
Efficient and Effective Sparse Tensor Reordering
Jiajia Li

jiajia.li@pnnl.gov
Pacific Northwest National

Laboratory
Richland, WA, USA

Bora Uçar
bora.ucar@ens-lyon.fr

UMR5668, CNRS and ENS Lyon
France

Ümit V. Çatalyürek
umit@gatech.edu

Georgia Institute of Technology
Atlanta, GA, USA

Jimeng Sun
jsun@cc.gatech.edu

Georgia Institute of Technology
Atlanta, GA, USA

Kevin Barker
kevin.barker@pnnl.gov

Pacific Northwest National
Laboratory

Richland, WA, USA

Richard Vuduc
richie@cc.gatech.edu

Georgia Institute of Technology
Atlanta, GA, USA

ABSTRACT

This paper formalizes the problem of reordering a sparse tensor to
improve the spatial and temporal locality of operations with it, and
proposes two reordering algorithms for this problem, which we
call BFS-MCS and Lexi-Order. The BFS-MCS method is a Breadth
First Search (BFS)-like heuristic approach based on the maximum
cardinality search family; Lexi-Order is an extension of doubly
lexical ordering of matrices to tensors. We show the effects of these
schemeswithin the context of awidely used tensor computation, the
CANDECOMP/PARAFAC decomposition (CPD), when storing the
tensor in three previously proposed sparse tensor formats: coordi-
nate (COO), compressed sparse fiber (CSF), and hierarchical coordi-
nate (HiCOO). A new partition-based superblock scheduling is also
proposed for HiCOO format to improve load balance. On modern
multicore CPUs, we show Lexi-Order obtains up to 4.14× speedup
on sequential HiCOO-Mttkrp and 11.88× speedup on its parallel
counterpart. The performance of COO- and CSF-basedMttkrps
also improves. Our two reordering methods are more effective than
state-of-the-art approaches. The code is released as part of Parallel
Tensor Infrastructure (ParTI!): https://github.com/hpcgarage/ParTI.

KEYWORDS

Sparse tensor, tensor decomposition, reordering, hierarchical coor-
dinate, HiCOO

ACM Reference Format:

Jiajia Li, Bora Uçar, Ümit V. Çatalyürek, Jimeng Sun, Kevin Barker, and Richard
Vuduc. 2019. Efficient and Effective Sparse Tensor Reordering. In 2019 Inter-

national Conference on Supercomputing (ICS ’19), June 26–28, 2019, Phoenix,

AZ, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
3330345.3330366

1 INTRODUCTION

We consider the problem of how to improve memory reference
locality for sparse tensor computations [4, 19]. A tensor is a multiway

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.
ICS ’19, June 26–28, 2019, Phoenix, AZ, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6079-1/19/06. . . $15.00
https://doi.org/10.1145/3330345.3330366

(N -way) array, with a vector and a matrix being the 1-way and 2-
way (rows and columns) specializations thereof. It is sparse if most
of its entries are zero and, therefore, need not be stored nor explicitly
computed upon. A sparse tensor is often a natural way to represent
a multifactor or multirelational dataset, and has found numerous
applications in data analysis and mining [4, 7, 9, 9, 11, 13, 14, 18,
19, 21, 25, 27, 33, 33, 34, 37, 40, 43, 44, 44] for health care [14, 47],
natural language processing [16], machine learning [1, 3, 30], and
social network analytics [32], among many others.

Like sparse matrices, there are a variety of data structures and
techniques for storing and operating efficiently with sparse ten-
sors [4, 24, 25, 41]. Moreover, one technique is to reorder the tensor,
which means relabeling the indices—and, therefore, reorganizing
the nonzero structure of the tensor—in the hopes of improving spa-
tial or temporal localitywhen operatingwith it. One form of reorder-
ing explored in prior work is to “sort” the input tensor [18, 25, 44].
In this paper, we formalize the reordering problem and propose and
evaluate new heuristic algorithms for it.

While tensor reordering can improve locality, it can also aggra-
vate load balance as measured by nonzeros assigned to each thread.
We observe that reordering increases imbalance by as much as 6.7×
in practice. In this paper, we propose improvements to the data
structure and corresponding algorithms that address this problem.

Our evaluation is in the context of a widely used tensor com-
putation known as the CANDECOMP/PARAFAC decomposition
(CPD), a kind of generalization of the (truncated) singular value
decomposition (SVD) from matrices to tensors [19]. Within a CPD,
the most costly computational kernel is the matricized tensor-times-

Khatri-Rao product, orMttkrp [19, 24, 25, 44]. Thus, we examine
the effects of reordering on the locality of sparse Mttkrp opera-
tions, which we then evaluate within a CPD on a modern multicore
CPU platform. We also consider this evaluation when using three
state-of-the-art tensor storage formats, known as coordinate (COO),
compressed sparse fiber (CSF), and hierarchical COO (HiCOO).
Thus, this evaluation gives practitioners a sense of when reordering
pays off in commonly occurring scenarios.

The main claimed contributions of this work are as follows.
• We propose two heuristic tensor reordering schemes, BFS-
MCS and Lexi-Order, to enhance data locality by relabeling
mode indices. (§ 3)

227

https://github.com/hpcgarage/ParTI
https://doi.org/10.1145/3330345.3330366
https://doi.org/10.1145/3330345.3330366
https://doi.org/10.1145/3330345.3330366

ICS ’19, June 26–28, 2019, Phoenix, AZ, USA J. Li, et al.

• We improve the state-of-the-art parallel strategy, superblock
scheduling [24], by suggesting a partition-based version
thereof. (§ 4)
• Lexi-Order achieves up to 4.14× speedup on sequential
HiCOO-Mttkrp and 11.88× speedup on its parallel counter-
part. BFS-MCS obtains up to 1.88× speedup on sequential
HiCOO-Mttkrp and 1.94× speedup on its parallel case. (§ 5)
• For COO and CSF formats, Lexi-Order improves the per-
formance of sequential COO- and CSF-Mttkrps by up to
4.29× and 2.33× and parallel COO- and CSF-Mttkrps by up
to 1.48× and 1.86× respectively. BFS-MCS and Lexi-Order
behave better than the state-of-the-art reordering based on
graph and hypergraph partitionings [44] on CSF-Mttkrp.
(§ 5)
• We further parallelize the reordering andHiCOO conversion
to reduce the pre-processing overhead. When CPD iterates
for tens of times, which is common, then the reordering is
worthwhile. (§ 5)

Table 1: List of symbols and notation.

Symbols Description

Data representations
X A sparse tensor

X(n) Matricized tensorX in mode-n
A, B, C, Ã Dense matrices
ar, br, cr Dense vectors

λ Weight vector

Operations
A ⊙ B Khatri-Rao product between two matrices
a ◦ b Outer product between two vectors

Input parameters
N Tensor order

I, J , K, In Tensor mode sizes
M #Nonzeros of the input tensorX
R Approximate tensor rank (usually a small value)

Word sizes
βint Bit-length of an integer
βlong Bit-length of a long integer
βbyte Bit-length of a byte or character
βfloat Bit-length of a single-precision floating point value

Data structures
inds Indices of COO, βint bits
cinds Indices of CSF, βint bits
cptrs Pointers of CSF, βint or βlong bits
einds Element indices of HiCOO, βbyte bits
binds Block indices of HiCOO, βint bits
bptr Block pointers of HiCOO, βlong bits
lptr Superblock pointers of HiCOO, βlong bits

lschr Superblock scheduler of HiCOO, βint bits
blschr Partition-based superblock scheduler of HiCOO, βint bits
plschr Partition pointers of blschr, βint bits

val Nonzero value array of COO, CSF, HiCOO, βfloat bits

Performance parameters
permn Permutation for a given mode n

L Tensor superblock size
B Tensor block size, B ≪ L

αb Block ratio, αb =
nb
M , nb is #Nonzero tensor blocks

Mb Geometric mean of #Nonzeros per tensor block

cb Average slice size per tensor block, cb =
Mb
B

P #Physical CPU cores

2 BACKGROUND

We summarize the related symbols and notation of tensors, CPD,
and the three state-of-the-art tensor formats (COO, CSF, HiCOO)
in Table 1.
2.1 Tensors and CPD

The order of a tensor, N , is the number of its dimensions or modes.
We follow the notation in Kolda and Bader’s survey [19]. A first-
order tensor (N = 1) is a vector, denoted by a boldface lowercase

i = 1,…,I

j = 1,…,J k =
 1,

…,K

Figure 1: A third-order tensor X ∈ RI×J×K .

letter, e.g., v; A second-order tensor (N = 2) is a matrix, denoted
by a boldface capital letter, e.g., A. Higher-order tensors (N ≥ 3)
are denoted by bold capital calligraphic letters, e.g.,X. We show an
example of a sparse third-order tensor,X ∈ RI×J×K , in Figure 1. In
this example, a scalar entry of X at position (i, j,k) is xi jk . We as-
sume an example sparse tensorX ∈ RI1×I2×···×IN withM nonzeros
in the following context.

CPD decomposes a tensor into a sum of component rank-one
tensors [19]. It approximates an N th-order tensor X ∈ RI1×···×IN
as

X ≈

R∑
r=1

λr a
(1)
r ◦ · · · ◦ a

(N)
r ≡ Jλ;A(1), . . . ,A(N)K, (1)

where R is the canonical rank of tensor X, taken as the number of
component rank-one tensors [19]. In a low-rank approximation,
R is usually chosen to be a small number less than 100. The outer
product of the vectors a(1)r , . . . , a

(N)
r produces R rank-one tensors,

and A(n) ∈ RIn×R ,n = 1, . . . ,N are the factor matrices, each one
formed by taking the corresponding vectors as its columns, i.e.,
A(n) = [a(n)1 a(n)2 . . . a

(n)
R]. We normalize these vectors to unit mag-

nitude and store the factor weights in the vector λ = {λ1, . . . , λr }.
The bottleneck of CPD is the matricized tensor-times-Khatri-

Rao product (Mttkrp). Given an N th-order tensor X and matrices
A(1), . . . ,A(N), the mode-n Mttkrp is

Ã
(n)
← X(n)

(
A(N) ⊙ · · · ⊙ A(n+1) ⊙ A(n−1) ⊙ · · · ⊙ A(1)

)
, (2)

where X(n) is the mode-n matricization (or unfolding) of tensor
X, ⊙ is the Khatri-Rao product. Mode-n matricization reshapes a
tensor into an equivalent matrix [19]. The Khatri-Rao product is a
“matching column-wise” Kronecker product between two matrices.
Given matrices A ∈ RI×R and B ∈ RJ×R , their Khatri-Rao product
is denoted by C = A ⊙ B where C ∈ R(I J)×R ,

C = A ⊙ B = [a1 ◦ b1, a2 ◦ b2, . . . , aR ◦ bR] , (3)

where ar and br , r = 1, . . . ,R are columns of A and B, ◦ is the outer
product of vectors, a special case of Kronecker product [19]. In
particular for a third-order tensor, Mttkrp multiples each nonzero
entry xi, j,k with the R-vector formed by the entry-wise product
of the jth row of A(2) and kth row of A(3) when computing Ã(1).
Detailed description can be found in Kolda and Bader’s survey [19].
In this paper, sparseMttkrp will mean anMttkrp between a sparse
tensor and dense matrices.

