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Abstract—Tensor computations present significant perfor-
mance challenges that impact a wide spectrum of applications
ranging from machine learning, healthcare analytics, social
network analysis, data mining to quantum chemistry and sig-
nal processing. Efforts to improve the performance of tensor
computations include exploring data layout, execution schedul-
ing, and parallelism in common tensor kernels. This work
presents a benchmark suite for arbitrary-order sparse tensor
kernels using state-of-the-art tensor formats: coordinate (COO)
and hierarchical coordinate (HiCOO) on CPUs and GPUs. It
presents a set of reference tensor kernel implementations that
are compatible with real-world tensors and power law tensors
extended from synthetic graph generation techniques. We also
propose Roofline performance models for these kernels to provide
insights of computer platforms from sparse tensor view. This
benchmark suite along with the synthetic tensor generator is
publicly available 1.

Index Terms—sparse tensors, benchmarking, data analysis,
tensor decomposition, GPU

I. INTRODUCTION

Tensors, multi-dimensional arrays that are often sparse, are
utilized by a large number of critical applications that span
a range of domain areas. These include quantum chemistry,
healthcare analytics, social network analysis, data mining,
signal processing, machine learning, and more. Operations on
sparse tensors tend to dominate the execution-time of these
applications. Understanding the performance characteristics of
different implementation approaches is of paramount impor-
tance. This paper presents a benchmark suite specifically for
that purpose. The suite provides implementations of common
tensor kernels using state-of-the-art sparse tensor data struc-
tures and a variety of real and synthetic sparse tensors as its
input dataset.

Given the heterogeneity in available hardware resources for
high performance computing (HPC), it is non-trivial to answer
questions about the potential for sparse tensor algorithms to be
efficiently ported to various hardware. The difficulty of plan-
ning for the irregular parallelism that results from operating
on sparse data structures is compounded by the availability
of Graphics Processing Units (GPUs), vectorizing units, Field
Programmable Gate Arrays (FPGAs), and potentially Tensor
Processing Units (TPUs). A set of important tensor kernels

1https://gitlab.com/tensorworld/pasta

with associated implementations eases the exploration of this
space.

Optimizing the performance of tensor applications is chal-
lenging due to several application characteristics, named in
the studies [1], [2], [3] and briefly outlined here for complete-
ness: the curse of dimensionality, mode orientation, tensor
transformation, irregularity, and arbitrary tensor orders (or
dimensions).

Tensors are, by definition, multidimensional. The curse of
dimensionality manifests itself as large computational and
storage overheads required to accommodate the exponential
growth of elements that occurs in some operations. For
instance, a Kronecker product results in exponential expan-
sion of space requirements. Compounding this issue is the
increased interest in applications involving a large number
of dimensions [4], [5], [6], [7], [8]. The data structures
supporting sparse tensors and the required tensor operations
are often mode specific, where each dimension of a tensor
is referred to as a mode. Different data structures supporting
sparse tensors favor iterating over specific mode order, mode
orientation. There is a tradeoff that must be made between
space requirements and enjoying good performance in multiple
representations of various mode sequences. Tensor transfor-
mation is traditionally used to implement tensor operations by
casting them as a set of matrix operations and utilizing highly
tuned linear algebra libraries. However, the transformation
process brings non-trivial overhead to the execution of a
tensor operation. Mitigating this cost has become attractive for
researchers in tensor linear algebra and their applications [9],
[10], [11], [12], [13]. Irregularity in memory access patterns
and in tensor shape makes poor use of memory subsystems and
complicates code, especially for sparse data. Optimizations
are typically best suited for a specific dimensionality, such as
third-order, but most tensor operations are required to handle
arbitrary tensor orders.

Beyond these, challenges associated with all benchmarks
also apply, which include completeness, diversity, extendibil-
ity, reproducibility, and comparability across implementations.
Comparisons across research groups are improved by using a
standard set of kernels and inputs. Using that set as a starting
point, optimizations can be applied and effectively compared.

Our benchmark suite consists of a set of reference imple-



mentations from various tensor applications, each of which
show different computational behaviors. We keep the imple-
mentations simple yet effective; the benchmark represents a
general case where the primary computation is not obfuscated
by optimization attempts. Much like two-dimensional sparse
matrices, the data layout, or the data structure used to hold
a sparse tensor, has a significant impact on performance and
storage [14], [15]. It also has a significant impact on how
the control flow for a given operation must be executed
and its memory footprints. We implement two sparse tensor
formats: the most popular and mode-generic coordinate (COO)
format and a newly proposed, more compressed hierarchical
coordinate (HiCOO) format [16] and their variants to rep-
resent general or dense structured, arbitrary sparse tensors.
Beyond the implementation diversity, platform and workload
(or input) diversity is also critical to gain insights from
a benchmark suite. We implement the same set of tensor
kernels, by directly operating on non-zero entries to avoid
tensor-matrix transformations, on CPUs and GPUs to pro-
vide a good understanding for users. Different inputs of an
algorithm usually obtain different performance due to their
diverse data sizes and patterns. This phenomenon is more
obvious on sparse problems because their algorithm behavior
largely depends on the features of data. Besides evaluating
limited and hard-to-obtain real-world tensors, mimicking some
application characters to generate more datasets is valuable for
benchmarking. We create power law tensors extended from
synthetic graph generation techniques. This suite provides a
performance baseline and a starting point for new optimization
strategies. It is easy to adopt new implementations, operations,
and formats from users and to be adapted in a communication
scheme.

This work is a continuous effort on the PASTA sparse
tensor benchmark suite [17]. Our contributions, beyond the
first sparse tensor benchmark suite for GPUs, include:
• reference and direct tensor-based implementations of five

tensor kernels: TEW, TS, TTV, TTM, and MTTKRP, in
COO format for GPUs and HiCOO format for CPUs and
GPUs; (Sections II and III)

• application of HiCOO to more tensor operations and an
extension of it to more flexible variations; (Section III)

• synthetic tensor generation based on Kronecker and
power law generators; (Section IV)

• Roofline performance models for two Intel CPU and two
NVIDIA GPU platforms to analyze the tensor kernels;
and

• insights gained from thorough experiments and analysis
of the performance. (Section V)

II. TENSOR BENCHMARKS

Tensors are increasingly employed in computations across a
spectrum of application areas. This benchmark suite represents
a set of fundamental operations chosen by examining a range
of composite operations commonly used in these applications
and studied in the community. The following text provides the

definition of each operation, the motivation for its inclusion,
and its applications.

