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ABSTRACT
In heterogeneous systems that include CPUs and GPUs,
the data transfers between these components play a crit-
ical role in determining the performance of applications.
Software pipelining is a common approach to mitigate the
overheads of those transfers. In this paper we investigate
advanced software-pipelining optimizations for the double-
precision general matrix multiplication (DGEMM) algorith-
m running on a heterogeneous system that includes ATI
GPUs. Our approach decomposes the DGEMM workload
to a finer detail and hides the latency of CPU-GPU da-
ta transfers to a higher degree than previous approaches
in literature. We implement our approach in a five-stage
software pipelined DGEMM and analyze its performance
on a platform including x86 multi-core CPUs and an ATI
RadeonTM HD5970 GPU that has two Cypress GPU chips
on board. Our implementation delivers 758 GFLOPS (82%
floating-point efficiency) when it uses only the GPU, and 844
GFLOPS (80% efficiency) when it distributes the workload
on both CPU and GPU. We analyze the performance of our
optimized DGEMM as the number of GPU chips employed
grows from one to two, and the results show that resource
contention on the PCIe bus and on the host memory are
limiting factors.

Categories and Subject Descriptors
F.2.1 [Numerical Algorithms and Problems]: Compu-
tations on matrices; C.1.2 [Multiple Data Stream Archi-
tectures (Multiprocessors)]: Single-instruction-stream,
multiple-data-stream processors (SIMD)

General Terms
Algorithms, Performance, Experimentation

Keywords
High Performance Computing, Heterogeneous Architecture,
GPU, DGEMM

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for prof t or commercial advantage and that copies
bear this notice and the full citation on the f rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specif c
permission and/or a fee.
ICS’12, June 25–29, 2012, San Servolo Island, Venice, Italy.
Copyright 2012 ACM 978-1-4503-1316-2/12/06 ...$10.00.

1. INTRODUCTION
Double-precision GEneral Matrix Multiplication (DGEM-

M) is a performance critical kernel found in many scientif-
ic and engineering applications. Since its performance de-
pends on the underlying hardware, hardware vendors often
provide optimized implementations of DGEMM within the
BLAS library [8] (e.g. Intel MKL and AMD ACML). With
the increasing popularity of GPUs and the high performance
they make available, the need for GPU-optimized DGEM-
M implementations arise as well. DGEMM is compute-
intensive and exhibits regular memory access patterns; these
properties make it well suited to GPUs. Plenty of work in
literature [7, 11–13, 16–23] has presented GPU-accelerated
DGEMM implementations, but this work mostly focuses on
optimizing computation and assumes that data can stay res-
ident in GPU memory at all times. Unfortunately, realistic
DGEMM applications exhibit operands that won’t fit in G-
PU memory: this makes CPU-GPU data transfers crucial
for the feasibility and the performance of the applications.

Optimizing CPU-GPU data transfers is non-trivial be-
cause these transfers occur through the PCIe bus, that act-
s as a bottleneck: while the GPU memory can deliver a
throughput of up to 256 GB/s on a HD5970 GPU, a P-
CIe 2.0 bus only provides a peak bandwidth of 8 GB/s in
each direction. Nakasato [13] reported that the floating-
point efficiency of his DGEMM implementation decreased
from 87% to 55% once he counted data-transfer overheads.
A similar phenomenon occurs in the ACML-GPU library [2]
released by AMD to accelerate BLAS functions on hetero-
geneous CPU-ATI GPU systems.

Software pipelining has been traditionally employed to
mitigate the latency of data transfers through overlapping
computation and transfers. Yang et al. [23] have developed a
four-stage pipelined DGEMM algorithm that improves per-
formance by about 30%. Automated approaches like the one
proposed by Jablin et al. [10] simplifies the parallelization
of workloads and handles CPU-GPU transfers automatical-
ly, but their performance still does not compare favorably
with manual implementations. Therefore, the need is still
strong to explore the full potential of manual data-transfer
optimizations in critical kernels like DGEMM.

Multiple GPU boards can be employed on a single node in
an attempt to achieve higher performance. We analyze the
behavior of our optimized DGEMM on a multi-GPU node.
The analysis shows that the performance increase comes at
the cost of a lower floating-point efficiency (Section 4), even
if there’s no data dependence among tasks running on the
different GPUs. We conclude that the efficiency loss is a
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result of resource contention on both the PCIe bus and host
memory. We believe that our conclusions should guide the
configuration and dimensioning of future CPU-GPU systems
intended to tackle workloads similar to DGEMM with a high
degree of efficiency.
In this paper we examine performance tuning of DGEMM

on a heterogeneous system comprising x86 multi-core CPUs
and ATI Cypress GPU chips. We develop a new software-
pipelined design of the DGEMM kernel by identifying de-
sign choices that are performance-critical on the particular
ATI GPU architecture, specifically the choices of memory
addressing modes and the data placement in memory.
The main contributions of this paper are:

• We develop a new software pipelining design for the
DGEMM kernel running on CPU-GPU heterogeneous
architectures. The new design reduces the overheads
of data movement by using the image addressing mode
with low latency for dumping registers to GPU memo-
ry and employing fine-grained pipelining to hide CPU-
GPU data transfer latencies. We generalize our five-
stage design so that it can be employed in a general
heterogeneous programming framework.

• We provide an optimized implementation of our design
and evaluate its performance. Experimental results
show that our implementation achieves 408 GFLOPS
(88% efficiency) on one Cypress GPU chip, 758 GFLOP-
S (82% efficiency) on two Cypress GPU chips, and 844
GFLOPS (80% efficiency) on a system comprising t-
wo Intel Westmere-EP CPUs and one ATI RadeonTM

HD5970 GPU. Compared with AMD’s ACML-GPU
v1.1.2, our DGEMM implementation improves perfor-
mance by more than 2 times.

• We report a comprehensive experimental analysis show-
ing that the major scaling bottleneck when multiple
GPU chips are used is resource contention, especial-
ly PCIe contention and host memory contention. We
show that it is difficult to further decrease the over-
heads by software means. We present recommenda-
tions on how to relax the resource contention in future
hardware designs, that are beneficial on any heteroge-
neous architectures that integrate multiple CPUs and
PCIe-attached accelerators.