2.2 Sparse Tensor Formats

We consider the three state-of-the-art tensor formats (COO, CSF,
HiCOO) which are all for general unstructured sparse tensors.

2.2.1 COO. The coordinate (COO) format is the simplest yet ar-
guably most popular format by far. It stores each nonzero value
along with all of its position indices, shown in Figure 2 (a). i, j,k

228

Efficient and Effective Sparse Tensor Reordering ICS ’19, June 26–28, 2019, Phoenix, AZ, USA

(a) COO

i j k val

0 0 0 1
0 1 0 2
1 0 0 3
1 0 2 4
2 1 0 5
2 2 2 6
3 0 1
3 3 2

7
8

{ inds

(b) CSF

i

j

k

val

0

0

0

1

1

0

2

1

0

0

3

0

2

4

2

0

1

5

1

3

0 3

2

2

2

6 7 8

cinds
cptrs

(c) HiCOO

ek val
0 0 0 1
0 1 0 2
1 0 0 3
1 0 0 4
0 1 0 5
1 0 1 7
0 0 0
1 1 0

6
8

0 0 0

0 0 1
1 0 0

1 1 1

0

3
4

6

ei ejbi bj bkbptr

B1

B2

B3

B4

{binds {einds

Figure 2: COO, CSF, and HiCOO formats for an example

third-order tensor (This example is originally from [24]).

are indices (inds) of the nonzeros stored in the val array. Generally,
32-bit (βint) integers are large enough to represent tensor indices.

2.2.2 CSF. Compressed Sparse Fiber (CSF) is a hierarchical, fiber-
centric format that effectively generalizes the CSR matrix format
to tensors. An example of its representation appears in Figure 2 (b).
Conceptually, CSF organizes nonzero indices into trees (a forest).
Each level corresponds to a tensor mode, and each nonzero is a path
from a root to a leaf. The indices of CSF are stored in cinds with
the pointers stored in cptrs to indicate the locations of nonzeros at
the next level. Since cptrs needs to show the range up toM , we use
βint or βlong accordingly for differently sized-tensors .

2.2.3 HiCOO. Hierarchical Coordinate (HiCOO) [24] format de-
rives from COO format, but improves upon it by compressing the
indices in units of sparse tensor blocks. HiCOO stores a sparse
tensor in a sparse-blocked pattern with a pre-specified block size B,
meaning in B×· · ·×B blocks. It represents every block by compactly
storing its nonzero triples using fewer bits. Figure 2 (c) shows the
example tensor given 2 × 2 × 2 blocks (B = 2). For a third-order
tensor, bi, bj, bk are block indices in βint bits, indexing tensor blocks;
ei, ej, ek are element indices in βbyte bits, indexing nonzeros within
a tensor block. A bptr array in βlong bits stores the pointers of every
block’s beginning locations, and val saves all the nonzero values.

Compare the three tensor formats: HiCOO and COO treat every
mode equally and do not assume any mode order, these preserve the
mode-generic orientation [24]. CSF has a strong mode-specificity,
since the tree structure implies a mode ordering for enumeration
of nonzeros. Besides, compared to COO format, HiCOO and CSF
save storage space and memory footprints whereas achieve higher
performance generally.

3 PROBLEM DEFINITION AND OUR

SOLUTIONS

Our objective is to improve the performance of Mttkrp and there-
fore CPD algorithms based on the three tensor storage formats
described above. We will achieve this objective by reordering (or
relabeling) the indices in one or more modes of the input tensor so
as to improve the data locality in the tensor and the factor matrices
of anMttkrp operation. Take for example two nonzeros (i2, j2,k1)
and (i2, j2,k2) of a third-order tensor in Figure 3 (a). Relabeling
k1 and k2 to other two indices close to each other will potentially
improve cache hits for both tensor and their corresponding rows of
factor matrices in theMttkrp operation [24, 44]. Besides, it may
also influence the tensor storage for some formats. (Analysis will
be illustrated in § 3.3.)

We propose two heuristics for reordering indices. The aim of
the heuristics is to arrange the nonzeros close to each other, in all
modes. If we were to look at matrices, this would correspond to
reordering the rows and columns so that all nonzeros are clustered
around the diagonal. This way, nonzeros in a row or column would
be close to each other, and any blocking (by imposing fixed sized
blocks) would have nonzero blocks only around the diagonal. The
proposed heuristics are based on these observations and try to
obtain similar behavior for tensors. The output of a reordering
algorithm is the permutations for all modes being used to relabel
tensor indices of them.

(a) Tensor

i j k val
i1 a

b
c
d

j1 k1

i1 j2 k1

i2 j2 k1

i2 j2 k2

(b) Hypergraph

i1 j1 k1

i2 j2 k2

c

d

a

b

Figure 3: A hypergraph example of a sparse tensor.

3.1 BFS-MCS

BFS-MCS is a Breadth First Search (BFS)-like heuristic approach
based on the maximum cardinality search family [46]. We first
construct a hypergraph for a sparse tensor, where vertices are tensor
indices in all modes and hyperedges represent its nonzero entries.
For a third-order sparse tensor X ∈ RI1×I2×I3 withM nonzeros, its
hypergraph H = (V ,E) consists of |V | = I1 + I2 + I3 vertices and
|E | = M hyperedges. A nonzero entry xi1i2i3 connects the three
vertices i1, i2, i3. Figure 3 (b) shows an example of the hypergraph
for a sparse tensor. Vertices are blank circles, and hyperedges are
represented by grouping vertices.

For an N th-order sparse tensor, we need to find the permuta-
tions for N modes. We determine a permutation for a given mode n
(permn) of a tensorX ∈ RI1×···×IN as follows. Suppose some of the
indices of mode n are already ordered. Then, BFS-MCS picks the
next to-be-ordered index as the one with the strongest connection
to the currently ordered index set. In the case of ties, it selects the
index with the smallest number of nonzeros in the correspond-
ing sub-tensor. Intuitively, in the hypergraph of a sparse tensor, a
stronger connection represents more common indices in the modes
other than n among an unordered vertex and the already ordered
ones. This means more data from factor matrices can be reused in
Mttkrp, if found in cache.

This process is implemented by maintaining a max-heap (Hn ,
shown in Line 3 in Algorithm 1) for all mode-n indices (e.g., in)
with two keys. The primary key of an index is the number of
connections to the currently ordered indices. The secondary key
is the number of nonzeros in the corresponding (N − 1)th-order
sub-tensor, e.g., X(:, . . . , :, in , :, . . . , :), where the smaller secondary
key values signify higher priority. Note that the secondary keys
are static. Initially, Hn is constructed according to the secondary
keys of mode-n indices. For each mode-n index (e.g., in) of this
max-heap, BFS-MCS traverses all connected tensor indices in the
modes except n, calculates the number of connections of mode-n
indices, and then updates the heap (Hn) using the primary and
secondary keys.

Algorithm 1 makes BFS-MCSmore precise. LetmV denote a size-
|V | array that tracks whether a vertex has been visited. They are

229

ICS ’19, June 26–28, 2019, Phoenix, AZ, USA J. Li, et al.

Algorithm 1 BFS-MCS ordering based on maximum cardinality
search for a given mode.
Input: An N th-order sparse tensor X ∈ RI1×···×IN , hypergraph G =
(V , E) with vertex weights w, mode n;

Output: Permutation permn ;
1: Initialize wp to zeros.
2: Initializews to the minus of number of nonzeros of each corresponding

sub-tensor as a static secondary key.
3: Build max-heap Hn for mode-n indices withwp andws as the primary

and secondary keys respectively.
4: Initialize mV to zeros.

5: for in = 1, . . . , In do

6: v (0)n = GetHeapMax(Hn);
7: permn (v

(0)
n) = in ;

8: mV (v
(0)
n) = 1;

9: for en ∈ hyperedges of v (0)n do

10: for v ∈ en , v is not in mode n and mV (v) == 0 do
11: mV (v) = 1;
12: for e ∈ hyperedges of v and e , en do

13: vn = vertex in mode n of e ;
14: if inHeap(vn) then
15: wp (vn) + +;
16: heapUpdateKey(Hn, wp (vn));
17: return permn ;

initialized to zeros (unvisited) and changed to 1s once after being
visited. We record a mode-n indexv(0)n , obtained from the max-heap
Hn , to the permutation array permn . The algorithm visits all its
hyperedges (i.e., all nonzeros with in , Line 9) and their connected
and unvisited vertices from the other (N − 1) modes except n (Line
10). For these vertices, it again visits their hyperedges (e in Line
12) and then checks if the connected vertices in mode n (vn) are
in the heap (Line 14). If so, the primary key (connectivity) of vn is
increased by 1 and the max-heap (Hn) is updated. To summarize,
this algorithm locates the sub-tensors of the neighbor vertices of
v
(0)
n to increase the primary key values of the occurred mode-n
indices in Hn .