Notationally, we represent tensors as calligraphic capital
letters, e.g., X ∈ RI×J×K ; matrices by boldface capital letters,
e.g., U ∈ RI×J ; vectors by boldface lowercase letters, e.g.,
x ∈ RI ; and scalars by lowercase letters, such as xijk for
the (i, j, k)-element of a third-order tensor X. A slice is a
two-dimensional cross-section of a tensor, obtained by fixing
all indices but two, e.g., S::k = X(:, :, k). A fiber is a vector
extracted from a tensor along a certain mode, selected by fixing
all indices but one, e.g., f :jk = X(:, j, k).

A. Tensor Element-Wise Operations

Tensor element-wise (TEW) operations include addition,
subtraction, multiplication, and division, that are applied to
every corresponding pair of elements from two tensor ob-
jects. For example, element-wise tensor addition of X,Y ∈
RI1×···×IN is Z = X + Y. Similarly for element-wise tensor
subtraction Z = X−Y, multiplication Z = X◦Y, and division
Z = X � Y.

This operation is trivially implemented when the two input
tensors having exactly the same non-zero pattern, tensor order
(i.e., number of dimensions) and shape (i.e., dimension sizes).
We also support more general cases those require iterating
over both tensors and their matching non-zero elements as the
execution proceeds for tensors in different tensor orders and/or
shapes, where predicting the storage of the output Z is needed.

B. Tensor-Scalar Operations

A Tensor-Scalar (TS) operates between the non-zero values
of a tensor and a scalar through addition (TSA), subtraction
(TSS), multiplication (TSM), and division (TSD). For example,
tensor-scalar multiplication of X ∈ RI1×···×IN with scalar s is
Y = X× s. This benchmark suite implements TSA and TSM
only, which are sufficient to support all the four operations.

TEW and TS are commonly used in machine learning, quan-
tum chemistry, and so on. The tensor convolution operation
in convolutional neural network (CNN) is a combination of
TEW and TSM [18]; space mapping in quantum chemistry
also involves these two. TEW and TS are simple operations
and can be implemented along with other tensor operations.
We consider them separately in this benchmark suite because
of their different computational behavior (Will be shown in
Table I).

C. Tensor-Times-Vector Product

The Tensor-Times-Vector (TTV) in mode n, Y = X ×n v,
is the multiplication of a tensor X ∈ RI1×···×In×···×IN with
a vector v ∈ RIn , along mode n. Element-wise,

yi1···in−1in+1···iN =

In∑
in=1

xi1···in−1inin+1···iN vin (1)

This results in a I1 × · · · × In−1 × In+1 × · · · × IN tensor
which has one less dimension. TTV is a critical computational
kernel of the tensor power method [19], [20], an approach



for orthogonal tensor decomposition, that decomposes a sym-
metric tensor into a collection of orthogonal vectors with
corresponding weights. The tensor power method is used in
machine learning and signal processing applications.

D. Tensor-Times-Matrix Product

The Tensor-Times-Matrix (TTM) in mode n, also known
as the n-mode product, is the multiplication of a tensor X ∈
RI1×···×In×···×IN with a matrix U ∈ RIn×R, along mode n,
and is denoted by Y = X×n U. 2 This results in a I1× · · ·×
In−1×R×In+1×· · ·×IN tensor, and its operation is defined
as

yi1···in−1rin+1···iN =

In∑
in=1

xi1···in−1inin+1···iNuinr. (2)

TTM is a special case of tensor contraction, a multiplication
between two tensors in common mode(s). We consider TTM
specifically because: 1) it is commonly used in popular tensor
decompositions, such as the Tucker decomposition, for a
variety of applications, including (social network, electrical
grid) data analytics, numerical simulation, machine learning,
recommendation systems, personalized web search, etc. [1],
[21], [19], [22]; 2) the behavior of tensor contraction largely
depends on which mode(s) to be contracted on; this creates
difficulties for benchmarking. Also, note that R is typically
much smaller than In in low-rank decompositions, typically
R < 100.

E. Matriced Tensor-Times-Khatri-Rao Product

MTTKRP, matricized tensor times Khatri-Rao product,
is a matricized tensor times the Khatri-Rao product of
matrices. For an N th-order tensor X and given matrices
U(1), . . . ,U(N), the mode-n MTTKRP is

Ũ
(n)

= X(n)

(
U(N) � · · · �U(n+1) �U(n−1) � · · · �U(1)

)
,

(3)

where X(n) is the mode-n matricization of tensor X, � is the
Khatri-Rao product. The Khatri-Rao product is a “matching
column-wise” Kronecker product between two matrices. Given
matrices A ∈ RI×R and B ∈ RJ×R, their Khatri-Rao product
is denoted by C = A�B,

C = A�B = [a1 ◦ b1,a2 ◦ b2, . . . ,aR ◦ bR] , (4)

where C ∈ R(IJ)×R, ar and br, r = 1, . . . , R are columns
of A and B, ◦ is the outer product of vectors, a special
case of Kronecker product. However, the Khatri-Rao and
Kronecker products typically require redundant computation
or extra storage to hold matrix operands, so in practice, these
operations tend to be not implemented directly but rather
integrated into sparse tensor operations.

MTTKRP is the most computational expensive kernel
in CANDECOMP/PARAFAC decomposition (CPD), another

2Our convention for the dimensions of U differs from that of Kolda and
Bader’s definition [1]. In particular, we transpose the matrix modes U, which
leads to a more efficient TTM under the row-major storage convention of the
C language.

popular tensor decomposition. CPD also has a wide application
in (healthcare, social network, brain signal, electrical grid) data
analytics, machine learning, recommendation systems, signal
processing, personalized web search, quantum chemistry, and
other domains [1], [21], [19], [22].

Because of the varying computational behavior (will be
shown in Table I) of the above operations, we integrate them
as a benchmark suite to help evaluate underlying hardware.