The rest of the paper is organized as follows. In Section 2,
we quantitatively analyze previous DGEMM implementa-
tion on the heterogeneous architecture. Our new software-
pipelining algorithm is proposed in Section 3. Section 4
gives the performance results and the detailed analysis. Re-
lated work is presented in Section 5, and the conclusions in
Section 6.

2. BACKGROUND AND MOTIVATION

2.1 The ATI GPU Architecture
The architecture we target in this work is a heterogeneous

system based on ATI RadeonTM HD5970 GPU, which in-
tegrates two Cypress chips into one card. The Cypress
chip contains several hundreds of computing units, a con-
troller unit named ultra-threaded dispatch processor, mem-
ory controllers and DMA engines. The microarchitecture
is customized with single-instruction-multiple-data (SIMD)
and very long instruction word (VLIW) for high throughput
of floating-point operations. It offers a peak performance

of 464 GFLOPS with double-precision floating-point opera-
tions at 725 MHz.

A notable feature related to software-pipelined design is
its memory hierarchy exposed in ATI Compute Abstraction
Layer (CAL) [4] system software stack. Figure 1 depict-
s the memory hierarchy in a CAL system on a heteroge-
neous CPU-ATI GPU architecture, i.e. local memory, re-
mote memory and application space. The local memory is
the high-speed memory on board of the GPU. The remote
memory is the set of regions of host memory that are visible
to the GPU. Both remote and local memory can be directly
accessed by a GPU kernel, but with different latencies. A
GPU kernel can directly write data from GPU registers in-
to remote memory using a store instruction, although this
operation has a much higher latency than a store on local
memory. Remote memory is partitioned into a cached and
an uncached portion. For example, in the ATI Stream SD-
K 2.2, the CAL system reserves 500 MB of cached memory
and 1788 MB of uncached memory on an ATI RadeonTM

HD5970 device. A good software-pipelining algorithm must
place the shared data between CPU and GPU in carefully
selected memory regions.

Figure 1: Memory hierarchy in CAL system between

CPU and ATI GPU

2.2 Software Pipelining in DGEMM
In this section we describe an algorithmic framework for

large scale DGEMM on a heterogeneous CPU-ATI GPU
system, with initial data resident in CPU application s-
pace. DGEMM calculates C = alpha × A × B + beta × C,
where A, B, C are m× k, k × n,m× n matrices respective-
ly. Since in most DGEMM applications the three matrices
are too large to be held in GPU memory, they are parti-
tioned into multiple sub-matrices to perform multiplication
block-by-block. We assume the three matrices are parti-
tioned as A = {A1, A2, · · · , Ap}, B = {B1, B2, · · · , Bq},
C = {C1, C2, · · · , Cp×q}, where p and q depend on GPU
memory size. For simplicity of presentation, we take p=q=2
for example and the matrix multiplication is illustrated in
Figure 2. The partition results in four independent sub-
matrices of C which are calculated in parallel: C1 = A1B1, C2 =
A1B2, C3 = A2B1, C4 = A2B2. For each sub-matrix mul-
tiplication we load its dependent sub-matrices A and B in-
to GPU memory, then DGEMM kernel may further divide
them into smaller ones for faster multiplication [6, 9, 14, 16,
17, 21] (e.g. register blocking). Yang et al. [23] developed
a software-pipelining algorithm characterized by four-stage
pipelining: load1 → load2 → mult → store. Table 1 ex-
plains the related action of each pipelined stage.

Figure 2: Work units split when p=q=2

Algorithm 1 outlines the four-stage software-pipelining
DGEMM algorithm in [23]. The algorithm contains two
stages for loading data to GPU local memory (load1, load2)
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Table 1: The four pipelined stages in [23]

load1 copy both A and B from application space to remote memory

load2 copy both A and B from remote memory to local memory

mult calculate C on GPU device and output them to remote memory

store copy C from remote memory to application space

and one stage for storing data back to CPU application s-
pace (store). As data are arranged in different memory re-
gions, the current software-pipelining algorithm loads input
matrices A and B into cached remote memory. Thus data
reuse can be exploited for executing multiplications. Take
the example in Figure 2, if we schedule the execution of
work units using the “bounce corner turn” [23], that is in
the following order: WU1 = {C1 = A1B1},WU2 = {C2 =
A1B2},WU3 = {C4 = A2B2},WU4 = {C3 = A2B1}. Ev-
ery two consecutive work units reuse one of the two input
sub-matrices. The resulting sub-matrices of C are allocated
to uncached remote memory because a finer blocked ma-
trix multiplication algorithm can exploit register reuse, so
that the results are written back for only one time. Anoth-
er optimization is the usage of double-buffering strategy for
overlapping multiplication with the write-back process. The
algorithm partitions sub-matrices of C into many smaller
blocks and writes two buffers in remote memory in an in-
terleaved way. For each loop j in line 6-9 of Algorithm 1,
the store dumps one buffer of a block Ci,j into application
space, while the mult calculates the next block Ci,j+1 and
fills the results into the other buffer. Since the mult kernel is
executed on GPU device in a non-blocking way, it proceeds
in parallel with the store in every iteration.

Algorithm 1 Four-stage software-pipelining DGEMM algorith-
m in [23]

Partition: A = {A1, A2, · · · , Ap}, B = {B1, B2, · · · , Bq},
C = {C1, C2, · · · , Cp×q}

Work units: WU = {C1 = A1 × B1, C2 = A1 × B2, ...}
Ci,j : the sub-matrices of Cj
////////////////////////////////////////////////
1. bind remote memory for sub-matrices A,B,C
//pre-processing
Allocate workunits using the “bounce corner turn” for exploiting data reuse
//the for-loop is pipelined
2. for each workunit wui do //i = 1, 2, · · · , p × q