The BFS-MCS heuristic has low time complexity. We explain it
using tensor terms. The innermost heap update operation (Line 16)
costs O(log(In)). Each sub-tensor is only visited once with the help
of the marker arraymV . For all the sub-tensors in one tensor mode,
the heap update is only performed for M nonzeros (hyperedges).
Overall, the time complexity of BFS-MCS is O(NM log(In)) for an
N th-order tensor with M nonzeros, when computing permn for
mode n.

BFS-MCS does not exactly catch the memory access pattern of
an Mttkrp. It treats the contribution from the indices of all modes
except n equally to the connectivity, thus the connectivity might
not match the actual data reuse. Also, it uses a greedy strategy to de-
termine the next-level vertices, which could miss the optimal global
orderings, as is common to greedy heuristics for hard problems.

3.2 Lexi-Order

Lexi-Order is an extension of doubly lexical ordering of matrices
[26, 31] to tensors. A lexicographic ordering of an integer vector is
the standard dictionary ordering of its elements, defined as follows.
Given two equal-length vectors, x and y, we say x ≤ y iff either (i)

(1, 1, 0, 0)

(1, 0, 1, 0)

0 1 0 1
0 1 0 0
0 0 1 0
0 0 0 1

1 1 0 0
1 0 0 0
0 1 0 0
0 0 1 0

original ordered
(a) Vector comparison (b) Matrix

>

Figure 4: A doubly lexical ordering of a zero-one matrix and

its vector comparison operation.

all elements are the same, i.e., x = y; or (ii) there exists an index j
such that x(j) < y(j) and x(i) = y(i) for all 0 ≤ i < j. For example,
Figure 4 (a) shows the vector comparison of two zero-one vectors,
x ≡ (1, 0, 1, 0) and y ≡ (1, 1, 0, 0). x ≤ y because x(1) < y(1) and
x(i) = y(i) for all 0 ≤ i < 1.

A doubly lexical ordering of a matrix [26] is an ordering of the
rows and columns of the matrix so that both the row and column
vectors are in non-increasing lexicographic order. A row vector
is read from left to right, and a column vector is read from top
to bottom. Every real-valued matrix has a doubly lexicographic
ordering, and such an ordering is not unique (the proof can be
found in [26]). Figure 4 (b) shows a doubly lexical ordering of a
zero-one example matrix. The row vectors are in non-increasing
lexicographic order from top to bottom, and the column vectors are
in non-increasing lexicographic order from left to right. Assume
the ordered matrix in Figure 4 (b) is A, then rows a(1, :) ≥ a(2, :
) ≥ a(3, :) ≥ a(4, :) and columns a(:, 1) ≥ a(:, 2) ≥ a(:, 3) ≥ a(:, 4).
Even from this simple example, the ordered matrix shows better
data locality than the original one. Doubly lexical ordering has a
number of applications, including the efficient recognition of totally
balanced, subtree, and plaid matrices and (strongly) chordal graphs.
To the best of our knowledge, the merits of this ordering for high
performance have not been investigated for sparse matrices.

We propose an iterative algorithm called matLexiOrder for dou-
bly lexical ordering of matrices, where in an iteration either rows or
columns are sorted. The known doubly lexical ordering algorithms
for matrices, which were first explored by Lubiw [26] and then im-
proved by Paige and Tarjan [31], are “direct” ordering methods with
a non-linear runtime ofO(M log(I + J) + J) andO(M + I + J) space,
for an I × J matrix withM nonzeros. We find the time complexity
of these algorithms to be too high for our purpose. Furthermore,
the data structures are too complex to allow an efficient generalized
implementation for tensors. By appealing to a result of Lubiw [26,
Claim 2.2], one can show that our matLexiOrder algorithm finds
a doubly lexical ordering in a finite number of iterations. We do
not show the proof, since we do not aim to obtain an exact doubly
lexical ordering; a close-by ordering will likely suffice to improve
the Mttkrp performance.

We first describe matLexiOrder algorithm for a sparse matrix.
This aims to show the efficiency of our iterative approach compared
to others. A partition refinement technique is used to order the
rows and columns alternatively. Given an ordering of the rows,
the columns can be sorted lexically. This is achieved by an order
preserving variant of the partition refinement method [31], which is
called orderlyRefine. We briefly explain the partition refinement
technique for ordering the columns of a matrix. Given an I × J
matrix A, all columns are initially put into a single part. Then, A’s
nonzeros are visited row by row. At a row i , each column part C
is split into two parts C1 = C ∩ a(i, :) and C2 = C \ a(i, :), and

230

Efficient and Effective Sparse Tensor Reordering ICS ’19, June 26–28, 2019, Phoenix, AZ, USA

these two parts replace C in the order C1 ≻ C2 (empty sets are
discarded). Note that this algorithm keeps the parts in a particular
order which generates an ordering of the columns. orderlyRefine
is used to refine all parts that have at least one nonzero in row i
in O(|a(i, :)|) time, where |a(i, :)| is the number of nonzeros of row
i . Overall, matLexiOrder costs a linear total time of O(M + I + J)
(for rows and columns ordering) per iteration and O(J) space. We
also observe that only a small number of iterations will be enough
(will be shown in § 5.8 for tensors), yielding a more storage-efficient
algorithm compared to the prior doubly lexical ordering methods
[26, 31]. matLexiOrder, in particular the use of orderlyRefine
routine a few times, is sufficient for our needs. This is so, as we do
not need a full lexicographic order, thereby making our approach
faster and simpler to implement.
Algorithm 2 Lexi-Order for a given mode.
Input: An N th-order sparse tensor X ∈ RI1×···×IN , mode n;
Output: Permutation permn ;

▷ Sort all nonzeros along with all but mode n.
1: quickSort(X, coordCmp);

▷ Matricize X to X(n).
2: r = compose (inds ([−n]), 1);
3: form = 1, . . . , M do

4: c = inds(n,m); ▷ Column index of X(n)
5: if coordCmp(X,m,m − 1) == 1 then
6: r = compose (inds ([−n]),m); ▷ Row index of X(n)
7: X(n)(r, c) = val(m);

▷ Use a variation of partition refinement in [31]
8: permn = orderlyRefine (X(n));
9: return permn ;

▷ Comparison function for two indices of X
10: Function: coordCmp(X,m1,m2)
11: for n′ = 1, . . . , N do

12: if n′! = n then

13: if m1(n′) < m2(n′) then
14: return −1; ▷ Entrym1 < entrym2
15: if m1(n′) > m2(n′) then
16: return 1; ▷ Entrym1 > entrym2
17: return 0; ▷ Entrym1 = entrym2

i j k val
0 0 0 1
3 0 0 7
3 1 0 8
0 1 1 2
0 1 2 3
1 2 2 4
1 3 2
2 3 2

5
6

orderlyRe�ne
Quick

sort Matricize
(1, 2, 3, 0)

Original COO

i j k val
0 0 0 1
0 1 1 2
0 1 2 3
1 2 2 4
1 3 2 5
2 3 2 6
3 0 0
3 1 0

7
8

1 0 0 1
0 0 0 1
1 0 0 0
1 0 0 0
0 1 0 0
0 1 1 0

i(j,k)
(0,0)
(1,0)
(1,1)
(1,2)
(2,2)
(3,2)

Zero-one RepresentationSorted COO

0 3
3
0
0
1

i(j,k)
(0,0)
(1,0)
(1,1)
(1,2)
(2,2)
(3,2) 1 2

JK*I CSR Matrix

Non-zero
Distribution

permi

Figure 5: The steps of Lexi-Order illustrated for mode 1.
To order tensors, we propose the Lexi-Order function as an

extension of matLexiOrder. The basic idea of Lexi-Order is to de-
termine the permutation of each tensor mode independently, while
considering the order in other modes fixed. Lexi-Order sets the
indices of the mode to be ordered as the columns of a matrix, the
other indices as the rows and sorts the columns as described for ma-
trices (with the order preserving partition refinement method). The
precise algorithm appears in Algorithm 2, which we also illustrate
in Figure 5 when applied to mode 1. Given a mode n, Lexi-Order
first builds a matricized tensor in Compressed Sparse Row (CSR)
sparse matrix format by a call to quickSort with the comparison

function coordCmp and then by partitioning the nonzeros into the
row segments (Lines 3–7). This comparison function coordCmp
does a lexicographic comparison of all-but-mode-n indices, which
enables efficient matricization. In other words, sorting of the tensor
X is the same as building the matricized tensor X(n) by rows in
the fixed lexical ordering, where mode n is the column dimension
and the remaining modes constitute the rows. In Figure 5, the sort-
ing step orders the COO entries by (j,k) tuples, which then serve
as the row indices of the matricized CSR representation of X(1).
Once the matrix is built, we construct zero-one row vectors in Fig-
ure 5 to illustrate its nonzero distribution, which could seamlessly
call orderlyRefine function. Apart from the quickSort, the other
parts of Lexi-Order are of linear time complexity (linear in terms
of tensor storage). We use OpenMP Tasks to parallelize quickSort
to accelerate Lexi-Order.

Original HiCOO

ek val
0 0 0 1
0 1 1 2
0 1 0 3
1 0 0 4
1 1 0 5
1 0 0 7
1 1 0
0 1 0

8
6

0 0 0

0 0 1

1 0 0

1 1 1

0

2

5

7

0 1 13

ei ejbi bj bkbptr
B1

B2
B3

B4

B5

Reordered COO

i j k val
1 0 0 1
1 1 2 2
1 1 1 3
2 3 1 4
2 2 1 5
3 2 1 6
0 0 0
0 1 0

7
8

Original COO

i j k val
0 0 0 1
0 1 1 2
0 1 2 3
1 2 2 4
1 3 2 5
2 3 2 6
3 0 0
3 1 0

7
8

Reordered HiCOO

ek val
0 0 0 7
0 1 0 8
1 0 0 1
1 1 1 3
1 1 0 2
0 0 1 5
0 1 1
1 0 1

4
6

0 0 0

0 0 1
1 1 0

0

4
5

ei ejbi bj bkbptr
B1

B2
B3

(1, 2, 3, 0)

(0, 1, 3, 2)

(0, 2, 1)

i:

j:

k:{perm

(a)

(b)

Original HiCOO

Reordered COO

i j k val
1 0 0 1
1 1 0 2
0 0 0 3
0 0 1 4
3 1 0 5
3 3 1 6
2 0 2
2 2 1

7
8

Original COO

Reordered HiCOO

ek val
0 0 0 3
0 0 1 4
1 0 0 1
1 1 0 2
1 1 0 5
0 0 0 7
0 0 1
1 1 1

8
6

0 0 0

1 0 0

1 1 0
1 0 1

0

4
5

ei ejbi bj bkbptr
B1

B2
B3
B4

(1, 0, 3, 2)

(0, 1, 3, 2)

(0, 2, 1)

i:

j:

k:{perm

(a)

(b)

i j k val
0 0 0 1
0 1 0 2
1 0 0 3
1 0 2 4
2 1 0 5
2 2 2 6
3 0 1
3 3 2

7
8

ek val
0 0 0 1
0 1 0 2
1 0 0 3
1 0 0 4
0 1 0 5
1 0 1 7
0 0 0
1 1 0

6
8

0 0 0

0 0 1
1 0 0

1 1 1

0

3
4

6

ei ejbi bj bkbptr

B1

B2

B3

B4

(a) A good example (b) A fair example
Figure 6: Comparison ofHiCOO representations before and

after Lexi-Order.