III. TENSOR FORMATS AND KERNEL IMPLEMENTATIONS

Much like sparse matrices, sparse tensors are expressed
using different formats. The best choice of format depends
on the sparsity pattern of a tensor, operations applied, and the
time required to translate between them. The common default
format for sparse tensors is coordinate (COO) format. New
formats have been developed including compressed sparse
fiber (CSF) [23], balanced and mixed-mode CSF (BCSF, MM-
CSF) [24], [25], flagged COO (F-COO) [26], and hierarchical
coordinate (HiCOO) [16] for general sparse tensors, and mode-
generic and -specific formats for structured sparse tensors [27].
PASTA suite [17] has realized the five tensor operations based
on the COO format on multicore CPUs. Our benchmark suite
further supports HiCOO for general sparse tensors and their
variants for semi-sparse tensors with dense dimension(s), and
extends to GPUs for COO- and HiCOO-based operations.

We chose COO and HiCOO formats because of their mode
generic property, described in the work [16]. For a mode
generic format, only one tensor representation is needed for all
tensor computations in different modes, which is commonly
required by tensor methods (e.g., CPD and Tucker decom-
positions). COO is the most popular format used in many
tensor libraries, e.g., Tensor Toolbox [28], Tensorlab [29],
TACO [30], [31], and ParTI [32]. HiCOO, a newly proposed
format, obtains good compression and state-of-the-art tuned
performance on CPUs [16]. Other formats especially CSF will
be considered for our benchmark suite in the near future. This
section overviews our supported formats and their correspond-
ing parallel implementations for tensor kernels.

Our implementations directly operate on sparse tensor non-
zero entries to avoid tensor-matrix transformations. Besides,
we use more pre-processing to trade for less kernel com-
putation time, which keeps this suite more efficient and
relatively easy-to-analyze compared to pillar libraries, e.g.,
Tensor Toolbox [28] and TensorLab [29]. Table I presents the
operational intensity of each kernel using a cubical third-order
sparse tensor, while all the implementations in the benchmark
suite support arbitrary tensor orders. Operational intensity (OI)
is the ratio of bytes required per floating point operation for
a given computation. The “memory access” column counts
the maximal bytes needed (upper-bound) because of irregular
and unpredictable memory access. Data reuse could happen if
its access has or gains a good localized pattern naturally or
from reordering techniques [23], [33]. Thus, their performance
could be improved due to reductions in memory pressure. We
name all tensor algorithms in the pattern of “[Tensor Format]-
[Tensor Kernel]-[Parallelization]” in the following context.



TABLE I
THE ANALYSIS OF KERNEL ALGORITHMS FOR THIRD-ORDER CUBICAL

TENSORS (X ∈ RI×I×I ). WE CONSIDER ALL INPUT TENSORS WITH M
NON-ZERO ENTRIES AND MF FIBERS, I �MF �M . THE INDICES USE
32 BITS, AND VALUES ARE SINGLE-PRECISION FLOATING-POINT NUMBERS

WITH 32 BITS AS WELL.

Kernels Work Upper-Bound Memory Access (#Bytes) OI
(#Flops) COO HiCOO

TEW M 12M 12M 1/12
TS M 8M 8M 1/8

TTV 2M 12M + 12MF 12M + 12MF ∼ 1/6

TTM 2MR
4MR + 4MFR 4MR + 4MFR ∼ 1/2
+8M + 8MF +8M + 8MF

MTTKRP 3MR 12MR + 16M
12Rmin{nbMB ,M} ∼ 1/4

+7M + 20nb

A. Coordinate Format (COO)

Coordinate format is commonly used to store sparse matri-
ces and tensors. It does not require or guarantee any particular
ordering of data. Data values are stored in a one-dimensional
array, no matter how many dimensions are represented in
the data. For each dimension an additional index array is
added to indicate the position of the value in that dimension.
Figure 1(a) gives an example that a general third-order sparse
tensor requires three index arrays. The storage space of an
N th-order COO tensor X ∈ RI1×···×IN with M non-zeros
is 4(N + 1)M bytes consisting of 32-bit indices and single-
precision floating-point values.

We also describe a variant of COO format (semi-sparse
COO, sCOO) for a semi-sparse sparse tensor with dense
modes [13], [27], which will be used in TTM. A dense mode
means the fibers on it are all dense vectors. sCOO stores the
dense mode(s) as dense array(s) and the rest modes remain
the same as in the COO format, as shown by another example
tensor in Figure 1(b), where the mode k is dense.

Fig. 1. COO format for a general sparse tensor and sCOO format [13] for a
semi-sparse tensor.

B. Implementations based on COO

The implementations of TEW and TS directly follow their
definitions: one loop over all non-zero values to do the
corresponding computation. In the pre-processing stage, we
allocate and set indices for the output tensor due to its
easy-to-predict non-zero pattern 3. TEW and TS have the

3For TEW with two input tensors having different non-zero patterns, we
support it in the benchmark suite but not analyze them for performance
perspective.

smallest operational intensity: 1/12 and 1/8. We will use TTV
algorithms on CPUs and GPUs as representatives to explain
the similar TTM algorithms; TTM algorithms can be found in
[13], [34], and MTTKRP algorithms can be found in literatures
and libraries [16], [28], [29], [32]. For all operations except
MTTKRP, we have a pre-processing stage to allocate the space
of the output tensor with their indices.

1) Multicore CPU: We use a sparse-dense property for a
sparse tensor times a dense vector/matrix (TTV and TTM),
introduced by Li et al. [13]. That is, if the computation is
between a sparse mode of a tensor and a dense vector in TTV
or from the dense matrix in TTM, this mode will become
dense in the output; and the other modes remain the same
non-zero distribution (a.k.a. sparsity) with the input tensor.
This property makes pre-allocating space for the outputs of
TTV and TTM possible, with the help of the sCOO format
for semi-sparse tensors. Introducing this property is good
for parallelization by avoiding output data race and dynamic
memory allocation, which are especially useful for GPU
implementations.