//load1
3. copy either Ai or Bi from application space to remote memory

//load2
4. copy either Ai or Bi from remote memory to local memory

//mult
5. calculate Ci,1 on GPU device and output it to remote memory

6. for each block Ci,j do //j = 2, 3, · · ·

//store
7. copy Ci,j−1 from remote memory to application space

(also multiplied by beta)
//mult

8. calculate Ci,j on GPU device and output it to remote memory

9. endfor
//store

10. copy the last Ci,j from remote memory to application space

(also multiplied by beta)
11. endfor

2.3 Motivation
We implement four-stage pipelined algorithm by modify-

ing ACML-GPU library and profiling its execution on the
heterogeneous CPU-ATI RadeonTM HD5970 GPU architec-
ture. Figure 3 summarizes the time percentage of each stage
in four-stage pipelined algorithm. As the time distributions
of different problem scales show similar behavior, we take
k=2048 as an example, and give the matrix order m (=n)
in x axis. We learn that the mult kernel occupies the most
percentage (about 70%) while the sum of the other three
data transfer stages takes up about 30%. The experiments
from both [23] and our implementation show that the four-
stage software-pipelining algorithm improves performance

by about 30%. Intuitively, the overheads of data transfer-
s should be totally hidden by multiplication kernel during
the course of the pipelining execution. Our analysis of the
pipelining execution reveals an extra data transfer which was
not considered in previous software-pipelined designs.
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Figure 3: Time percentage of four-stage pipelining al-

gorithm

The resources employed by the algorithm are host memo-
ry, GPU and PCIe bus. Operations on these three resources
can typically proceed in parallel. Figure 4 outlines the re-
source usage in each stage of four-stage pipelining. Both
load1 and store employ the host memory, and load2 only
needs the PCIe bus to transfer data. The mult kernel per-
forms DGEMM on the GPU, and then outputs the results to
remote memory through the PCIe bus. The resource usage
in each stage suggests straightforward software pipelining
that overlaps the data transfers (load1, load2, store) with
the mult kernel. This pipelining seems beneficial because
the mult kernel becomes the bottleneck, as Figure 3 shows.

Note that the mult kernel in the four-stage pipelining di-
rectly stores data from registers to remote memory, causing
data transfers through the PCIe bus at the end of each kernel
execution. Although these store operations occur only once
per kernel invocation, the total amount of data they trans-
ferred may be larger than that in load2. This happens for ex-
ample in the DGEMM benchmark included in LINPACK [3]
where A, B and C are matrices of size m×k, k×n,m×n re-
spectively, and k is much smaller than both m and n. There-
fore, the size of C(m × n) is larger than the size of A and
B (k × (m + n)). Besides, as described in Section 2.2 the
latency of the data transfers in load2 is reduced by exploit-
ing data reuse. We profile the mult kernel taken from the
four-stage pipelined algorithm and find its floating-point ef-
ficiency tops approximately at 50%, which is also observed
in ACML-GPU v1.1.2 [2]. As we noted before, Nakasato
achieved a maximum of 87% efficiency with a multiplication
kernel that stores the results back to local memory in [13].
These results suggest that the difference between local and
remote stores is critical to performance, and that the multi-
threading performed implicitly by GPU hardware and the
double buffering approach are not sufficient to hide such long
latency. In summary, the efficiency gap between the four-
stage pipelined algorithm and the mult kernel indicates that
there is room for optimizing data movement in the mult ker-
nel. Therefore, the software pipelining should be refined to
achieve better overlap between computation and data trans-
fers.

3. METHODOLOGY
According to the analysis above, we focus on the mult ker-

nel of four-stage software-pipelining algorithm. We address
the bottleneck represented by the long latency involved in
writing back the result matrix to remote memory. Previous
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Figure 4: Resource allocation in each stage of four-stage

pipelined algorithm (Algorithm 1), “X” denotes the us-

age of resources

work [1, 2, 6, 9, 11–14, 16, 17, 19, 21–23] attempted to mit-
igate this latency via the architectural multi-threading pro-
vided by GPU hardware and the double-buffering approach.
In this section, we provide instead a solution based on an
improved software pipelining. We reduce the write-back la-
tency by employing the image addressing mode available on
ATI hardware, and by storing the C matrix to GPU local
memory, adding a separate pipelining stage to write back
the results to remote memory.

3.1 Addressing Mode
Two addressing modes are available to access GPU local

memory: the image addressing mode and the global buffer
addressing mode. In global buffer mode, kernels can access
arbitrary locations in local memory. In image addressing
mode, kernels can only address pre-allocated memory seg-
ments. The addresses of image reads are specified as 1D
or 2D indices, and reads take place using the fetch unit-
s. The programmer must bind these pre-allocated memory
segments to the fetch units. For a single kernel invocation,
the number of images for reading and writing is 128 and
8, respectively. The maximum dimension of 2D addresses is
8192×8192 elements. Addresses must be contiguous as spec-
ified by the 1D or 2D mode and the reads must be invoked
with dedicated instructions. Though the image addressing
seems a bit complicated to perform, the latency it incurs is
much less than the global buffer addressing.
Nakasato [13] described a detailed analysis of choosing

blocking factors for DGEMM kernel implementation on Cy-
press GPU. Both his work and ACML-GPU library indicate
that the optimal blocking algorithm calculates 4 × 4 sub-
matrices in the kernel for satisfying requirements of memory
bandwidth and registers. Our multiplication kernel adopts
a similar blocking algorithm. Specifically, our kernel invokes
8 input and 8 output samplers using the image addressing
mode instead of the global buffer addressing mode.

Figure 5: Data partition and sampler mapping of the

new multiplication kernel in image addressing mode

As shown in Figure 5, two input matrices in local mem-
ory are partitioned into many banks which are loaded for
multiplication by every four banks. Each column (row) of A
(B) is one bank which is bound to a sampler. For example,
every four banks of A are mapped to samplers i0-i3, and
every four banks of B are mapped to samplers i4-i7. Since
the width of a sampler is 128-bit and a 4× 4 sub-block of C

matrix is calculated, the output C matrix is partitioned into
many two-dimensional banks of 4×2. Algorithm 2 describes
the kernel algorithm that calculates a 4 × 4 sub-block of C
matrix in GPU local memory. In order to conserve registers,
the algorithm splits banks of both A and B into two parts
and loads them in two steps. The resulting sub-blocks of
C are stored into local memory, instead of remote memory.
Unlike the previous designs, we split the write-back into t-
wo stages: the first stores results to local memory, and the
second transfers them to remote memory. In the next sec-
tion, we will show how our new pipelining overlaps the local
memory store with the other stages.