Like BFS-MCS approach, Lexi-Order also finds the permutations
for N modes of an N th-order sparse tensor. Figure 6 (a) illustrates
the effect of Lexi-Order on an example 4× 4× 3 sparse tensor. The
original tensor is converted to a HiCOO representation with block
size B = 2 consisting of 5 blocks, with maximum 2 nonzeros per
block. After reordering with Lexi-Order, the new HiCOO has 3
nonzero blocks with up to 4 nonzeros per block. Thus, the blocks
are denser, which should exhibit better locality behavior. However,
this reordering scheme is heuristic. Figure 6 (b) shows HiCOO
representation after reordering of the tensor shown in Figure 2.
The number of blocks is unchanged (4), although the maximum
number of nonzeros per block increases to 4. For this tensor, Lexi-
Order may not show a big advantage.

HiCOO

ek val
0 0 0 1
0 1 0 2
1 0 0 3
1 0 0 4
0 1 0 5
1 0 1 7
0 0 0
1 1 0

6
8

0 0 0

0 0 1
1 0 0

1 1 1

0

3
4

6

ei ejbi bj bkbptr
B1

B2
B3

B4

L1

L2

0

4

lptri j k val
0 0 0 1
0 1 0 2
1 0 0 3
1 0 2 4
2 1 0 5
3 0 1 7
2 2 2
3 3 2

6
8

L1

L2

0

4

lptr
Partition &
Compress

COO

i j k val
0 0 0 1
0 1 0 2
1 0 0 3
1 0 2 4
2 1 0 5
2 2 2 6
3 0 1
3 3 2

7
8

Rowblock
Sorting &

int long int bytefloat float{ { {

i j k val
0 0 0 1
0 1 0 2
1 0 0 3
1 0 2 4
2 1 0 5
2 2 2 6
3 0 1
3 3 2

7
8

L1

L2

0

4

lptr
Z-Order
Sorting

long

Partition

Figure 7: The conversion between COO andHiCOO formats

for an example third-order tensor.HiCOOuses 2×2×2 blocks
(B = 2) with word sizes marked above.

231

ICS ’19, June 26–28, 2019, Phoenix, AZ, USA J. Li, et al.

3.3 Analysis

We take Mttkrp operation to analyze reordering behavior for
COO, CSF, and HiCOO formats. Recall that for a third-order sparse
tensor X, Mttkrp multiples each nonzero entry xi, j,k with the
R-vector formed by the entry-wise product of the jth row of A(2)

and kth row of A(3) when computing Ã(1). The arithmetic intensity
of Mttkrp algorithms on these formats is approximately 1/4 [24].
Thus,Mttkrp can be consideredmemory-bound for most computer
architectures, especially CPU platforms.

We analyze the memory access of HiCOO-Mttkrp algorithm
in bytes (Equation (4), details in Equation (16) of [24]) to roughly
reflect its real performance. β? is different bit-lengths for HiCOO
(Table 1). The block ratio (αb) and the average slice size per ten-
sor block (cb) are two critical parameters of HiCOO. Smaller αb
and larger cb are favorable for good HiCOO-Mttkrp performance.
(Readers could refer to [24] for more explanation.) Our reordering
algorithms tend to closely pack nonzeros together and get denser
blocks (larger cb), which potentially generates less tensor blocks
(smaller αb), thus HiCOO-Mttkrp has less memory access, more
cache hits, and better performance further. Take for example two
nonzeros (i2, j2,k1) and (i2, j2,k2) again. A HiCOO representation
after reordering could combine them in a single block. (A detailed
example is shown in Figure 6.) Moreover, from the HiCOO storage
equation (Equation (5), Equation (13) from [24]), smaller αb can
also reduce tensor memory requirement as a side benefit. That is,
for HiCOO format a reordering scheme should increase the block
density, reduce the number of blocks, and increase cache locality—
three related performance metrics. Reordering is more beneficial
for HiCOO format than COO and CSF formats.

Byteshicoo ≈
M
8 [2αb · βint + βbyte + Rmin{ 1

cb
, 1} · βfloat]N (4)

Shicoo ≈ M [αb · βlong + αbN · βint + N · βbyte] (5)

COO stores all nonzero indices, so relabeling does not make a
difference in its storage. The same is also true for CSF; relabeling
does not change the its tree structure, while the order of nodes may
change. For anMttkrpwith tensors stored in these two formats, the
performance gain from reordering is only the improved data locality
and therefore cache behavior. Though it is hard to do theoretical
analysis for them, the potential better data locality could also brings
performance advantages, but might be less than HiCOO’s.

3.4 Parallelize Preprocessing

For an efficient parallel HiCOO-Mttkrp algorithm, superblocks,
an extra blocking level above blocks, are proposed to increase the
workload granularity of scheduling [24]. A superblock is essen-
tially a “logical” subtensor that can potentially consist of many
small blocks. During HiCOO format conversion in Figure 7, we first
sort all nonzeros only by i indices in mode 1 (“rowblock sorting”),
to ensure that a mode-1 slice is not split between superblocks. Then
L × · · · × L nonzero superblocks are partitioned with an additional
array lptr to store the beginning pointers of nonzero superblocks in
size nl , the number of superblocks. We treat them as independent
subtensors to convert each to the physical HiCOO format with
B × · · · × B blocks (L ≥ B) through Z-Morton order sorting, parti-
tioning, and compression steps. In the first rowblock sorting we do

a quicksort for a single mode where the quicksort is parallelized.
Afterwards, the operations on each superblock (Z-order sorting,
partitioning, and compression) are naturally parallelized.

0 (4)

Write Conflicts

N
o

W
rit

e
C

on
fli

ct
s

1 (8)

2 (1)

3 (6)

4 (4)

5 (8)

6 (7)

7 (2)

8 (6)

9 (5)

x

y
iter 1 iter 2 iter 3

10 (8)

11 (4)

12 (3)

iter 4

0 (4)

Write Conflicts

N
o

W
rit

e
C

on
fli

ct
s

1 (8)

2 (1)

3 (6)

4 (4)

5 (8)

6 (7)

7 (2)

8 (6)

9 (5)

x

y
ptn 1 ptn 2

10 (8)

11 (4)

12 (3)

ptn 3

(a) Baseline superblock scheduler [22] (b) Partition-based superblock scheduler

Figure 8: Baseline [24] and partition-based superblock

scheduling tables for mode-1 Mttkrp. Each box represents

a superblock identified by its number, alongwith its number

of nonzeros in parentheses.

4 HYBRID PARALLEL HICOO-MTTKRP

An important side-effect of the proposed reordering schemes is
that it can inadvertently create load imbalance, if one assumes the
original “superblock scheduling” scheme proposed for HiCOO [24].
This section summarizes the issue and proposes a modification to
HiCOO’s superblock scheduler to mitigate such imbalance.

The baseline HiCOO superblock scheduler operates schemat-
ically as shown in Figure 8 (a). Each box is a superblock, where
the number of nonzeros inside the block is shown in parentheses.
Superblocks in the same row all write to the same output area and
so are dependent (arrows), while columns indicate independent su-
perblocks. Two parallel strategies are employed in [24]: direct and
privatized parallelization. Simply speaking, direct parallelization
parallelizes rows while privatization strategy parallelizes iterations
(or columns). Direct parallelization uses an owner-computes strat-
egy to assign one (or more rows) to each available thread and then
execute each column (“iteration”) of independent superblocks in a
bulk-synchronous fashion. Privatized parallelization uses thread-
local buffers to keep the updates of the superblocks from distinct
iterations, and then accumulates these buffers together in parallel
at the end. The superblock scheduler also varies the superblocks-
to-threads assignment from row-to-row or iteration-to-iteration
if necessary for the two strategies respectively to achieve better
load balance. These two parallel strategies are proposed to obviate
the need for locks or atomic operations and to explore sufficient
parallel degree for irregular sparse tensors.

However, neither of thee two strategies can obtain good load
balance due to the uneven nonzero distribution of the superblocks
in rows or columns, even under dynamic thread scheduling policy.
This situation becomes worse after applying tensor reordering. We
use the ratio of maximum number of nonzeros assigned to a thread
to the average number of nonzeros per thread to represent the load
balance. Under a random ordering, which might be expected to
have good load balance, at the price of poor locality, most ratios are
under 1.3. While after Lexi-Order reordering, using the baseline
HiCOO superblock scheduler, the ratios become worse on most of
tensors and raise to as high as 6.72, although it would be expected
to have better locality. (Refer to details in Table 4.) Therefore, we
are motivated to try to mitigate this imbalance.