Algorithm 1 COO-TTV-OMP algorithm [17].
Input: A third-order sparse tensor X ∈ RI×J×K with M non-zeros in COO

format, dense vector V ∈ RK , and an integer n (= 3 in this pseudocode);
Output: Sparse tensor Y ∈ RI×J in COO format;

. Y = X×n v
1: Pre-process to obtain MF , the number of mode-n fibers of X and fptr ,

the beginning of each X’s mode-n fiber, size MF .
2: Pre-allocate Y space with MF non-zeros and their indices;
3: parfor f = 1, . . . ,MF do
4: fX = fptr(f)
5: inds1Y (f) = inds1X(fX)
6: inds2Y (f) = inds2X(fX)
7: v = valY (f)
8: for m = fX , . . . , fptr(f + 1)− 1 do
9: k = inds3X(m)

10: v+ = valX(m)× u(k)

11:

The OpenMP-parallelized TTV algorithm using the COO
format, COO-TTV-OMP, in Algorithm 1 is first illustrated in
the PASTA suite [17]. We first pre-process the input tensor
X to record the locations of mode-n fibers. According to
the sparse-dense property, the output Y is pre-allocated with
MF non-zeros and its indices i, j are the same as of X. The
storage consists of 16M for X, 4I for v, and 12MF for Y
4. The number of floating-point operations (#Flops) is 2M .
The memory access in Table I counts 4M bytes for v because
of its irregular and unpredictable memory access introduced
by index-k. The operational intensity is approximately 1/6 by
ignoring less significant terms. COO-TTM-OMP is similar to
COO-TTV-OMP with the output as a semi-sparse tensor stored
in sCOO format. They are both parallelized for independent
fibers, but work imbalance may exist because of different fiber
lengths of sparse tensor X.

COO-MTTKRP is widely used in Tensor Toolbox [28],
Tensorlab [29]; and COO-MTTKRP-OMP is implemented the
same way as in ParTI library [32]. Each row of Ã is updated

4Y is actually a matrix for a third-order TTV.



by scaling the dot product of two rows of matrices B and
C by the non-zero value of X. Its operational intensity is
approximately 1/4 again by ignoring less expensive terms.
COO-MTTKRP-OMP is parallelized by non-zeros, but with
atomic operations to protect output matrix. The data race may
influence its performance differently depending on the non-
zero distribution of an input tensor.

Algorithm 2 COO-TTV-GPU algorithm.
Input: A third-order sparse tensor X ∈ RI×J×K with M non-zeros in COO

format, dense vector V ∈ RK , and an integer n (= 3 in this pseudocode);
Output: Sparse tensor Y ∈ RI×J in COO format;

. Y = X×n v
1: Pre-process to obtain MF , the number of mode-n fibers of X and fptr ,

the beginning of each X’s mode-n fiber, size MF .
2: Pre-allocate Y space with MF non-zeros and their indices;
3: inds1Y (tid) = inds1X(fX)
4: inds2Y (tid) = inds2X(fX)
5: v = valY (tid)
6: for m = fptr(tid), . . . , fptr(tid+ 1)− 1 do
7: k = inds3X(m)
8: v+ = valX(m)× u(k)

2) GPU: COO-TEW-GPU,COO-TS-GPU, and COO-
TTV-GPU use one-dimensional CUDA grids of one-
dimensional thread blocks to parallelize non-zeros and fibers
respectively. Algorithm 2 illustrates the COO-TTV-GPU al-
gorithm, firstly proposed in this work, where M non-zeros are
assigned to M/256 thread blocks with 256 threads for each.
Again, due to the potential unbalanced fiber lengths, COO-
TTV-GPU could suffer more performance drop. While COO-
TTM-GPU and COO-MTTKRP-GPU use one-dimensional
grids of two-dimensional thread blocks to parallelize the dense
matrices, both of them were firstly implemented in ParTI
library [32]. In COO-TTM-GPU algorithm, the x-dimension of
thread blocks are used to represent matrix columns for GPU
memory coalescing, while y-dimension represents non-zeros.
(Refer to details in [34].) Be aware that the load imbalance
still exists for COO-TTV and COO-TTM, and also data race
for COO-MTTKRP, these GPU implementations could not be
performance-efficient.

C. Hierarchical Coordinate (HiCOO)

Hierarchical Coordinate (HiCOO) [16] is derived from the
COO format but further compresses tensor indices in units of
sparse blocks with a pre-specified block size B. It represents
tensor indices using two-level block and element indices, with
element indices stored in only 8-bit. An extra block pointer
array bptr is needed to store the starting locations of every
fiber. Figure 2(a) shows HiCOO representation for the same
tensor in Figure 1(a) in 2 × 2 × 2 blocks. The same with
COO format, HiCOO does not assume any mode order, and
only one representation of a sparse tensor is sufficient for
all its computations. While HiCOO saves the tensor storage
from two aspects: 1) shorter bit-length for element indices; 2)
shortened array length for block indices. Readers can refer to
more details in the paper [16].

In this work we introduce two variants of the HiCOO
format: gHiCOO and sHiCOO. gHiCOO is a generalization

of HiCOO format for a general sparse tensor (Figure 2(b))
and sHiCOO is for semi-sparse tensors with dense mode(s)
(Figure 2(c)). Concluded by the prior work [16], HiCOO
could not be beneficial for hyper-sparse tensors where most
tensor blocks only consist of one or few non-zeros. To conquer
this problem, we propose gHiCOO where we can pick which
modes to be compressed in units of blocks for HiCOO and
which stay in COO format. Figure 2(b) chooses to compress
modes i and j, leaving mode k in the same index array with
Figure 1(a). gHiCOO also provide convenience to implement
tensor operations where not all modes are needed during
computation, such as TTV and TTM. sHiCOO is similar to
sCOO but the extension of the HiCOO format. Figure 2(c)
uses sHiCOO to compress the same semi-sparse tensor in
Figure 1(b) with dense mode k. Our format variants could be
useful in tensor methods and benchmarking for more efficient
space and computation.

Fig. 2. HiCOO, gHiCOO formats for general sparse tensors and sHiCOO for
semi-sparse tensors.

D. Implementations based on HiCOO

HiCOO parallel implementations are all firstly proposed in
this benchmark suite except MTTKRP on CPUs [16], [17]. Ad-
vanced techniques such as privatization, lock-avoiding parallel
strategies, advanced scheduling [16] are not adopted since the
purpose of this suite is to act as reference implementations
for the community and also to avoid complicated tuning
parameters.

1) Multicore CPU: Since the pre-processing phase has
dealt with allocating space and setting indices for the output
tensor in HiCOO format, the floating-point value computation
of HiCOO-TEW-OMP and HiCOO-TS-OMP is the same with
COO-TEW-OMP and COO-TS-OMP, respectively.