Algorithm 2 The algorithm of DGEMM kernel

bind banks of both A and B to input samplers
bind banks of C to output samplers
Registers: a[4], b[4], c[8] //128-bit width
//////////////////////////////////////
c[0 : 8]=0

for (k=0; k<K/4; k++) {
//fetch four banks of two elements from A
load a[0 : 3]← bank A[0 : 3][2k]
//fetch two banks of four elements from B
load b[0 : 3] ← bank B[0 : 1][2k : 2k + 1]
//multiplication
c[0 : 8] + = a[0 : 3] × b[0 : 3]

//fetch four banks of two elements from A
load a[0 : 3]← bank A[0 : 3][2k + 1]
//fetch two banks of four elements from B
load b[0 : 3] ← bank B[2 : 3][2k : 2k + 1]
//multiplication
c[0 : 8] + = a[0 : 3] × b[0 : 3]
} //end for
store c[0 : 8] → bank C[0 : 8]

3.2 Five-stage Pipelining
In our multiplication kernel we output results to GPU

local memory instead of remote memory, and a later trans-
fer is required to write the results to remote memory. The
difference with respect to previous approaches is the sepa-
ration of this write-back transfer from the mult kernel into
a new stage store1, which makes us design pipelining of five
stages. This separation provides an opportunity to better
utilize the DMA engine available in the hardware, and can
perform data transfers asynchronously.

Algorithm 3 shows our five-stage pipelining, in which stage
mult is split into stages mult1 and store1, where store1 trans-
fers C results from local memory to remote memory. For
clarity we rename the old store stage as store2.

With respect to resources, the mult1 only occupies the G-
PU computing cores, whereas the store1 only occupies the
DMA engine. To better overlap with mult1, a sub-matrix
of C output is divided into smaller ones to transfer. While
mult1 is running, several store1 operations are executing at
the same time. In our implementation, four store1 stages are
in parallel with mult1 kernel due to the size of sub-matrices
calculated. Thus, computation and DMA transfers can pro-
ceed in parallel in a fine granularity, similarly to what hap-
pens in the double-buffering scheme.

Host memory GPU PCIe Bus

load1 X

load2 X

mult1 X

store1 X

store2 X

Figure 6: Resource allocation in the new five-stage

pipelined DGEMM

Figure 6 depicts the new resource allocation. Themult1 no
longer needs PCIe bus, and only uses GPU device. There-
fore, mult1 can now be executed in parallel with load2 or
store1 without PCIe conflicts. Not only Algorithm 3 pro-
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vides a finer-grained pipelining and alleviates the resource
conflicts, but it also allows a faster kernel implementation.

3.3 Software Pipelining Design
We propose the use of our five-stage pipelined design not

only in order to optimize DGEMM, but as a more gen-
eral strategy to structure the execution of similar kernels.
Our pipelining scheme could serve as the basis to create
a reusable software-pipelining programming framework and
runtime system, which can be used in a heterogeneous en-
vironment based on ATI GPUs. This section outlines how
this framework could be implemented.
The framework will provide an API for the users to invoke

a five-stage pipelining described in Table 2. Figure 7 illus-
trates the execution of this pipelining over time, where the
five stages are represented with distinct colors. The bars in-
side the exec blocks represent the data transfer stages (load1,
load2, store1, store2), which are overlapped by the exec k-
ernel. As shown in this figure, except for the prologue and
epilogue of the pipelining, data transfers are totally over-
lapped.
The framework will contain a runtime system that allows

the users to describe properties of the data transferred (both
input and output). These properties characterize the mem-
ory access patterns, i.e., whether data are contiguous and
whether they are reused. Properties determine the data
placement in each pipelining stage:

• For data accessed contiguously, the exec kernel should
preferably use the image addressing mode, and the
runtime system will correspondingly bind those data
to the sampling fetch units.

• Those data that have been indicated as subject to
reuse should be placed in cached remote memory re-
gions for better reuse.

Algorithm 3 The five-stage software-pipelining DGEMM

Partition: A = {A1, A2, · · · , Ap}, B = {B1, B2, · · · , Bq},
C = {C1, C2, · · · , Cp×q}

Work units: WU = {C1 = A1 × B1, C2 = A1 × B2, · · · }
Ci,j : the sub-matrices of Cj
//////////////////////////////////////////////////////
1. bind remote memory for sub-matrices A,B,C
//pre-processing
Allocate workunits using the “bounce corner turn”
//the for-loop is pipelined
2. for each workunit wui do //i = 1, 2, · · · , p × q

//load1
3. copy either Ai or Bi from application space to remote memory

//load2
4. copy either Ai or Bi from remote memory to local memory

//mult
5. DMAPipeline(Ci,1)

6. for each block Ci,j do //j = 2, 3, · · ·

//store2
7. copy Ci,j−1 from remote memory to application space

(also multiplied by beta)
//mult

8. DMAPipeline(Ci,j )

9. endfor
//store2

10. copy the last Ci,j from remote memory to application space

(also multiplied by beta)
11. endfor

Algorithm: DMAPipeline(Ci,j )

Ci,j,k : the sub-blocks of Ci,j
//////////////////////////////////////////////////
//the for-loop is pipelined

//mult1
1. calculate Ci,j,1 in local memory

2. for each sub-block Ci,j,k do //k = 2, 3, · · ·

//store1
3. DMA transfer Ci,j,k−1 from local memory to remote memory

//mult1
4. calculate Ci,j,k in local memory

5. endfor
//store1

6. DMA transfer the last Ci,j,k from local memory to remote memory

An interesting experience from our DGEMM kernel opti-
mization is that explicit double-buffering appears to be more

Table 2: The five stages in general software pipelining
load1 copy input data from application space to remote memory

load2 copy input data from remote memory to local memory

exe perform kernel execution on GPU device and output data to local
memory

store1 copy output data from local memory to remote memory

store2 copy output data from remote memory to application space

Figure 7: General software pipelining sketch

efficient for tolerating latency than multi-threading on cur-
rent ATI GPU architectures, because of the long memory
latency to be hidden. Therefore, it is worth implement-
ing double-buffering for reading and writing data in each
data transfer stage. In fact, the major source of perfor-
mance improvement in our optimization is the identification
of the inefficiency of the ATI GPU hardware in mitigating
the latency due to remote writes. Therefore, we advocate an
explicit orchestration of data transfer between local memo-
ry and remote memory with a software pipelining approach
integrated in a programming framework, although it will in-
crease the complexity of implementing runtime system.