Here is our scheme that tries heuristically to improve the balance
ratio. The main idea behind our modified superblock scheduler is
illustrated in Figure 8 (b). We simply aggregate superblocks in the

232

Efficient and Effective Sparse Tensor Reordering ICS ’19, June 26–28, 2019, Phoenix, AZ, USA

same row of the figure, which effectively creates “jagged” partition
boundaries (partitions 1 and 2 in Figure 8 (b)), with any remainder
superblocks in their own final “tail” partition (the last partition).
To decide how many superblocks within each row may be aggre-
gated at a time, there is an additional tuning parameter which is
a target maximum number of nonzeros to aggregate at a time. In
this example, that target is set to 8 nonzeros, superblocks 0 and 4
are aggregated, as are the pairs (2, 6) and (3, 7). Correspondingly,
our scheme again uses two parallel strategies: direct and privatized
parallelization. However, direct parallelization parallelizes rows in
units of partitions, and privatization strategy parallelizes partitions
by saving thread-local buffers. Under this aggregation scheme, the
two partitions of this example combined represent a more balanced
unit to schedule than the original superblock scheduler’s units of
rows or columns (iterations). The number of nonzeros of our new
scheduling unit is around 8 for both row and partition schedul-
ing whereas that of the baseline row and column scheduling units
varies in the range of 1 - 8. Note that our partitioning scheme does
not split any superblock, this may introduce some imbalance. Im-
balance also occurs in the last partition for the remainders. We also
observe that the number of partitions in Figure 8 (b) could be easily
smaller than the number of iterations in Figure 8 (a). This could
lead to insufficient parallel degree for privatization strategy.

We record these partition-based partitions as blschr, companied
with plschr to record the partitioning positions. In practice, be-
cause the superblock sizes are relatively large, there are not many
superblocks to schedule on our evaluation tensors. Therefore, it is
not expected that these auxiliary metadata will increase the size of
the overall HiCOO data structure.

5 EXPERIMENTS

5.1 Experimental Setup

Platform.We perform experiments on a Linux-based Intel Xeon
E5-2698 v3 multicore server platform with 32 physical cores dis-
tributed on two sockets, each with 2.3 GHz frequency. The proces-
sor microarchitecture is Haswell, having 32 KiB L1 data cache and
128GiB memory. The code artifact was written in the C language
using OpenMP parallelization, and was compiled using icc 18.0.1.

Dataset. We use the sparse tensors, derived from real-world
applications, that appear in Table 2, ordered by decreasing nonzero
density separately for third- and fourth-order tensors. Most of
these tensors are included in The Formidable Repository of Open
Sparse Tensors and Tools (FROSTT) dataset [39]. The darpa (source
IP-destination IP-time triples), fb-m, and fb-s (short for “freebase-
music” and “freebase-sampled”, entity-entity-relation triples) are
from the dataset of HaTen2 [15], and choa is built from the electronic
health records (EHRs) of pediatric patients at Children’s Healthcare
of Atlanta (CHOA) [34].

Configurations.We report the results under the best configu-
rations for the following parameters for the highestMttkrp per-
formance with the three formats: (i) the number of reordering
iterations, the superblock size L, and the block size B for HiCOO
format; (ii) privatization or not for COO; and (iii) tiling or not for
CSF. For HiCOO, B = 128 achieves the best results in most cases,
and we use five reordering iterations which will be analyzed in
§ 5.8. All experiments use approximate rank of R = 16. The parallel

experiments are run with 32 threads under dynamic scheduling
strategy in units of one superblock/partition.We use the total execu-
tion time of Mttkrps in all modes for every tensor to calculate the
speedup which is the ratio of the totalMttkrp time on a randomly
reordered tensor over that using a specific reordering scheme. All
the execution time is averaged over five runs.

Table 2: Description of sparse tensors.

Tensors Order Dimensions #Nnzs Density

vast 3 165K × 11K × 2 26M 6.9 × 10−3
nell2 3 12K × 9K × 29K 77M 2.4 × 10−5
choa 3 712K × 10K × 767 27M 5.0 × 10−6
darpa 3 22K × 22K × 24M 28M 2.4 × 10−9
fb-m 3 23M × 23M × 166 100M 1.1 × 10−9
fb-s 3 39M × 39M × 532 140M 1.7 × 10−10

flickr 3 320K × 28M × 2M 113M 7.8 × 10−12
deli 3 533K × 17M × 3M 140M 6.1 × 10−12
nell1 3 2.9M × 2.1M × 25M 144M 9.1 × 10−13

crime 4 6K × 24 × 77 × 32 5M 1.5 × 10−2
uber 4 183 × 24 × 1140 × 1717 3M 3.9 × 10−4
nips 4 2K × 3K × 14K × 17 3M 1.8 × 10−6

enron 4 6K × 6K × 244K × 1K 54M 5.5 × 10−9
flickr4d 4 320K × 28M × 2M × 731 113M 1.1 × 10−14
deli4d 4 533K × 17M × 3M × 1K 140M 4.3 × 10−15

5.2 HiCOO-Mttkrp with Reordering

Figure 9 (a) shows the speedup of the proposed reordering meth-
ods on sequential and parallel HiCOO-Mttkrp respectively. Lexi-
Order reordering obtains 0.99–4.14× speedup (2.12× on average);
while BFS-MCS reordering gets 0.99–1.88× speedup (1.34× on av-
erage). Lexi-Order and BFS-MCS do not behave as well on fourth-
order tensors as on third-order tensors. Tensor flickr4d is constructed
from the same data with flickr, with an extra short mode (refer to Ta-
ble 2). Lexi-Order obtains 4.14× speedup on flickrwhile only 3.02×
speedup on flickr4d. The same phenomenon is also observed on
tensors deli and deli4d. This phenomenon indicates that it is harder
to get good data locality on higher-order tensors, which will be
justified in Table 3.

Sp
ee

du
p

0

1

2

3

4

5 Lexi-Order

BFS-MCS

deli4d�ickr4denronnipsubercrimenell1deli�ickrfb-sfb-mdarpachoanell2vast

3-D Tensors 4-D Tensors

(a) Sequential

Sp
ee

du
p

0

1

2

3

4

5
Lexi-Order

BFS-MCS

deli4d�ickr4denronnipsubercrimenell1deli�ickrfb-sfb-mdarpachoanell2vast

3-D Tensors 4-D Tensors

11.81

(b) Parallel
Figure 9: Reordered HiCOO-Mttkrp speedup over a ran-

dom ordering implementation.

Figure 9 (b) shows the speedup of the proposed reordering meth-
ods on multicore parallel HiCOO-Mttkrp. We set the same su-
perblock size L before and after reordering for a fair comparison.
Overall, Lexi-Order results in 0.70–11.81× speedup (2.12× on av-
erage) for parallel HiCOO-Mttkrp; while BFS-MCS reordering
gets 0.25–1.94× speedup (0.98× on average). Thus, the benefit from
reordering using either Lexi-Order or BFS-MCS is generally less
than that in the sequential case. This observation may indicate that

233

ICS ’19, June 26–28, 2019, Phoenix, AZ, USA J. Li, et al.

it is harder to pursue a good load balance after reordering. The
11.81× speedup achieved on tensor flick4d is because Lexi-Order
changes the nonzero distribution and hence the optimal superblock
size L. Thus, under the same L, reordering gives a big performance
improvement. It indicates that automatically tuning the parameters
of HiCOO will be very helpful.
5.3 HiCOO Parameters

We investigate two critical parameters of HiCOO [24]: the block
ratio (αb) and the average slice size per tensor block (cb). Smaller
αb and larger cb are favorable for good HiCOO-Mttkrp perfor-
mance. Table 3 lists the parameter values for all tensors before
and after Lexi-Order, the HiCOO-Mttkrp speedup (as shown in
Figure 9), and the storage ratio of HiCOO over random ordering.
Generally, whenαb is reduced and cb is increased using Lexi-Order
for a tensor, we see a good performance speedup and storage ratio.
(Sequential speedup reflects better by involving less factors than
parallel cases.) For the same data in different orders, e.g., flickr4d and
flickr, the αb and cb values are the same for random reordering, after
Lexi-Order, these values of flickr are better than those of flickr4d.
This fact justifies the phenomenon that getting good data locality
is harder for higher-order tensors.
Table 3: HiCOO parameters change before and after Lexi-

Order reordering.

Tensors Random reordering Lexi-Order Speedup Storage
αb cb αb cb seq omp ratio

vast 0.004 1.758 0.004 1.562 1.01 1.03 0.999
nell2 0.020 0.314 0.008 0.074 1.04 1.04 0.966
choa 0.089 0.057 0.016 0.056 1.16 1.07 0.833
darpa 0.796 0.009 0.018 0.113 3.74 1.50 0.322
fb-m 0.985 0.008 0.086 0.021 3.84 1.21 0.335
fb-s 0.982 0.008 0.099 0.020 3.90 1.23 0.336

flickr 0.999 0.008 0.097 0.025 4.14 3.66 0.277
deli 0.988 0.008 0.501 0.010 2.24 0.83 0.634
nell1 0.998 0.008 0.744 0.009 1.70 0.70 0.812

crime 0.001 37.702 0.001 8.978 0.99 1.42 1.000
uber 0.041 0.469 0.011 0.270 1.00 0.78 0.838
nips 0.016 0.434 0.004 0.435 1.03 1.34 0.921

enron 0.290 0.017 0.045 0.030 1.25 1.36 0.573
flickr4d 0.999 0.008 0.148 0.020 3.02 11.81 0.214
deli4d 0.998 0.008 0.596 0.010 1.76 1.26 0.697

5.4 Partition-Based Scheduler

Table 4 shows the load balance under three scenarios and the cor-
responding performance speedup on parallel HiCOO-Mttkrp over
random ordering. Load balance is represented by the ratio of max-
imum number of nonzeros assigned to a thread to the average
number of nonzeros per thread 1, where lower numbers are favored.
The target maximum number of nonzeros of a partition is set to
five times of the maximum number of nonzeros per superblock.
The second column shows the balance ratio under a random or-
dering, which might be expected to have good load balance, at the
price of poor locality. Most ratios in this column are under 1.3. The
third column shows the balance ratios under Lexi-Order reorder-
ing scheme, which increase for most of tensors, some even reach
6.72. Despite these balance ratios, HiCOO-Mttkrp on reordered
tensors obtains speedup over random ordering on most of tensors,
because of its better data locality. The resulting balance ratios under
the partition-based scheduling appear in the fourth column. Only
tensors vast, fb-m, fb-s, and nips get better balance ratios compared
to reordering-only, but better performance is achieved on about
1The same metric is used in [42].

half of tensors including these three. The improvement of the Re-
ordered+Balanced scheme over Reordered-only is up to 42%. Two
factors may harm the load balance in our new scheduling. One is
whether we can get sufficient amount of partitions for paralleliza-
tion; the other is that the cubical superblocks limits the parallelism
for highly irregular tensors. Since the balanced superblock scheme
does not always improve performance, our final scheduler selects
between these two options.
Table 4: Load balance and its effect before and after Lexi-

Order tensor reordering and partition-based scheduling.