HiCOO-TTV-OMP and HiCOO-TTM-OMP also pre-
allocate the output tensors according to the sparse-dense prop-
erty. We use gHiCOO format to represent the input tensor X by
leaving the mode doing the product uncompressed. Therefore,
TTV and TTM can bypass the blocking nature of HiCOO
and be performed without data race between blocks. Then
the same computation will be implemented for HiCOO-TTV-
OMP and HiCOO-TTM-OMP as in their COO counterparts,
with pre-allocated output tensors and their indices in HiCOO
or sHiCOO format respectively.

HiCOO-MTTKRP-OMP is more complicated because in-
dices of all the tensor modes are used in this computation,
different from TTV and TTM where the needed indices are all



Algorithm 3 HiCOO-MTTKRP-OMP algorithm in mode-
1 [16].
Input: A sparse tensor X ∈ RI×J×K with M non-zeros in HiCOO format,

dense matrices B ∈ RJ×R,C ∈ RK×R, block size B;
Output: Updated dense matrix Ã ∈ RI×R;

. Ã← X(1)(C�B)
1: parfor b = 1, . . . , nb do
2: bi = binds1(b), bj = binds2(b), bk = binds3(b);
3: Ab = A+ bi ·B ·R; Bb = B+ bj ·B ·R; Cb = C+ bk ·B ·R;
4: for x = bptr(b), . . . , bptr(b+ 1)− 1 do . entry x
5: ei = einds1(x), ej = einds2(x), ek = einds3(x)
6: value = val(x)
7: for r = 1, . . . , R do
8: Ãb(ei, r)+ = value · Cb(ek, r) ·Bb(ej, r)

9:

from only one mode. We first block matrices A, B, and C as
Ab, Bb, and Cb to be reused for the non-zeros inside a tensor
block. For each block, we update the values of a block of
the output matrix Ã using corresponding blocks Bb, and Cb.
Thus, we do not need to compute the actual indices i, j, k, and
data locality is enhanced due to blocking and Morton order
sorting implied by the HiCOO format [16]. Different from
COO-MTTKRP-OMP, HiCOO-MTTKRP-OMP parallelizes in
the units of tensor blocks rather than non-zeros.

The analysis of HiCOO algorithms are also listed in Ta-
ble I. Since HiCOO-TEW, -TS, -TTV, -TTM all have the
same value computation step with COO counterparts, so they
have the same behavior except for the storage space, where
HiCOO is usually beneficial. However, from our experiments,
we still observe some benefits of HiCOO affected by the
pre-processing stage. HiCOO-MTTKRP has smaller memory
access than COO-MTTKRP due to its blocked feature.

2) GPU: HiCOO-GPU implementations are also the same
with COO ones except HiCOO-MTTKRP-GPU. This unop-
timized HiCOO-MTTKRP-GPU maps one tensor block to a
CUDA thread block, thus the balanced workload by non-
zero distribution for COO-MTTKRP disappears, while the
atomic operation stays. Therefore, the work imbalance due to
different numbers of non-zeros in tensor blocks could make
its performance even worse than COO-MTTKRP-GPU.

IV. TENSOR DATASET

This benchmark suite uses sparse tensors derived from real-
world applications from online collections [35], [36], [37].
It also generates synthetic sparse tensors based on graph
models that preserve the properties of real-world graphs. The
benchmark suite can be run against any set of tensors provided
that they are expressed using coordinate format.

A. Tensors From Real World Applications

The tensors taken from real-world applications are de-
scribed in Table II(a), sorted by tensor order and decreasing
density. They are taken from The Formidable Repository of
Open Sparse Tensors and Tools (FROSTT) dataset [35], the
HaTen2 [38] dataset, and one built from electronic medical
records from Children’s Healthcare of Atlanta [37]. These
tensors were chosen to represent a wide range of domains:

pattern recognition (vast, nips4d, uber4d), natural language
processing (nell2, nell1), healthcare analytics (choa), social
network analysis (deli, deli4d, flickr, flickr4d, fb-m, fb-s), crime
detection (crime4d), and anomaly detection (enron4d, darpa).

B. Synthetic Tensor Generation

The Kronecker graph model [39] and the biased power law
generator from the FireHose streaming benchmark [40] are
extended to generate third- and fourth-order tensors. These
methods were selected because the resultant graphs follow the
power law distribution, exhibit a small diameter, and have a
high average clustering coefficient.

The software to generate synthetic tensors is included in
the benchmark suite and the synthetic tensors used in our
experiments are described in Table II(b) in a period order of
“small, medium, large”. The regular tensors, which are equidi-
mensional along each mode, are generated using the Kronecker
generator. The irregular tensors are generated using the biased
power law streaming generator. The third- and fourth-order
irregular tensors have one or two modes completely dense
and much smaller compared to the two other modes which
are equidimensional and sparse.

1) The Stochastic Kronecker Graph Model: The Stochastic
Kronecker graph model [39] is a fractal growth model that
preserves the properties of real-world graphs. We extended this
approach to generate sparse tensors of order N by accepting
the initiator as a small tensor X1 with N modes. By taking the
repeated Kronecker products of X1 for n times, a larger N th-
order tensor Xn is produced. With Bernoulli sampling, Xn can
be considered as a large sparse tensor representing the resultant
hypergraph that follows the properties of real-world networks.
The exponential growth of Kronecker multiplication limits
the sizes of generated N th-order tensors to certain numbers.
We overcome this by performing an additional iteration of
Kronecker multiplication and strip off the tensor coordinates
those fall outside the given dimension sizes to obtain the final
sparse tensor X.

2) The Power Law Generator: The generator produces a
stream of edges those, when combined, form a graph respect-
ing the power law distribution. Rooted from a graph, a.k.a. a
sparse matrix, the generator combines graphs together to form
slices of a hypergraph, a.k.a. a third order tensor. This process,
when repeated on an (N − 1)th-order tensor, will generate
a sparse tensor with N modes. The power law generated
graphs do not possess a high average clustering coefficient,
thus tensors in arbitrary sizes can be directly generated.

V. EXPERIMENTAL RESULTS

We test our tensor kernels on four parallel platforms in-
cluding Intel CPUs and NVIDIA GPUs and build Roofline
performance models to measure our performance bounds for
detailed analysis. We use floating point operations per second
(FLOPS) to compare among kernels and platforms.

A. Configurations

1) Platforms: We run the experiments on four parallel
platforms, the parameters of which are listed in Table III. All



TABLE II
DESCRIPTION OF SPARSE REAL AND SYNTHETIC TENSORS GENERATED (GEN.) WITH KRONECKER AND POWER LAW GENERATORS INDICATED AS KRON.

