

This work partially was supported by NSF Grant ACI-

1339745 (XScala), an IARPA contract, and the Defense Ad-

vanced Research Projects Agency (DARPA) under agreement

#HR0011-13-2-0001. Any opinions, findings, conclusions, or

recommendations in this paper are solely those of the authors

and does not necessarily reflect the position or the policy of the

sponsors. Thanks also to the Emu Technology team for support

and debugging assistance with the Emu Chick prototype.

587



REFERENCES

[1] F. McSherry, M. Isard, and D. G. Murray, “Scalability! but at what
COST?” in 15th Workshop on Hot Topics in Operating Systems (HotOS
XV). Kartause Ittingen, Switzerland: USENIX Association, 2015.

[2] T. Dysart, P. Kogge, M. Deneroff, E. Bovell, P. Briggs, J. Brockman,
K. Jacobsen, Y. Juan, S. Kuntz, and R. Lethin, “Highly scalable
near memory processing with migrating threads on the Emu system
architecture,” in Irregular Applications: Architecture and Algorithms
(IA3), Workshop on. IEEE, 2016, pp. 2–9.

[3] D. Ediger, R. McColl, J. Riedy, and D. A. Bader, “STINGER: High
performance data structure for streaming graphs,” in The IEEE High
Performance Extreme Computing Conference (HPEC), Waltham, MA,
Sep. 2012.

[4] J. Li, Y. Ma, C. Yan, and R. Vuduc, “Optimizing sparse tensor times
matrix on multi-core and many-core architectures,” in 2016 6th Workshop
on Irregular Applications: Architecture and Algorithms (IA3), Nov 2016,
pp. 26–33.

[5] “ParTI Github,” online, 2018. [Online]. Available:
https://github.com/hpcgarage/ParTI

[6] C. E. Leiserson, “Programming irregular parallel applications in Cilk,”
in International Symposium on Solving Irregularly Structured Problems
in Parallel. Springer, 1997, pp. 61–71.

[7] B. Acun, A. Gupta, N. Jain, A. Langer, H. Menon, E. Mikida, X. Ni,
M. Robson, Y. Sun, E. Totoni, L. Wesolowski, and L. Kale, “Parallel
programming with migratable objects: Charm++ in practice,” in SC14:
International Conference for High Performance Computing, Networking,
Storage and Analysis, Nov. 2014, pp. 647–658.

[8] J. D. McCalpin, “Memory bandwidth and machine balance in current high
performance computers,” IEEE Computer Society Technical Committee
on Computer Architecture (TCCA) Newsletter, pp. 19–25, Dec. 1995.

[9] P. R. Luszczek, D. H. Bailey, J. J. Dongarra, J. Kepner, R. F. Lucas,
R. Rabenseifner, and D. Takahashi, “The HPC Challenge (HPCC)
benchmark suite,” Proceedings of the 2006 ACM/IEEE conference on
Supercomputing - SC 06, 2006.

[10] A. Elafrou, V. Karakasis, T. Gkountouvas, K. Kourtis, G. Goumas, and
N. Koziris, “SparseX: A library for high-performance sparse matrix-
vector multiplication on multicore platforms,” ACM Trans. Math. Softw.,
vol. 44, no. 3, pp. 26:1–26:32, Jan. 2018.

[11] P. Siegl, R. Buchty, and M. Berekovic, “Data-centric computing frontiers:
A survey on processing-in-memory,” in Proceedings of the Second
International Symposium on Memory Systems, ser. MEMSYS ’16. New
York, NY, USA: ACM, 2016, pp. 295–308.

[12] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton,
C. Kozyrakis, R. Thomas, and K. Yelick, “A case for intelligent RAM,”
IEEE Micro, vol. 17, no. 2, pp. 34–44, Mar. 1997.

[13] M. Gao, G. Ayers, and C. Kozyrakis, “Practical near-data processing for
in-memory analytics frameworks,” in 2015 International Conference on
Parallel Architecture and Compilation (PACT), Oct. 2015, pp. 113–124.

[14] T. Finkbeiner, G. Hush, T. Larsen, P. Lea, J. Leidel, and T. Manning,
“In-memory intelligence,” IEEE Micro, vol. 37, no. 4, pp. 30–38, Aug.
2017.

[15] A. Farmahini-Farahani, J. H. Ahn, K. Morrow, and N. S. Kim, “Nda: Near-
dram acceleration architecture leveraging commodity dram devices and
standard memory modules,” in 2015 IEEE 21st International Symposium
on High Performance Computer Architecture (HPCA), Feb. 2015, pp.
283–295.

[16] D. Mizell and K. Maschhoff, “Early experiences with large-scale cray xmt
systems,” in 2009 IEEE International Symposium on Parallel Distributed
Processing, May 2009, pp. 1–9.

[17] K. Aingaran, S. Jairath, G. Konstadinidis, S. Leung, P. Loewenstein,
C. McAllister, S. Phillips, Z. Radovic, R. Sivaramakrishnan, D. Smentek,
and T. Wicki, “M7: Oracle’s next-generation sparc processor,” IEEE
Micro, vol. 35, no. 2, pp. 36–45, Mar. 2015.

[18] T. J. Ham, L. Wu, N. Sundaram, N. Satish, and M. Martonosi,
“Graphicionado: A high-performance and energy-efficient accelerator
for graph analytics,” in 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), Oct. 2016, pp. 1–13.

[19] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, “Disk-locality
in datacenter computing considered irrelevant,” in Proceedings of the 13th
USENIX Conference on Hot Topics in Operating Systems, ser. HotOS’13.
Berkeley, CA, USA: USENIX Association, 2011, pp. 12–12.

588