Tensors
Max/Avg Performance Speedup

Random Reordered Reordered Reordered Reordered
+Partition +Partition

vast 1.25 1.21 1.14 1.03 1.01
nell2 1.18 1.24 1.36 1.04 1.04
choa 1.13 1.26 1.32 1.07 1.08
darpa 1.57 1.35 1.55 1.50 1.49
fb-m 1.16 2.07 1.70 1.21 1.72
fb-s 1.30 2.16 1.42 1.23 1.71

flickr 1.23 3.62 4.46 3.66 3.64
deli 1.28 5.00 5.90 0.83 0.82
nell1 1.28 6.72 7.10 0.70 0.70

crime 1.95 1.14 1.35 1.42 1.27
uber 1.29 1.70 1.79 0.78 0.78
nips 1.58 1.46 1.41 1.34 1.39

enron 1.19 1.61 1.65 1.36 1.88
flickr4d 1.15 2.66 2.68 11.81 10.85
deli4d 1.10 2.73 3.01 1.26 1.34

Sp
ee

du
p

0

1

2

3

4

5
Lexi-Order

BFS-MCS

deli4d�ickr4denronnipsubercrimenell1deli�ickrfb-sfb-mdarpachoanell2vast

3-D Tensors 4-D Tensors

(a) Sequential

Sp
ee

du
p

0.0

0.5

1.0

1.5

2.0 Lexi-Order

BFS-MCS

deli4d�ickr4denronnipsubercrimenell1deli�ickrfb-sfb-mdarpachoanell2vast

3-D Tensors 4-D Tensors

(b) Parallel
Figure 10: Reordered COO-Mttkrp speedup over a random

reordering implementation.

5.5 Reordering Effect on Other Formats

5.5.1 COO-Mttkrp with Reordering. We show the effect of the two
reordering approaches on sequential and parallel COO-Mttkrp
from ParTI! [22] in Figure 10. This COO-Mttkrp is implemented
in C and OpenMP parallelized with or without privatization deter-
mined for different modes, using the same algorithm with Tensor
Toolbox [5]. For any reordering approach, after doing a BFS-MCS,
Lexi-Order, or random reordering on the input tensor, we still sort
the tensor in the mode order of 1 ≻ · · · ≻ N . Observe that Lexi-
Order improves sequential COO-Mttkrp performance by 1.00–
4.29× (1.79× on average), while BFS-MCS gets 0.95–1.27× (1.10×
on average). Also, Lexi-Order improves parallel COO-Mttkrp
performance by 1.01–1.48× (1.21× on average), while BFS-MCS
improves by 0.70–1.68× (1.11× on average). Note that Lexi-Order
improves the performance of COO-Mttkrp for all tensors, both in
sequential (79%) and parallel (21%). We conclude that this ordering
is always helpful for COO-Mttkrp, while the improvements being
less than what we saw for HiCOO-Mttkrp.
5.5.2 CSF-Mttkrp with Reordering. We show the effect of the two
reordering approaches on sequential and parallel CSF-Mttkrp from

234

Efficient and Effective Sparse Tensor Reordering ICS ’19, June 26–28, 2019, Phoenix, AZ, USA

Splatt v1.1.1 [45] in Figure 11. CSF-Mttkrp is set to use all CSF
representations (ALLMODE) for Mttkrps in all modes and with tiling
option on. 2 Lexi-Order improves sequential CSF-Mttkrp perfor-
mance by 0.65–2.33× (1.50× on average) and accelerates parallel
CSF-Mttkrp by 0.86–1.88× (1.27× on average). BFS-MCS improves
sequential CSF-Mttkrp performance by 1.00–1.86× (1.22× on aver-
age) and accelerates parallel CSF-Mttkrp by 0.59–1.36× (1.04× on
average). Both ordering approaches improves the performance of
CSF-Mttkrp on average. While BFS-MCS is always helpful in the
sequential case, Lexi-Order is not helpful on only one tensor crime.
The improvements achieved by the two reordering approaches for
CSF are less than those for HiCOO and COO formats. We conclude
that both reordering methods are helpful for CSF-Mttkrp, but in a
lesser extend than for HiCOO and COO basedMttkrp.

Sp
ee

du
p

0.0

0.5

1.0

1.5

2.0

2.5 Lexi-Order

BFS-MCS

deli4d�ickr4denronnipsubercrimenell1deli�ickrfb-sfb-mdarpachoanell2vast

3-D Tensors 4-D Tensors

(a) Sequential

Sp
ee

du
p

0.0

0.5

1.0

1.5

2.0 Lexi-Order

BFS-MCS

deli4d�ickr4denronnipsubercrimenell1deli�ickrfb-sfb-mdarpachoanell2vast

3-D Tensors 4-D Tensors

(b) Parallel
Figure 11: Reordered CSF-Mttkrp speedup over a random

reordering implementation.

5.5.3 Format Comparison. Figure 12 compares the parallel perfor-
mance of COO-, CSF-, and HiCOO-Mttkrps all using Lexi-Order.
The performance is shown by the speedup of each implementation
to reordered COO-Mttkrp for every tensor. HiCOO achieves the
best performance for most third-order tensors and is better than
COO and CSF with tiling for most cases. In these experiments, we
found that Splatt without tiling option is even faster than with
tiling especially on fourth-order tensors. After reordering, HiCOO
is 0.74–7.21× (3.08× on average) faster than COO and 0.25–28.84×
(5.29× on average) faster than CSF-tiling. Compared to CSF with
no tiling, HiCOO obtains 0.19 − 5.30× (1.40× on average) speedup.
On flickr, deli, nell1, and enron data, HiCOO behaves worse than both
the CSF settings because of the tensors’ hypersparsity property. Al-
though the reordering methods have improved the nonzero locality
on them, due to their severe load imbalance in Table 4, their perfor-
mance is still not comparable to CSF format. Overall, as also stated
in [24], HiCOO works the best on short tensor modes and with rea-
sonable sparsity of tensor blocks; while CSF is the complimentary
for hypersparse tensors. 3

5.6 Reordering Methods Comparison

As seen above, Lexi-Order improves performance more than BFS-
MCS in most cases. Compared to the reordering method used in

2Our tests using one CSF representation (ONEMODE) show quite similar results of re-
ordering effect to the ALLMODE setting. Same for using tiling or no tiling options.
3HiCOO shows more performance advantage with more CPU cores as illustrated in
[24].

Sp
ee

du
p

0
1
2
3
4
5
6
7
8
9

10 CSF (T)

CSF

HiCOO

deli4d�ickr4denronnipsubercrimenell1deli�ickrfb-sfb-mdarpachoanell2vast

3-D Tensors 4-D Tensors
Figure 12: Format comparison with Lexi-Order on parallel

Mttkrps.

Splatt [44], by setting ALLMODE (identical to the work [44]) to CSF-
Mttkrp, BFS-MCS gets 1.04, 1.64, and 1.61× speedups on tensors
nell2, nell1, and deli respectively, and Lexi-Order obtains 1.04, 1.70,
and 2.24× speedups. By contrast, the speedups using graph parti-
tioning [44] on these three tensors are 1.06, 1.11, and 1.19× and
1.06, 1.12, and 1.24× by using hypergraph partitioning [44] respec-
tively. Our BFS-MCS and Lexi-Order schemes both outperform
graph and hypergraph partitionings [44].

The available methods in the state-of-the-art are based on graph
and hypergraph partitioning. Partitioning is a successful approach
when the number of partitions is known, while the number of blocks
in HiCOO is unknown ahead of time. In our case, the partitions
should also be ordered for better cache reuse. Additionally, parti-
tioners are less effective for tensors than their usual applications
for matrices, as some dimensions could be very short (creating very
high degree vertices). Thus, our proposed ordering based methods
deliver better results.

Ti
m

es
 o

f H
iC

O
O

 C
on

st
ru

tio
n

0

3

6

9

12

15
ParLexiOrder

ParConvert

deli4d�ickr4denronnipsubercrimenell1deli�ickrfb-sfb-mdarpachoanell2vast

3-D Tensors 4-D Tensors

Figure 13: Parallel conversion and Lexi-Order speedup.

Ti
m

es
 o

f H
iC

O
O

 C
on

st
ru

tio
n

0

3

6

9

12

15

deli4d�ickr4denronnipsubercrimenell1deli�ickrfb-sfb-mdarpachoanell2vast

3-D Tensors 4-D Tensors

Figure 14: The reordering overhead over HiCOO construc-

tion.

5.7 Reordering Overhead

Figure 13 shows the parallel speedup of Lexi-Order reordering
and the HiCOO conversion steps respectively. Parallel Lexi-Order
gains 3.61× speedup on average while parallel HiCOO conversion
gets 5.84× average speedup on 32 physical cores. There is still room
to further accelerate these parallel algorithms, which will be one of
our future work. Figure 14 shows the overhead of Lexi-Order with
5 iterations. We specifically report the ratio of parallel Lexi-Order
reordering time to parallel HiCOO construction time. (That is, we
show how much more expensive it might be to reorder than to con-
struct the HiCOO representation in the first place.) The results lie
in the range of 1.97 to 12.91×. However, we could use less iterations
for Lexi-Order to compromise some Mttkrp performance, which
will be shown in Figure 15 (a). Thus, the reordering overhead can
be further reduced.

235

ICS ’19, June 26–28, 2019, Phoenix, AZ, USA J. Li, et al.

5.8 Effect of the Number of Iterations in

Lexi-Order

Since Lexi-Order improves the ordering iteratively, we evaluate the
effect of the number of iterations on HiCOO-Mttkrp performance.
The results appear in Figure 15 (a), which is normalized to the
runtime of 10 iterations.Mttkrp onmost tensors does not vary a lot
by setting different number of iterations, except vast, nell2, uber, and
nips. We use 5 iterations to get goodMttkrp performance similar
to that of 10 iterations, with about half of the overhead (shown
in Figure 15 (b)). But 3 or fewer iterations will get an acceptable
performance when users care much about the pre-processing time.