AND PL RESPECTIVELY.

No. Tensors Order Dimensions #Nnzs Density

r1 vast 3 165K × 11K × 2 26M 6.9E-3
r2 nell2 3 12K × 9K × 29K 77M 2.4E-5
r3 choa 3 712K × 10K × 767 27M 5.0E-6
r4 darpa 3 22K × 22K × 24M 28M 2.4E-9
r5 fb-m 3 23M × 23M × 166 100M 1.1E-9
r6 fb-s 3 39M × 39M × 532 140M 1.7E-10
r7 flickr 3 320K × 28M × 1.6M 113M 7.8E-12
r8 deli 3 533K × 17M × 2.5M 140M 6.1E-12
r9 nell1 3 2.9M × 2.1M × 25M 144M 9.1E-13

r10 crime4d 4 6K × 24× 77× 32 5M 1.5E-2
r11 uber4d 4 183× 24× 1140× 1717 3M 3.9E-4
r12 nips4d 4 2K × 3K × 14K × 17 3M 1.8E-6
r13 enron4d 4 6K × 6K × 244K × 1K 54M 5.5E-9
r14 flickr4d 4 320K×28M×1.6M×731 113M 1.1E-14
r15 deli4d 4 533K×17M×2.5M×1K 140M 4.3E-15

No. Tensors Gen. Order Dimensions #Nnzs Density

s1 regS Kron. 3 (65K)3 1.1M 3.72E-9
s2 regM Kron. 3 (1.1M)3 11.5M 9.97E-12
s3 regL Kron. 3 (8.3M)3 94M 1.61E-13
s4 irrS PL 3 (32K)2 × 76 1M 1.26E-5
s5 irrM PL 3 (524K)2 × 126 10M 1.43E-6
s6 irrL PL 3 (4.2M)2 × 168 84M 2.86E-8

s7 regS4d Kron. 4 (8.2K)4 1M 2.26E-10
s8 regM4d Kron. 4 (2.1M)4 11.2M 5.83E-19
s9 regL4d Kron. 4 (8.3M)4 110M 2.23E-20

s10 irrS4d PL 4 (1.6M)3 × 82 1.0M 2.90E-9
s11 irrM4d PL 4 (2.6M)3 × 144 10.8M 4.17E-12
s12 irrL4d PL 4 (4.2M)3 × 226 100M 6.0E-15
s13 irr2S4d PL 4 (1.0M)2×122×436 1.6M 2.81E-11
s14 irr2M4d PL 4 (4.2M)2×232×746 19.9M 6.53E-12
s15 irr2L4d PL 4 (8.3M)2×952×324 109M 5.1E-12

(a) real tensors (b) synthetic tensors

TABLE III
PLATFORM PARAMETERS.

Parameters Intel CPUs NVIDIA GPUs

Bluesky Wingtip DGX-1P DGX-1V

Processor Intel Xeon Intel Xeon NVIDIA NVIDIA
Gold 6126 E7-4850v3 Tesla P100 Tesla V100

Microarch Skylake Haswell Pascal Volta
Frequency 2.60 GHz 2.20 GHz 1.48 GHz 1.53 GHz

#Cores 24 (12× 2) 56 (14× 4) 3584 5120
Peak SP 1.0 2.0 10.6 14.9

Perf. TFLOPS TFLOPS TFLOPS TFLOPS
LLC size 19 MB 35 MB 3 MB 6 MB

Mem. size 196 GB 2114 GB 16 GB 16 GB
Mem. type DDR4 DDR4 HBM2 HBM2
Mem. freq. 2.666 GHz 2.133 GHz 0.715 GHz 0.877 GHz
Mem. BW 256 GB/s 273 GB/s 732 GB/s 900 GB/s

Compiler gcc 7.1.0 gcc 5.5.0 CUDA Tkit 9.1 CUDA Tkit 9.0

Intel platforms are non-uniform memory access (NUMA) ma-
chines with 2-4 NUMA nodes. We calculate the peak single-
precision (SP) floating point performance and main/global-
memory bandwidth from these parameters. The peak SP
performance of all machines is above 1 TFLOPS. GPUs show
advantages in peak performance and memory bandwidth over
CPUs by approximately 4− 12× and 3− 7× respectively.

2) Kernel Implementation Details: Since our data is natu-
rally sorted in a particular mode order, COO implementations
could take some advantages from the better data locality.
TEW and TS take addition and multiplication operations as
representatives respectively; the performance using different
operations is quite similar in our experiments. For multicore
CPU implementations, we use OpenMP for parallelization
under different scheduling strategies, with the number of
threads set to the number of physical cores. “omp atomic”
is used to handle data race in MTTKRP, and “omp simd” is
for vectorization of TTM and MTTKRP. We use “numactl –
interleave=all –physcpubind” to interleave memory allocation
for better memory bandwidth usage and thread binding for
lower scheduling overhead. For GPU implementations, “atom-
icAdd” is used in MTTKRP. For the HiCOO format, we fix the

block size to 128 to fit into the last-level cache in all platforms
and use only 8 bits to store element indices. We use 16 as the
column size for matrices in TTM and MTTKRP, to reflect the
low-rank feature in popular tensor methods. We run all kernels
five times to get the average runtime; the time of TTV, TTM,
and MTTKRP is further averaged among all tensor modes.

B. Roofline Performance Models

The Roofline performance model [41], [42] is a graphical
representation of machine characteristics. It is employed for
performance analysis in various application domains: digital
signal processing, e.g., Spiral [43], sparse/dense linear alge-
bra [42], [44], and Lattice Boltzmann Magnetohydrodynamics
(LBMHD) [42]. The Empirical Roofline Tool (ERT) [45],
included into Intel Advisor tool, automates the measurement
of the target machine characteristics. ERT automatically gen-
erates Roofline data including the maximum bandwidth for
various levels of memory hierarchy, obtained by testing a
variety of micro-kernels 5. ERT can utilize OpenMP and
CUDA for parallelization on a single machine; we configure
it to the corresponding compiler in Table III for tests.