4. EXPERIMENT RESULTS AND ANALY-
SIS

4.1 Experimental Setup
Our experiments were performed on the heterogeneous

system comprising two Intel Xeon 5650 CPUs and one ATI
RadeonTM HD5970 GPU. Table 3 summarizes the configu-
ration parameters of our experimental platform. The CPU
provides a peak double-precision performance of 128 GFLOP-
S. Its memory system is configured with a size of 24G-
Bytes and an aggregated bandwidth of 31 GB/s. The GPU
contains two Cypress chips and provides a peak arithmetic
throughput of 928 GFLOPS (The calculation is shown be-
low) in double-precision. Its memory size is 2 GBytes and
peak memory bandwidth is 256 GB/s. The total double-
precision peak performance of the heterogeneous system is
1056 GFLOPS.

GPU performance:
928GFLOPS =

725MHz(frequency)× 2(#DoublePrecisionFPRates)
×320(#StreamCores)× 2(#chips)

Table 3: Configuration of the experimental platform
Processors Xeon X5650 RadeonTM HD5970

Model Westmere-EP Cypress

Frequency 2.66GHz 725MHz

#chips 2 2

DP 128 GFLOPS 928 GFLOPS

DRAM type DDR3 1.3GHz GDDR5 1.0GHz

DRAM size 24GB 2GB

DRAM bandwidth 31.2 GB/s 256 GB/s

PCIe2.0 x16, 8 GB/s

Programming icc + openmpi ATI Stream SDK 2.2

We evaluate multiple implementations of DGEMM on our
experimental platform, and the abbreviations are described
below in order of incremental optimizations:

• ACML-GPU: It is the ATI DGEMM library, which
uses direct pipelining strategy among work units to

381



hide the overheads caused by writing result C matrix
from remote memory to application space. The mult

kernel uses global buffer addressing mode.

• 4-stage pipelining: This is a DGEMM implementation
of Algorithm 1. It improves ACML-GPU by overlap-
ping the load operations of input matrices and using
double-buffering strategy within a work unit better
overlapping write-back of C matrix. It is realized ac-
cording to [23].

• 5-stage pipelining: This is our new implementation
that focuses on orchestrating the data placement through
the memory hierarchy. It also selects a better address-
ing mode and data placement for the output C matrix.

• HDGEMM: While the above three implementations
only exploit the arithmetic throughput of the GPU,
this one implements a hybrid DGEMM, where CPU
and GPU perform the workload cooperatively. This
is also our best DGEMM implementation. It parti-
tions matrices between the CPU and the GPU, and
adaptively balances the workload between them using
a strategy proposed in [23]. Our experiments use t-
wo processes, each comprising one computing element
(CE) (one CPU and one GPU chip).

Table 4: DGEMM matrix dimensions and the corre-

sponding storage sizes in Gigabytes used in the following

experiments, and the number of work units
X
X
X
X
X

k

GB
m=n

16384 20480 24576 28672 32768

1536 2.55 3.86 5.44 7.28 9.40

2048 2.68 4.03 5.64 7.52 9.66

4096 3.22 4.70 6.44 8.46 10.74

#workunits 6 12 12 20 24

Table 4 shows the matrices used in our experiments, with
the order (m,n,k) and corresponding size in Gigabytes. We
keep m equal to n because the difference between them has
little effect on DGEMM performance. The size of k deter-
mines the amount of data reuse during reading the input
matrices, which has a significant impact on performance.
Therefore, three values of k are used to represent three data
sets. Besides, the number of work units used in our experi-
ments is given in the last row. Since we divide matrices in m
and n dimension, the number of work units is independent
of k size. In the sections below, we give the performance
values for a particular k size by calculating the average per-
formance over all the five values of m (n). As for detailed
profiling, we always take k=2048 for example in default, and
the matrix size in x axis represents different m (n) values.

4.2 Results
We first report the overall performance of the four DGEM-

M implementations on our experimental system. Figure 8
plots the performance and efficiency with different matrix
sizes, as given in Table 4. The performance of DGEMM is
measured in terms of GFLOPS i.e. the number of floating-
point operations executed per second (in billions). Efficiency
is defined as the ratio between the performance achieved and
the machine’s theoretical peak performance.
Each group of five bars represents the corresponding per-

formance for each k value (k=1536, 2048, 4096 in the x axis)
with five m (n) values, as shown in Table 4. The number-
s on the left y axis are the floating-point performance in
GFLOPS. From bottom up the segments of each bar indi-
cate the performance increment. For each bar, the bottom
segment represents the baseline program ACML-GPU, the

second one above represents performance improvement of
the four-stage pipelining implementation over ACML-GPU,
the third one shows performance improvement of five-stage
pipelining over four-stage pipelining, the performance gains
of hybrid CPU-GPU HDGEMM are depicted on the top. For
simplicity, Figure 8 plots two efficiency lines (values shown
in the right y axis), which correspond to the best GPU-only
(5-stage-pipelining) DGEMM and HDGEMM respectively.

Our HDGEMM achieves a maximum performance of 844
GFLOPS and an efficiency of 80% (when<m,n,k>=<16384,
16384, 4096>) on the whole system with two Cypress G-
PU chips and two six-core CPUs. The 5-stage-pipelining
DGEMM reaches a maximum performance of 758 GFLOPS
and an efficiency of 82% (when <m,n,k> = <16384, 16384,
4096>) on two Cypress GPU chips. In a comparison against
ACML-GPU, our five-stage pipelined implementation im-
proves performance by a factor of 2 on average. HDGEMM
further improves performance by 10%-20% by utilizing the
computing power of multi-core CPUs.
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Figure 8: Our optimized DGEMM performance and ef-

ficiency on two GPUs and/or two CPUs

When k is fixed, all four implementations show an in-
crease in both performance and efficiency with larger ma-
trices. There are few cases with abnormal behavior (e.g.
m=n=10240). It is because the matrix size is not a multiple
of the optimal block size for data transfer and kernel execu-
tion. As we expected, comparing the average performance
among different k sizes, the performance improvement of our
five-stage pipelined implementation over ACML-GPU drops
as the matrix scale becomes larger. When k is 1536, 2048
and 4096, the speedups are 2.9X, 2.1X, and 1.9X respec-
tively. This is because the ratio of data transfer to kernel
execution decreases with larger problem size. Since our soft-
ware pipelined optimization focuses on data transfers, the
performance improvements will be more obvious when data
transfers take large portion of the implementation. On larg-
er datasets, the computation absorbs a larger fraction of the
DGEMM execution time, and the effect of data-transfer op-
timizations is less apparent. As Figure 8 shows, HDGEMM
exhibits higher performance improvements with larger ma-
trix sizes. That happens because the CPU delivers higher
performance on large matrices, increasing the overall perfor-
mance of HDGEMM.