N
or

m
al

iz
ed

 T
im

e

0.0

0.5

1.0

1.5

2.0 1

2

3

5

10

deli4d�ickr4denronnipsubercrimenell1deli�ickrfb-sfb-mdarpachoanell2vast

3-D Tensors 4-D Tensors

(a) Sequential HiCOO-Mttkrp behavior

N
or

m
al

iz
ed

 T
im

e

0.0

0.2

0.4

0.6

0.8

1.0 1

2

3

5

10

deli4d�ickr4denronnipsubercrimenell1deli�ickrfb-sfb-mdarpachoanell2vast

3-D Tensors 4-D Tensors

(b) The reordering overhead
Figure 15: The performance and overhead of different num-

bers of iterations.

5.9 CPD Application

Figure 16 shows the Lexi-Order effect on the parallel HiCOO-
CPD algorithm using alternating least squares [19]. Similar to the
numbers in Figure 9 (b), CPD after reordering achieves 0.65–10.44×
speedup (1.81× on average). Reordering helps us to enhance the
performance of a whole tensor application.

Sp
ee

du
p

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Lexi-Order

deli4d�ickr4denronnipsubercrimenell1deli�ickrfb-sfb-mdarpachoanell2vast

3-D Tensors 4-D Tensors

10.44

Figure 16: CPD performance on reordered tensors.

6 RELATEDWORK

Plenty recent research studied the optimization of tensor algo-
rithms [6, 8–10, 12, 13, 16, 19, 20, 23, 25, 27, 29, 38, 40]. Our work
emphasizes on reordering schemes to get better nonzero structure.
Various reordering methods have been considered for matrix alge-
bra [2, 17, 28, 35, 36, 48]. For tensor operations, Smith et al. [44]
proposed two reordering methods based on partitioning: the first
is the partitioning of a graph that models the interactions between
slices; the second is the partitioning of a hypergraph that models
the memory access of the Mttkrp operation. A tensor reordering
is induced such that the vertices in the same partition are set to
consecutive labels. Hypergraphs have also been used to efficiently
parallelizeMttkrp in distributed memory systems [18]. These two
hypergraphs are constructed differently from our BFS-MCS, they
use fibers and tasks as vertices respectively, while our hypergraph

takes tensor indices as vertices. Besides, we propose matLexiOrder,
an alternative doubly lexical ordering method for sparse matrices,
and design Lexi-Order for sparse tensors based on it.
7 CONCLUSION

Motivated by an interest in further improving the HiCOO imple-
mentation, we investigated the problem of reordering a tensor to
improve block density for tensor computations. Inspired by algo-
rithms for sparse matrices, we proposed two heuristics, BFS-MCS
and Lexi-Order. BFS-MCS is based on the maximum cardinality
search principle; Lexi-Order is based on matLexiOrder, which we
propose here as an alternative to existing doubly lexical ordering
method for sparse matrices. matLexiOrder has near linear run-
time per tensor dimension, rendering the overall tensor reordering
method Lexi-Order practical. Lastly, we improve the superblock
scheduling strategy of HiCOO [24] with a partition-based scheme,
which eases the side effect of increased load imbalance that can
occur after reordering, thereby improving Mttkrp performance
for several sample inputs.

Overall, BFS-MCS is asymptotically faster while Lexi-Order
is more effective. Lexi-Order obtains performance speedup on
HiCOO-Mttkrp of 2.12× on average for both sequential and mul-
ticore parallel implementations. For COO and CSF-Mttkrps, the
average sequential and parallel speedups are 1.79×, 1.21× and 1.50×,
1.27×, respectively. Users can control a parameter of Lexi-Order
to reduce the reordering overhead without much performance drop
and also tune the HiCOO parameters for the reordered tensors to
pursue the highest Mttkrp performance. As future work, we plan
to pursue the automatic performance tuning for different sparse
tensor formats,HiCOO parameters, the tradeoff of reordering meth-
ods and parallel strategy parameters, and improve the runtime of
Lexi-Order. Our proposed heuristics set a basis for improving
Mttkrp performance through tensor reordering. Furthermore, we
anticipate the development of additional heuristics for the gen-
eral tensor reordering problem. Additionally, we expect reordered
tensors will prove useful for any tensor operation in which the
memory access behavior depends on the locality of tensor indices,
as inMttkrp. Examples include Tensor-times-matrix and tensor-
times-vector operations in Tucker decompositions and higher-order
power methods, respectively. Our approaches will be especially use-
ful as local improvements for intra-node data locality in large HPC
environment.
ACKNOWLEDGMENTS

This research was partially funded by the US Department of Energy,
Office for Advanced Scientific Computing (ASCR) under Award No.
66150: "CENATE: The Center for Advanced Technology Evaluation".
Pacific Northwest National Laboratory (PNNL) is a multiprogram
national laboratory operated for DOE by Battelle Memorial Institute
under Contract DE-AC05-76RL01830. This research was also funded
in part under Defense Advanced Research Projects Agency (DARPA)
contract FA8750-18-2-0108, under the DARPA MTO Software De-
fined Hardware program, and the Laboratory Directed Research
and Development program at Sandia National Laboratories under
contract DE-NA-0003525. Disclaimer: The views, opinions, and/or
findings contained in this document are those solely of the author(s)
and should not be interpreted as representing the official views or
policies of any of its funding sources.

236

Efficient and Effective Sparse Tensor Reordering ICS ’19, June 26–28, 2019, Phoenix, AZ, USA

REFERENCES

[1] M.ín Abadi et al. 2015. TensorFlow: Large-Scale Machine Learning on Heteroge-
neous Systems.

[2] K. Akbudak and C. Aykanat. 2017. Exploiting Locality in Sparse Matrix-Matrix
Multiplication on Many-Core Architectures. IEEE Transactions on Parallel and

Distributed Systems 28, 8 (Aug 2017), 2258–2271.
[3] A. Anandkumar, R. Ge, D. Hsu, ShS.amM. Kakade, and M. Telgarsky. 2014. Tensor

Decompositions for Learning Latent Variable Models. J. Mach. Learn. Res. 15, 1
(Jan. 2014), 2773–2832.

[4] B. W. Bader and T. G. Kolda. 2007. Efficient MATLAB computations with sparse
and factored tensors. SIAM Journal on Scientific Computing 30, 1 (December
2007), 205–231.

[5] B. W. Bader, T. G. Kolda, et al. 2017. MATLAB Tensor Toolbox (Version 3.0-dev).
Available online. https://www.tensortoolbox.org

[6] M. Baskaran, T. Henretty, B. Pradelle, M. H. Langston, D. Bruns-Smith, J. Ezick,
and R. Lethin. 2017. Memory-efficient parallel tensor decompositions. In 2017

IEEE High Performance Extreme Computing Conference (HPEC). 1–7.
[7] M. Baskaran, B. Meister, N. Vasilache, and R. Lethin. 2012. Efficient and scal-

able computations with sparse tensors. In High Performance Extreme Computing

(HPEC), 2012 IEEE Conference on. 1–6.
[8] Z. Blanco, B. Liu, and M. M. Dehnavi. 2018. CSTF: Large-Scale Sparse Tensor

Factorizations on Distributed Platforms. In Proceedings of the 47th International

Conference on Parallel Processing (ICPP 2018). ACM, New York, NY, USA, Article
21, 10 pages. https://doi.org/10.1145/3225058.3225133

[9] J. Choi, X. Liu, S. Smith, and T. Simon. 2018. Blocking Optimization Techniques
for Sparse Tensor Computation. In 2018 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). 568–577.

[10] J. H. Choi and S. Vishwanathan. 2014. DFacTo: Distributed Factorization of
Tensors. In Advances in Neural Information Processing Systems 27, Z. Ghahra-
mani, M. Welling, C. Cortes, N.D. Lawrence, and K.Q. Weinberger (Eds.). Curran
Associates, Inc., 1296–1304.

[11] A. Cichocki. 2014. Era of Big Data Processing: A New Approach via Tensor
Networks and Tensor Decompositions. CoRR abs/1403.2048 (2014).

[12] A. Cichocki, N. Lee, I. V. Oseledets, A. Phan, Q. Zhao, and D. Mandic. 2016.
Low-Rank Tensor Networks for Dimensionality Reduction and Large-Scale Opti-
mization Problems: Perspectives and Challenges PART 1. ArXiv e-prints (Sept.
2016). arXiv:cs.NA/1609.00893

[13] L. De Lathauwer and D. Nion. 2008. Decompositions of a Higher-Order Tensor
in Block Terms—Part III: Alternating Least Squares Algorithms. SIAM J. Matrix

Anal. Appl. 30, 3 (2008), 1067–1083.
[14] J. C. Ho, J. Ghosh, and J. Sun. 2014. Marble: High-throughput Phenotyping

from Electronic Health Records via Sparse Nonnegative Tensor Factorization.
In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (KDD ’14). ACM, New York, NY, USA, 115–124. https:
//doi.org/10.1145/2623330.2623658

[15] I. Jeon, E. E. Papalexakis, and C. Faloutsos U Kang. 2015. HaTen2: Billion-scale
Tensor Decompositions (Version 1.0). Available from http://datalab.snu.ac.kr/
haten2/.

[16] U Kang, E. Papalexakis, A. Harpale, and C. Faloutsos. 2012. GigaTensor: Scaling
Tensor Analysis Up by 100 Times - Algorithms and Discoveries. In Proceedings of

the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining (KDD ’12). ACM, New York, NY, USA, 316–324. https://doi.org/10.1145/
2339530.2339583

[17] G. Karypis and V. Kumar. 1998. A Parallel Algorithm for Multilevel Graph
Partitioning and Sparse Matrix Ordering. J. Parallel and Distrib. Comput. 48, 1
(1998), 71 – 95.