Figure 3 plots the Roofline models for the four platforms in
Table III with DRAM and last-level cache (LLC) bandwidth
tested from ERT as obtainable bandwidth, and the theoretical
peak SP performance and DRAM bandwidth (not cache-
aware) for reference. We mark the operational intensities
(#Flops/#Bytes, OIs) of our tensor kernels calculated from
Table I overlying with Roofline models. “ERT-DRAM” band-
width is the obtainable bandwidth from benchmarking micro-
kernels, thus OIs of all the tensor kernels are marked on this
line. From this figure, all the sparse tensor kernels we consider
are main or global memory bound for CPUs and GPUs. Higher
bandwidth will accelerate kernel execution, while other factors
such as better data reuse (cache utilization) lowering memory
access pressure will also lead to performance improvement by
increasing the OI value. We use the calculated performance

5The micro-kernels are similar to those in STREAM benchmark suite [46].



(a) Bluesky (b) Wingtip

(c) DGX-1P (d) DGX-1V

Fig. 3. Roofline models marked with the operational intensities of tensor kernels.

of all tensor kernels as the upper bounds in our performance
figures below (called “Roofline performance”), calculated by
timing the OI value with the “ERT-DRAM” bandwidth. The OI
value is an accurate #Flops/#Bytes ratio by taking actual tensor
features into account, especially for TTV and TTM because of
the MF term in Table I.

C. Performance

We present the performance of all the five tensor kernels
using two datasets, real and synthetic, on four platforms along
with five observations. The performance in GFLOPS of each
tensor kernel is calculated from #Flops (in Table I) divided by
the measured execution time. X-axis represents tensors using
the numbers in Table II from different datasets.

Observation 1: Achieved performance is diverse and diffi-
cult to predict, varying with the dimension sizes and non-zero
patterns of tensors, data formats, and platforms.

From Figures 4 to 7, the achieved performance in GFLOPS
is extremely diverse among tensor kernels, data formats,
platforms, and datasets. Take the synthetic dataset as an
example, the performance varies from 0.8 GFLOPS (regS in
COO) to 81 GLOPS (irr2S4d in HiCOO) in Figure 4 on the
Bluesky CPU platform. Besides, the average performance of
the five kernels ranges a lot as well. TEW, TS, TTV, TTM,
MTTKRP kernels achieve an average of 14.6, 35.1, 6.3, 37.7,
and 2.7 GFLOPS respectively for COO format, and 22.3,
40.8, 14.4, 35.8, and 2.6 GFLOPS respectively for HiCOO
format. This also shows HiCOO on average behaves better
than COO format for TEW, TS, and TTV and gets similar
performance on TTM and MTTKRP. Even for the performance
efficiency (or bandwidth efficiency), these kernels still vary
largely from the lowest 2% (MTTKRP on irr2S4d) to 353%
(TS on regS) for COO and 2% (MTTKRP on irr2S4d) - 479%
(TS on regS) for HiCOO. (The over 100% efficiency will be
explained below.) Also, different performance numbers are
observed between real and synthetic datasets for the same
tensor kernel. From platform perspective, TTV shows much

lower GFLOPS numbers on Wingtip platform in Figure 5 than
those on Bluesky in Figure 4. Though we observe some trend
especially for synthetic dataset and TTM operation, generally
it is hard to predict the performance of a sparse kernel, even
operating with a dense matrix or vector.

Observation 2: Performance is generally below the
Roofline performance calculated from main/global memory
bandwidth except for some small tensors fitting into caches
or algorithms with good data locality thus making a good use
of caches.

Most of cases in Figures 4 to 7 fall below the red “Roofline
performance” line calculated using main/global memory band-
width from Figure 3 except for some cases of TEW and TS
on Bluesky and Wingtip CPU platforms and MTTKRP on
DGX-1V GPU platform. Take Figure 4 as an example again,
the tensors exceed Roofline performance are all small tensors
with around 1M non-zeros: regS, irrS, regS4d, irrS4d, and
irr2S4d for TEW, all small and medium synthetic tensors and
small real tensors with 3-5M non-zeros: crime4d, uber4d, and
nips4d. The last level cache size of Bluesky is 19 MB which
could reside the value arrays of three tensors, each with around
1.6M non-zeros, for TEW, or of two tensors, each with around
2.4M non-zeros, for TS. These numbers match the sizes of the
small synthetic and real tensors, while the medium tensors also
gain some cache benefit. For MTTKRP on DGX-1V, COO-
MTTKRP-GPU gets higher performance than Roofline more
on irregular-shaped tensors in the synthetic dataset. And the
tensors achieve high performance on DGX-1P are easier to
break the upper bound on DGX-1V. One reason is that V100
GPU architecture has a twice larger LLC (6M) than P100;
besides, V100 get improved atomic operation performance
which could benefit MTTKRP; another reason is that they
might have very good data reuse or small working-set size,
e.g., tensors with a very short mode, so it is cache that offers
the data injection rate rather than off-chip memory; lastly, the
integer and floating-point operations have independent data-
paths for instruction issuing on Volta architecture. Therefore,



(a) Real tensors

(b) Synthetic tensors

Fig. 4. Single-precision performance of the five tensor kernels on Bluesky with 24 CPU cores. Red line shows the calculated “Roofline performance”.

(a) Real tensors

(b) Synthetic tensors

Fig. 5. Single-precision performance of the five tensor kernels on Wingtip with 56 CPU cores. Red line shows the calculated “Roofline performance”.

(a) Real tensors

(b) Synthetic tensors

Fig. 6. Single-precision performance of the five tensor kernels on NVIDIA DGX-1P. Red line shows the calculated “Roofline performance”.

(a) Real tensors

(b) Synthetic tensors

Fig. 7. Single-precision performance of the five tensor kernels on NVIDIA DGX-1V. Red line shows the calculated “Roofline performance”.

address computation which is extensively used in MTTKRP
can be overlapped with floating-point operations, which may
mitigate the waiting time for address calculation compared
with earlier GPU architectures.

Observation 3: It is hard to obtain good performance
efficiency for non-streaming kernels on multi-socket CPU
machines because of NUMA effect, which could be even harder
than on GPUs.