In order to highlight the effect of the proposed optimiza-
tions in this work, we isolate sources of noise (e.g. band-
width contention, which will be reported in the next sec-
tion) that are present when multiple GPU chips are em-
ployed in the heterogeneous system. We perform experi-
ments on one GPU chip and do not assign any comput-
ing load to CPU, which is only in charge of data transfers.
Assuming k=2048, Figure 9 compares the performance of
the three GPU-only DGEMM implementations, i.e., ACML-
GPU, 4-stage pipelining, 5-stage pipelining. Compared with
ACML-GPU, the 4-stage pipelining improves performance
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by about 30% through pipelining store2 within a work unit
and reusing data.
Our 5-stage pipelining implementation improves perfor-

mance by 74% employing a better data placement, the image
addressing mode, and a finer-grained pipeline. It explicitly
leverages the DMA engine to pipeline the result write-back
stage. Finally it achieves 408 GFLOPS with an efficiency of
88% on one Cypress GPU chip. This implementation only
shows a 5% performance loss compared with an execution of
the kernel without CPU-GPU transfers (94% efficiency). It
demonstrates that our pipelining optimizations achieve al-
most complete success in mitigating data transfer latencies.
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Figure 9: Performance improvements on one GPU chip

In Section 2, Figure 3 shows that the three data transfer
stages (load1, load2, store) are responsible for about 30% of
the total execution time (statistics do not include the implic-
it data transfer store1 taking place in the mult stage). We
refine the pipelining by separating store1 from the mult. Our
approach achieves a better pipelining. In fact, after counting
the added store1 stage, data transfers account for more than
40% of the total execution time. The new execution time
fractions for each data transfer stage (load1, load2, store1,
store2) are in Figure 10. Only the data transfer stages are
given, and y axis represents the ratios between the time of
each stage and that of the total data transfer. Store1, which
takes about 55% of the total data transfer time, is the major
part of the four data transfers.
From Figure 9, the performance improvement of the five-

stage pipelining over the four-stage one is 74% on average;
this number is larger than all the data transfer percentage
of DGEMM (about 43%). This is because our optimizations
improves not only data transfers, but also the performance
of the multiplication kernel. Besides, Figure 9 shows that
our optimized DGEMM performance is quite stable through
all the matrix sizes. This property lays a good foundation
for good scalability of our DGEMM implementation on mul-
tiple chips of both CPUs and GPUs. However, the stable
trend on one GPU chip is different from that shown in Fig-
ure 8, where the HDGEMM efficiency line occurs below the
5-stage-pipelining line. We will discuss this phenomenon in
the next section.

4.3 Analysis
Usually, DGEMM in CPU’s math library can achieve a

maximal efficiency of more than 90%. Our HDGEMM im-
plementation on the heterogeneous system also achieves the
maximal efficiency of 80%, counting data transfer between
CPU and GPU. In this section we will investigate: (i) How
much optimization room is left beyond our pipelining opti-
mizations on such a heterogeneous architecture. (ii) What
about the intra-node scalability of HDGEMM when scaling
to multiple CPUs and GPUs. Note that we focus on multi-
ple GPU chips on the same board that share the same CPU
memory, because it is one trend that a heterogeneous sys-
tem integrates multiple GPU chips or cards into one board

(node). Our analysis attempts to figure out some architec-
tural constraints on the performance of our heterogeneous
algorithm. One more point to be clarified is that we are not
going to evaluate very large scale matrices distributed on
many nodes. On one hand, a call to DGEMM routine usu-
ally happens after the higher level algorithm has partitioned
the original problem size across nodes. Thus, each node
executes DGEMM independently. On the other hand, our
software pipelining optimization is customized to a tightly
coupled a CPU-GPU heterogeneous architecture. Therefore,
an evaluation on a large cluster system is out of the scope
of this paper.
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stages

4.3.1 Performance Gap
Among the five stages of the pipelining, the mult1 stage

determines the highest performance that DGEMM can achieve.
Nakasato [13] optimized the DGEMM performance and re-
ported the highest efficiency of 87% on an ATI HD5870 GPU
that uses only one Cypress chip. Through the use of the im-
age addressing mode (instead of the global buffer addressing
mode) for the result matrix write-back, we achieve a higher
efficiency of 94% on one Cypress chip.

Figure 11 compares the efficiency of themult1 kernel alone,
the 5-stage pipelining implementation on one GPU chip, the
5-stage pipelining implementation on two GPU chips, and
the HDGEMM implementation on a full system of two C-
PUs and two GPU chips. For each set of experiments, we
show the average efficiency. DGEMM invokes the mult1 k-
ernel for multiple times in every execution, and the mult1

kernel performance plotted is the average value over these
times. Our optimized kernel only reads and writes GPU lo-
cal memory, thus its performance has no relation to CPU
resources. As shown in this figure the kernel’s efficiency
is over 90% (the best one is 94%), which is comparable to
the floating-point efficiency of the CPU DGEMM library.
The difference between the kernel and 5-stage pipelining is
whether the data transfer between CPU and GPU is count-
ed. Results show that, when running on one chip, the perfor-
mance of the 5-stage pipelining implementation on one GPU
is 6% lower than the kernel running alone, due to the data
transfers. There are two reasons for the performance drop.
First, the prologue and epilogue of the pipelining cannot be
hidden, and they absorb around 3% of the total execution
time (measured in our experiments). Second, as shown in
Figure 6, there are still resource conflicts within the pipelin-
ing. During its execution, there is host memory contention
between load1 and store2, and PCIe bus contention between
load2 and store1.