[18] O. Kaya and B. Uçar. 2015. Scalable Sparse Tensor Decompositions in Distributed
Memory Systems. In Proceedings of the International Conference for High Perfor-

mance Computing, Networking, Storage and Analysis (SC ’15). ACM, New York,
NY, USA, Article 77, 11 pages. https://doi.org/10.1145/2807591.2807624

[19] T. Kolda and B. Bader. 2009. Tensor Decompositions and Applica-
tions. SIAM Rev. 51, 3 (2009), 455–500. https://doi.org/10.1137/07070111X
arXiv:http://dx.doi.org/10.1137/07070111X

[20] Jiajia Li. 2018. Scalable tensor decompositions in high performance computing

environments. Ph.D. Dissertation. Georgia Institute of Technology, Atlanta, GA,
USA.

[21] J. Li, C. Battaglino, I. Perros, J. Sun, and R. Vuduc. 2015. An input-adaptive and
in-place approach to dense tensor-times-matrix multiply. In ACM/IEEE Super-

computing (SC ’15). ACM, New York, NY, USA.
[22] J. Li, Y. Ma, and R. Vuduc. 2016. ParTI!: A Parallel Tensor Infrastructure for

Multicore CPU and GPUs (Version 0.1.0). Available from https://github.com/
hpcgarage/ParTI.

[23] J. Li, Y. Ma, X. Wu, A. Li, and K. Barker. 2019. PASTA: A Parallel Sparse Tensor

Algorithm Benchmark Suite. Technical Report.
[24] J. Li, J. Sun, and R. Vuduc. 2018. HiCOO: Hierarchical Storage of Sparse Tensors.

In Proceedings of the International Conference for High Performance Computing,

Networking, Storage, and Analysis (SC ’18). IEEE Press, Piscataway, NJ, USA,

Article 19, 15 pages. http://dl.acm.org/citation.cfm?id=3291656.3291682
[25] B. Liu, C. Wen, A. D. Sarwate, and M. M. Dehnavi. 2017. A Unified Optimization

Approach for Sparse Tensor Operations on GPUs. In 2017 IEEE International

Conference on Cluster Computing (CLUSTER). 47–57. https://doi.org/10.1109/
CLUSTER.2017.75

[26] A. Lubiw. 1987. Doubly Lexical Orderings of Matrices. SIAM J. Comput. 16, 5
(1987), 854–879.

[27] Y. Ma, J. Li, X. Wu, C. Yan, J. Sun, and R. Vuduc. 2018. Optimizing sparse
tensor times matrix on GPUs. J. Parallel and Distrib. Comput. (2018). https:
//doi.org/10.1016/j.jpdc.2018.07.018

[28] J. Mellor-Crummey, D. Whalley, and K. Kennedy. 2001. Improving Memory
Hierarchy Performance for Irregular Applications Using Data and Computation
Reorderings. International Journal of Parallel Programming 29, 3 (01 Jun 2001),
217–247.

[29] I. Nisa, J. Li, A. Sukumaran-Rajam, R. Vuduc, and P. Sadayappan. 2019. Load-
Balanced Sparse MTTKRP on GPUs. arXiv:arXiv:1904.03329

[30] A. Novikov, D. Podoprikhin, A. Osokin, and D. Vetrov. 2015. Tensorizing Neural
Networks. CoRR abs/1509.06569 (2015).

[31] R. Paige and R. E. Tarjan. 1987. Three Partition Refinement Algorithms. SIAM J.

Comput. 16, 6 (Dec. 1987), 973–989. https://doi.org/10.1137/0216062
[32] E. E. Papalexakis, C. Faloutsos, and D. D. Sidiropoulos. 2012. ParCube: Sparse

Parallelizable Tensor Decompositions. In Proceedings of the 2012 European Con-

ference on Machine Learning and Knowledge Discovery in Databases - Volume Part

I (ECML PKDD’12). Springer-Verlag, Berlin, Heidelberg, 521–536.
[33] I. Perros, R. Chen, R. Vuduc, and J. Sun. 2015. Sparse Hierarchical Tucker Factor-

ization and its Application to Healthcare. IEEE International Conference on Data

Mining (ICDM) (2015).
[34] I. Perros, E. E. Papalexakis, F. Wang, R. Vuduc, E. Searles, M. Thompson, and J.

Sun. 2017. SPARTan: Scalable PARAFAC2 for Large & Sparse Data. In Proceedings

of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining (KDD ’17). ACM, New York, NY, USA, 375–384.
[35] J. C. Pichel, F. F. Rivera, M. Fernández, and A. Rodríguez. 2012. Optimization

of sparse matrix–vector multiplication using reordering techniques on GPUs.
Microprocessors and Microsystems 36, 2 (2012), 65 – 77. https://doi.org/10.1016/j.
micpro.2011.05.005

[36] A. Pothen and C.-J. Fan. 1990. Computing the Block Triangular Form of a Sparse
Matrix. ACM Trans. Math. Softw. 16, 4 (Dec. 1990), 303–324.

[37] N. Ravindran, D. D. Sidiropoulos, S. Smith, and G. Karypis. 2014. Memory-
Efficient Parallel Computation of Tensor and Matrix Products for Big Tensor
Decompositions. Proceedings of the Asilomar Conference on Signals, Systems, and

Computers (2014).
[38] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalexakis, and

C. Faloutsos. 2017. Tensor Decomposition for Signal Processing and Machine
Learning. IEEE Transactions on Signal Processing 65, 13 (July 2017), 3551–3582.
https://doi.org/10.1109/TSP.2017.2690524

[39] S. Smith, J. W. Choi, J. Li, R. Vuduc, J. Park, X. Liu, and G. Karypis. 2017. FROSTT:
The Formidable Repository of Open Sparse Tensors and Tools. http://frostt.io/

[40] S. Smith, K. Huang, N. D. Sidiropoulos, and G. Karypis. [n. d.]. Streaming Ten-

sor Factorization for Infinite Data Sources. 81–89. https://doi.org/10.1137/1.
9781611975321.10

[41] S. Smith and G. Karypis. 2015. Tensor-Matrix Products with a Compressed Sparse
Tensor. In Proceedings of the 5th Workshop on Irregular Applications: Architectures

and Algorithms. ACM, 7.
[42] S. Smith and G. Karypis. 2016. A Medium-Grained Algorithm for Distributed

Sparse Tensor Factorization. In Parallel and Distributed Processing Symposium

(IPDPS), 2016 IEEE International. IEEE.
[43] S. Smith, J. Park, and G. Karypis. 2016. An Exploration of Optimization Algorithms

for High Performance Tensor Completion. Proceedings of the 2016 ACM/IEEE

conference on Supercomputing (2016).
[44] S. Smith, N. Ravindran, N. Sidiropoulos, and G. Karypis. 2015. SPLATT: Efficient

and Parallel Sparse Tensor-Matrix Multiplication. In Proceedings of the 29th IEEE

International Parallel & Distributed Processing Symposium (IPDPS).
[45] S. Smith, N. Ravindran, N. Sidiropoulos, and G. Karypis. 2016. SPLATT: The

Surprisingly ParalleL spArse Tensor Toolkit (Version 1.1.1). Available from
https://github.com/ShadenSmith/splatt.

[46] R. E. Tarjan and M. Yannakakis. 1984. Simple Linear-Time Algorithms to Test
Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce
Acyclic Hypergraphs. SIAM J. Comput. 13, 3 (1984), 566–579.

[47] Y. Wang, R. Chen, J. Ghosh, J. C. Denny, A. Kho, Y. Chen, B. A. Malin, and J. Sun.
2015. Rubik: Knowledge Guided Tensor Factorization and Completion for Health
Data Analytics. In Proceedings of the 21th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining (KDD ’15). ACM, New York, NY, USA,
1265–1274. https://doi.org/10.1145/2783258.2783395

[48] A. J. N. Yzelman and D. Roose. 2014. High-Level Strategies for Parallel Shared-
Memory Sparse Matrix-Vector Multiplication. IEEE Transactions on Parallel and

Distributed Systems 25, 1 (Jan 2014), 116–125.

237

https://www.tensortoolbox.org
https://doi.org/10.1145/3225058.3225133
http://arxiv.org/abs/cs.NA/1609.00893
https://doi.org/10.1145/2623330.2623658
https://doi.org/10.1145/2623330.2623658
http://datalab.snu.ac.kr/haten2/
http://datalab.snu.ac.kr/haten2/
https://doi.org/10.1145/2339530.2339583
https://doi.org/10.1145/2339530.2339583
https://doi.org/10.1145/2807591.2807624
https://doi.org/10.1137/07070111X
http://arxiv.org/abs/http://dx.doi.org/10.1137/07070111X
https://github.com/hpcgarage/ParTI
https://github.com/hpcgarage/ParTI
http://dl.acm.org/citation.cfm?id=3291656.3291682
https://doi.org/10.1109/CLUSTER.2017.75
https://doi.org/10.1109/CLUSTER.2017.75
https://doi.org/10.1016/j.jpdc.2018.07.018
https://doi.org/10.1016/j.jpdc.2018.07.018
http://arxiv.org/abs/arXiv:1904.03329
https://doi.org/10.1137/0216062
https://doi.org/10.1016/j.micpro.2011.05.005
https://doi.org/10.1016/j.micpro.2011.05.005
https://doi.org/10.1109/TSP.2017.2690524
http://frostt.io/
https://doi.org/10.1137/1.9781611975321.10
https://doi.org/10.1137/1.9781611975321.10
https://github.com/ShadenSmith/splatt
https://doi.org/10.1145/2783258.2783395

	Abstract
	1 Introduction
	2 Background
	2.1 Tensors and CPD
	2.2 Sparse Tensor Formats

	3 Problem definition and our solutions
	3.1 BFS-MCS
	3.2 Lexi-Order
	3.3 Analysis
	3.4 Parallelize Preprocessing

	4 Hybrid Parallel HiCOO-Mttkrp
	5 Experiments
	5.1 Experimental Setup
	5.2 HiCOO-Mttkrp with Reordering
	5.3 HiCOO Parameters
	5.4 Partition-Based Scheduler
	5.5 Reordering Effect on Other Formats
	5.6 Reordering Methods Comparison
	5.7 Reordering Overhead
	5.8 Effect of the Number of Iterations in Lexi-Order
	5.9 CPD Application

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