We consider TTV, TTM, and MTTKRP are non-streaming
kernels, versus the streaming kernels TEW and TS from
the computation pattern. On Bluesky (Figure 4), the average
performance efficiency of TTV, TTM, and MTTKRP is 31%,
64%, 6% for COO, and 73%, 61%, 5% for HiCOO; while the
numbers are 9%, 52%, 9% for COO and 13%, 47%, 9% for
HiCOO on Wingtip (Figure 5). Though MTTKRP behaves a
little higher efficiency on Wingtip, its efficiency is still very
low. The increment could come from better parallelism of
Wingtip with 56 cores. On DGX-1P GPU (Figure 6), the
average performance efficiency of TTV, TTM, and MTTKRP is
30%, 60%, 40% for COO, and 30%, 60%, 28% for HiCOO;
while the numbers are 30%, 69%, 110% (higher than 100%
memory efficiency is due to the reasons we mentioned) for
COO and 30%, 69%, 57% for HiCOO on DGX-1V (Figure 7).
The average efficiency numbers on the four-socket Wingtip
CPU are all lower than those on DGX-1P and DGX-1V GPUs
and two-socket Bluesky CPU for TTV and TTM.

Observation 4: HiCOO algorithms is faster than or similar
to COO counterparts because of its better local locality and
smaller memory footprint, except MTTKRP on GPUs where
load imbalance and lower parallelism play more important
roles.

From the average efficiency and performance numbers
shown in observations 1 and 3, HiCOO on average behaves
better than COO for TEW, TS, and TTV and gets similar
performance on TTM and MTTKRP on CPU platforms. On
the two GPUs, due to their smaller last-level cache size,
HiCOO does not benefit as much as on CPUs. From Figures 6
and 7, HiCOO obtains very similar performance on TEW, TS,
TTV, and TTM because of their similar execution code for
tensor value computation. While HiCOO-MTTKRP behaves
worse than COO-MTTKRP because of their different parallel
strategies. HiCOO parallelizes tensor blocks with severe load
imbalance issue and lower parallelism compared to COO-
MTTKRP algorithm. Thus, to take advantage of the HiCOO
format, a careful tuning need to be done according to archi-
tecture features.

Observation 5: Different datasets expose very different per-
formance behavior, which shows the importance of synthetic
datasets to performance benchmarking and analysis.

Consider the performance trend of real and synthetic
datasets. TEW and TS show obvious period trend from high
to low or low to high on CPUs and GPUs respectively due
to different cache sizes on the synthetic dataset, while it is
hard to find trends in the real dataset. TTV and especially
TTM show a matching trend with the Roofline predicted
performance for both real and synthetic tensors. Since real
tensors are from diverse real application scenarios, it is hard
to do benchmarking and performance analysis solely based
on them. Moreover, real tensors are limited due to data
privacy and other publicity issues. Performance numbers are
observed in a similar scale for large tensors from real and
synthetic datasets. Thus, the generated synthetic tensors are
good candidates to reveal the performance of tensor kernels.
Extracting features from real tensors as a basis to create more

complete synthetic tensors would be very helpful for sparse
tensor research.

By running the benchmark suite to obtain kernel perfor-
mance combining with the Roofline analysis, users can learn
whether advanced performance optimization needs to be fur-
ther explored to deal with the issues such as data locality, load
imbalance, and lock efficiency. Besides, comparing among
these sparse tensor kernels, choosing a good kernel for an
application is possible by comparing their actual performance
numbers using the same tensor from this application.

VI. RELATED WORK

Work related to this benchmark suite includes various
benchmarking collections and synthetic benchmark data gen-
eration. This benchmark suite is distinct from previous efforts
in its focus on multi-dimensional sparse tensors combined
with both real and synthetic inputs, and the first sparse tensor
benchmarking effort on GPUs.

Benchmark suites measure machine attributes and exem-
plify computing patterns. Benchmarks that measure spe-
cific machine attributes include LINPACK [47], SPEC [48],
STREAM [46], GeekBench [49], Multimaps [50], Band-
width [51], and others. Most of them aim to measure memory
bandwidth achieved under varying conditions and a few target
architecture floating-point capabilities. Benchmark suites are
often organized around the concept of application exem-
plars. These suites emulate common patterns and behaviors
in application classes of interest. Several examples of these
suites have been published: LAPACK/ScaLAPACK for dense
linear algebra [52], Colella’s Seven Motif’s [53] for scientific
computing, PARSEC [54] and SPLASH2 [55], Rodinia [56],
Graph500 [57], SparseBench [58], GAP [59], SSCA#2 [60],
and Tartan [61], to name a few.

Several approaches to synthetic graph generation have
been proposed. Our work extends two of these, power
law graphs from Firehose, and Kronecker graphs from
Graph500 [57]. FireHose is a suite of stream processing
benchmarks [40], one of a front-end generator of which is the
biased power law generator. Existing synthetic tensor genera-
tors like SimTensor [62], Nway Toolbox [63], and the Tensor
Toolbox [28] are specific to tensors with Tucker [64], CAN-
DECOMP/PARAFAC decomposition [65], [66] structures or
particular data distributions. This paper provides a starting
point to generate sparse tensors that preserves the properties
of real-world or multi-attributed graphs that can be realized as
higher-order sparse tensors.

Many libraries support sparse tensor methods, such as
Tensor Toolbox [28], Nway Toolbox [63], Tensorlab [29],
TACO [31], SPLATT [23], and ParTI [32]. As a benchmark
suite, we supply widely-adopted reference implementations
and will make continuously effort to include state-of-the-art
algorithms and data structures as well.

VII. CONCLUSION

This paper presents a benchmark suite targeting popular
sparse tensor kernels. Operations on sparse tensors are com-
mon in a wide range of important applications. The operations



are memory bound and often dominate application perfor-
mance. This benchmark suite identifies important kernels and
data representations and provides reference implementations to
aid the community in effectively sharing and comparing per-
formance and optimization results. Two methods for synthetic
tensor generation are provided by preserving the properties of
real-world graphs. A subset of possible synthetic tensors are
used in this paper. The tool provides the ability to generate
custom synthetic tensors in a reproducible manner.

Five observations are made based on performance analysis
over Roofline models to gain insights of sparse tensor behavior
across architectures. This benchmark suite is a continuous
effort: additional operations, such as TTM-chain in Tucker de-
composition, tensor contraction, a sparse tensor with a sparse
vector/matrix products; more complete tensor methods, such as
CANDECOMP/PARAFAC and Tucker decompositions; data
representations, such as compressed sparse fiber (CSF) [23],
balanced and mixed-mode CSF (BCSF, MMCSF) [24], [25];
more platforms, such as distributed systems, multiple GPUs,
and other new architectures (e.g., FPGAs and Emu [67], [68])
will be considered adding to the suite in the future.
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