When scaling within a node, contention of shared resources
will limit performance. Figure 11 shows the intra-node scal-
ability of HDGEMM with more GPUs and/or CPUs as well.
Running 5-stage pipelining DGEMM on two GPU chips (5-
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Figure 11: The scalability of our optimized DGEMM

when scaling to multiple CPUs and/or GPUs

stage-pipelining-2GPU), the efficiency drops by 11% with
respect to 5-stage-pipelining-1GPU. Moreover, when we ex-
tend DGEMM to a system with two computing elements
(HDGEMM-2CE), the efficiency further drops by 5% from 5-
stage-pipelining-2GPU. We believe that resource contention
is the main reason influencing DGEMM scalability. In the
following sections, we will focus on HDGEMM intra-node
scalability, and discuss host memory contention and PCIe
contention in more details.

4.3.2 Contention on Multiple GPUs
Many state-of-the-art heterogeneous systems include ac-

celerators (i.e., GPUs, ClearSpeed cards, Tilera) that are
attached to the CPU through a PCIe bus that resides on
the motherboard. Frequently there are multiple PCIe slot-
s, each supporting one GPU board; moreover, some GPU
boards host multiple GPU chips, e.g., the ATI RadeonTM

HD5970 and the NVIDIA Tesla S1070. It is therefore valu-
able to analyze the scalability of our design on a system
comprising multiple GPU chips.
As motherboards are concerned, the lane allocation a-

mong PCIe slots is different among models. Some moth-
erboards support x16 + x16 combination, while others only
support x8 + x8. If the combination is x16 + x16, there is
no PCIe contention between different GPU boards, thus the
intra-node scalability will not be influenced by PCIe con-
tention. However, if a lane is divided between two GPU
boards as in an x8 + x8 combination, which is more famil-
iar, the PCIe usage is the same as two chips within one GPU
board with an x16 slot.
In this paper, we focus on experimental conditions where

PCIe contention exists, i.e., multiple GPU boards affected
by the limited lane number, or multiple GPU chips within
one GPU board. It makes sense to assume that the scala-
bility on a system with multiple GPU chips on a board is
similar to the one with multiple single-chip GPUs.
Due to the limitations of our experimental platform, we

run two processes, each of which is in charge of one CPU
and one GPU chip. The experiments profile the changes in
available bandwidth from one GPU chip to two GPU chips,
and analyze bandwidth contention between the two GPU
chips to predict its scalability with more GPUs. For ease of
comparison, each process of 5-stage-pipelining-2GPU runs
with the same problem scale as that of 5-stage-pipelining-
1GPU. From Figure 6, the bandwidth contention exists on
both PCIe bus and host memory.
In order to focus on the bandwidth changes, the mea-

sured bandwidth of 5-stage-pipelining-2GPU is normalized
to that of 5-stage-pipelining-1GPU. First, we consider PCIe
contention during the execution of load2 and store1. The
reduction of average bandwidth is shown in Figure 12 with
the normalized values in the y axis. As shown in this fig-
ure, load2 and store1 only achieve 89% and 56% of the PCIe
bandwidth in 5-stage-pipelining-1GPU, respectively. We see
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Figure 12: PCIe bandwidth of 5-stage-pipelining-2GPU

normalized to that of 5-stage-pipelining-1GPU

significant a decrease in store1, caused by higher frequency
of PCIe request and larger amount of data to be transferred
(the size of C is larger than that of A and B).

As we mentioned in Section 3, while mult1 is running,
several store1 operations are executing at the same time (4
store1 stages in our implementation). During mult1 exe-
cution, the majority of PCIe bandwidth is consumed by s-

tore1, which reaches high occupancy even on one GPU chip.
Therefore, when scaling to two GPU chips, PCIe bus con-
tention becomes more severe. However, the bandwidth of
PCIe bus available in the direction from the CPU to the
GPU (load2) does not suffer as much as store1. That is be-
cause load2 is pipelined with mult1 among work units, so
that the requests on the PCIe bus are not as frequent as
store1. Besides, the size of matrices transferred by load2 is
(m + n) × k, while the size of matrix transferred by store1

is m×n. Since k is much less than n in our experiment, the
former puts less pressure on the PCIe bus.

In addition to PCIe bus contention, there is also con-
tention on the host memory, since data is copied between the
two regions of host memory (application space and remote
memory). Figure 13 shows that the relative host memory
bandwidth of load1 and store2 normalized to that of 5-stage-
pipelining-1GPU.We find that load1 and store2 drop 8% and
14% bandwidth respectively, when scaling to two GPU chip-
s. The reason is similar to that of PCIe contention, while
the bandwidth reduction is smaller, because the frequency
of store2 is much less than that of store1.

Profiling shows that stages load1, load2, store1 and store2

are almost overlapped completely with mult1 kernel in 5-
stage-pipelining-1GPU. However, the bandwidth contention
on the two GPU chips leads to an 11% efficiency loss: see
5-stage-pipelining-2GPU in Figure 11. Since two processes
contend the shared resources (PCIe bus and host memory),
some data transfers are prevented from overlapping with the
mult1 kernel. This reduces the performance. As the number
of CPU or GPU chips increases, bus requests will become
more frequent, decreasing efficiency even more because of
resource contention. Our experimental results motivate the
following two observations:

• Observation 1: Due to the contention of PCIe
bus, DGEMM hits its limitation on multiple G-
PUs with restricted number of lanes. In DGEM-
M implementation, both load2 and store1 compete for
PCIe bandwidth. As shown in Figure 10, these two
phases occupy more than 60% of the total data transfer
time. Our experimental results in Figure 12 show a sig-
nificant decrease of bandwidth and 11% performance
drop only scaling to two GPU chips. The situation
would be worse if more GPUs share PCIe bandwidth.

• Observation 2: DGEMM on multiple GPUs will
not benefit much by improving host memory
bandwidth. Although both load1 and store2 con-
sume host memory, it seems they are not quite sen-
sitive to the contention from Figure 13. Besides, their
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execution time is not the major part of the total data
transfer time (Figure 10). For a small part of appli-
cations, the usage of pinned memory would help avoid
both load1 and store2. However, it is a must that no
data rearrangement is required, and data should fit in
the limited pinned memory space. Our work proves
that data transfer overheads can also be mitigated by
algorithmic optimizations with less limitation.
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Figure 13: Host memory bandwidth of 5-stage-

pipelining-2GPU normalized to that of 5-stage-

pipelining-1GPU

4.3.3 Contention on Hybrid CPUs and GPUs
In our platform, the Intel Xeon CPU provides a peak

arithmetic throughput of 128 GFLOPS, which contributes
12% of the whole system performance. CPUs should not
be neglected when optimizing compute-intensive algorithm-
s like DGEMM. In HDGEMM, matrices are first equally
split into two parts, each of which is calculated by a dis-
tinct computing element (one CPU and one GPU). With-
in each computing element, we adopt the algorithm in [23]
to partition the workload between the CPU and the GPU.
HDGEMM-2CE improves the performance by 6% on av-
erage over 5-stage-pipelining-2GPU (see Figure 8), but its
efficiency decreases by 5% (see Figure 11). In this section
we explain why.
We profile the performance contributed only by CPU (de-

noted as CPU-HDGEMM) in Figure 14 when HDGEMM-
2CE is executed. For comparison, we run a CPU-only DGEM-
M implementation (denoted as PureCPU), which calculates
the same matrix size as CPU-HDGEMM in HDGEMM-2CE.
From this figure, CPU-HDGEMM shows a performance loss
of 22% compared to PureCPU. The comparison illustrates
that HDGEMM prevents CPU from achieving its peak com-
puting performance. We believe that CPU-HDGEMM per-
formance is influenced by the GPU operations load1 and
store2. Data transfers to/from GPU share the same appli-
cation space with CPU’s DGEMM calculation. For the same
reasons as discussed with 5-stage-pipelining-2GPU, host mem-
ory contention does not affect DGEMM performance in the
GPU part of HDGEMM-2CE. However, the sharing of ap-
plication space seriously influences DGEMM performance
when executing on CPUs. We further observe that:

• Observation 3: Host memory bandwidth is an im-
portant factor to HDGEMM performance. As
CPU arithmetic throughput increases, host memory
contention will have greater impact on the overall per-
formance of HDGEMM. Some applications might alle-
viate this contention by employing pinned memory.

Another minor reason for the efficiency degradation is the
imbalanced workload partition between CPU and GPU. In
our adopted partition strategy, a heuristic algorithm in [23]
is used to search an appropriate split ratio between CPU
and GPU, making the execution time difference less than a
threshold. We take 0.1 seconds as the threshold in this pa-
per, which is an empirically optimal value selected by multi-
ple iterations of experiments. Figure 15 plots the execution
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Figure 14: Comparison of performance that CPU con-

tributes in HDGEMM and CPU-only DGEMM

time difference between CPU and GPU in different matrix
sizes. We take CPU execution time as reference, and the
time difference is calculated by (timegpu−timecpu)/timecpu.
The slight imbalance leads to a little loss of the overall
HDGEMM performance. However, as the difference is smal-
l, the performance degradation caused by load imbalance is
not significant (about 1%).
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5. RELATEDWORK
The most related work includes both Nakasato’s kernel

optimization [13] and Yang’s software-pipelining optimiza-
tion [23]. Table 5 summarizes the optimization strategies
used in the three DGEMM programs. All the optimiza-
tions improve performance over the baseline ACML-GPU
library [2]. Until now, our DGEMM achieves the highest
performance on the heterogeneous CPU and ATI GPU ar-
chitecture. In addition, we disclose some experimental ob-
servations on the shared resources (PCIe bus and host mem-
ory) contention on a heterogeneous system.

Table 5: Comparison with [13] and [23]
Nakasato [13] Yang [23] Ours

optimizations

image addressing for C no no yes

local memory for C yes no yes

pipelining no four-stage five-stage

data reuse no yes yes

double-buffer in local

memory

no no yes

double-buffer in remote

memory

no yes yes

performance (maximal GFLOPS (floating-point efficiency))

kernel 470 (87%) 248 (53%) 436 (94%)

one GPU chip ∼300 (55%) 234 (50%) 408 (88%)

two GPU chips - 438 (47%) 758 (82%)

Some other work optimized DGEMM assuming that the
matrices have already been resident in GPU on-board mem-
ory. AMD’s Accelerated Parallel Processing Math Libraries
(APPML) v1.4 [1] in OpenCL language provides GPU-only
DGEMM kernel, according to the test our kernel is more
efficient than it. GATLAS auto-tuner in [11] makes use of
auto-tuning method to increase the portability among dif-
ferent GPU architectures and is meant to be used in realistic
applications. However, it still solves DGEMM which matri-
ces are resident in GPU on-board memory. Thus, there is
no direct way to call GATLAS in realistic applications so
far with large datasets. V. Volkov and J. Demmel imple-
mented one-sided matrix factorizations (LU, QR, etc.) on
a hybrid CPU-GPU system in [21], they divided the fac-
torization processes to CPU and GPU separately. Matrix-
matrix multiplication in that case still uses data stored in
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GPU memory without data transfer. MAGMA [14] devel-
op a dense linear algebra library similar to LAPACK [5] for
heterogeneous architecture, it has been implemented only
for NVIDIA GPU so far. Therefore, our optimizations will
provide a possible solution for MAGMA when extending to
ATI GPU. Other math library implementations for hetero-
geneous architecture include hybrid Jacobi [20], model-based
heterogeneous FFT [15], etc. Most of the work did not care-
fully optimize data transfer, but parallelized the computa-
tion on CPU with GPU computation instead. The software-
pipelining approach may be a complement to improve the
performance of hybrid libraries.

6. CONCLUSION
We analyze the state-of-the-art implementation of the DGEM-

M algorithm when running on a heterogeneous system com-
prising a CPU and an ATI GPU, and find sources of inef-
ficiency. We propose a more optimized five-stage software-
pipelined design, and provide an implementation that ex-
ploits the image addressing modes available on the ATI hard-
ware. Our design mitigates better the latencies of CPU-
GPU data transfers, delivering 408 GFLOPS (with 88%
floating-point efficiency) on one Cypress GPU chip, 758 GFLOP-
S (82% efficiency) on two Cypress GPUs (i.e., the entire
GPU board), and 844 GFLOPS (80% efficiency) on a sys-
tem comprising two Intel Westmere-EP CPUs and an ATI
RadeonTM HD5970 GPU. We show that the use of multi-
ple GPUs on the same node increases the performance but
achieves lower efficiency, due to the contention of shared
resources, in particular the PCIe bus and the host mem-
ory. We believe that hardware designers should focus on
reducing the cost of such contention instances if they desire
their hardware to achieve higher degrees of efficiency with
DGEMM-like workloads.
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