
Automatically Tuned Dynamic Programming with an

Algorithm-by-Blocks

Jiajia Li, Guangming Tan, Mingyu Chen
Institute of Computing Technology, Chinese Academy of Sciences

Email: {lijiajia,tgm,cmy}@ict.ac.cn

Abstract—As the complexity of current computer architecture in-
creases, domain-specific program generators are extensively used to
implement performance portable libraries. Dynamic programming is a
performance-critical kernel in many applications including engineering
operations and bioinformatics. In this paper, we propose an Automatically
Tuned Dynamic Programming (ATDP) to optimize performance of
dynamic programming algorithm across various architectures. First, an
algorithm-by-blocks for dynamic programming is designed to facilitate
optimizing with well-known techniques including cache and register tiling.
Further, the parameterized algorithm-by-blocks is cooperative with an
auto-tuning framework and leverages a hill climbing algorithm to search
the possible best program on a given platform. The experiments on
two x86 processors demonstrate that (i) the generated scalar programs
improve performance by over 10 times, (ii) the vector programs further
speedup the scalar ones by a factor of 4 and 2 for single-precision and
double-precision, respectively.

Index Terms—Dynamic Programming, High Performance
Computing,Algorithm-by-Blocks, Auto-tuning, SIMD.

I. INTRODUCTION

Introduction of Dynamic Programming Dynamic program-

ming (DP) is a well-known and classical technique in finding an

optimal solution among potential ones for many search and optimiza-

tion applications, such as scheduling, engineering control and VLSI

design. As an important computational kernel in high performance

computing community, DP has also been found powerful toward

solving many problems in bioinformatics, e.g. Smith-Waterman algo-

rithm for sequence alignment [1] and Zuker algorithm for predicting

RNA secondary structures [2]. Generally speaking, DP is a multistage

problem composed of many subproblems. Grama et.al. [3] presented

a classification of DP: if the subproblems located on all levels depend

only on the results from the immediately preceding levels, it is called

serial; otherwise, it is called nonserial. There is a recursive equation

called functional equation, which represents the solution to the opti-

mization problem. If a functional equation contains a single recursive

term, the DP is monadic; otherwise, if it contains multiple recursive

terms, it is polyadic. Based on this classification criteria, four classes

of DP are defined: serial monadic DP (SMDP), used in single source

shortest path and 0/1 knapsack problems; serial polyadic DP (SPDP),

used in Floyd all pairs shortest paths problem; nonserial monadic

DP (NMDP), used in longest common subsequence problem and

the Smith-Waterman algorithm; and nonserial polyadic DP (NPDP),

used in both the optimal matrix parenthesization problem and Zuker

algorithm. The DP algorithms are outlined in Table I.

Motivation Although it is difficult to find a universal way

to optimize all kinds of DP algorithms, intuitively we notice that

the structures of SPDP and NPDP are similar to a standard matrix-

matrix multiplication (MMM). However, we have to be aware of their

important differences due to data dependence in the computation.

Assume that the NPDP algorithm is implemented as three nested

loops i−j−k (Figure 1(a)), then the SPDP implementation is similar

to that, but the ranges of i, j, k are all 0, ..., n − 1. In [4] Han and

Franchetti pointed out that the k−loop of SPDP algorithm has to

be outmost, while the order of i− and j− can be exchanged. In

fact, we observe a stricter loop order of NPDP algorithm. The strict

order of loops is constrained mainly by the intrinsic data dependence

as illustrated in Figure 2(a). The calculation of each point depends

on the points on its row and column, thus the innermost loop must

be kept from moving to outside. Although the outer two-loops are

allowed to be interchanged, the loop-interchange can not be implicitly

performed by compiler, because the computation order also need to

be changed. For instance, the interchanged outer-loops of Figure 1(a)

should be i = n − 2, ..., 0; j = i, ..., n − 1 (Figure 1(b)). Therefore,

compilers or simple loop tiling algorithms for optimizing locality

on memory hierarchy can not be directly applied. Figure 2 plots the

achieved performance (MFLOPS) for the straightforward nested-loop

implementations of DP and MMM by compiler optimization on Intel

Nehalem processor. (For both programs the performance drops down

at the point of 2048 because of the effects of cache sizes.) Modern
compilers perform well for MMM, but it does not work for DP due
to its unresolved data dependence.

TABLE I
DP CLASSIFICATION

type recursive eqation time
complexity

SMDP m[i, j] = O(n2)
min1≤j≤i{m[i − 1, j], m[i − 1, j − c]}

NMDP m[i, j] = O(n2)
min{m[i, j − 1], m[i − 1, j]}

SPDP m[i, j] = O(n3)
min1≤k≤n{m[i, j],m[i,k] + m[k, j]}

NPDP m[i, j] = O(n3)
mini≤k<j{m[i, j],m[i,k] + m[k + 1, j]}

Because of high computation requirement, there have been several

proposals to accelerate these DP algorithms using specific hardware

like FPGA [5]–[8]. Depending on different algorithms and their

implementations, 10X − 100X speedups have been reported. Note

that the FPGA accelerators achieve high performance at huge cost

including hardware budget and cycles of development. Besides, the

reported speedups are often calculated by comparing to an implemen-

tation which is not good enough on conventional CPUs. Therefore,

we intend to optimize DP algorithms on general CPUs using simpler

software method, and provide a more accurate baseline for FPGA.

However, modern high performance processors are so complex that it

is extremely difficult for algorithm/program developers to reach the

peak performance. In the last decades, we have witnessed that auto-

tuning approaches have successfully boosted programs’ performance

for several domain-specific problems such as linear algebra and dis-

crete Fourier transform. The prominent examples include ATLAS [9],

FFTW [10], SPIRAL [11], UHFFT [12], OSKI [13], etc. As for

dynamic programming, there are amounts of literature on special

2010 16th International Conference on Parallel and Distributed Systems

1521-9097/10 $26.00 © 2010 Crown Copyright

DOI 10.1109/ICPADS.2010.117

452

algorithmic optimizations on specific architectures. Recently, Han

et.al. [4] have developed an automatical program generation for the

all-pairs shortest path problem, which optimized SPDP algorithm.

Their work shows a good start to speedup dynamic programming

with auto-tuning. However, due to different data dependence, their
automatic tuned framework can not be directly applied to NPDP
algorithm. Inspired by their work, we try to find out an appropriate
way to bring NPDP into the auto-tuning framework.

Our focused DP algorithm (NPDP), is extensively used in context-

free grammar recognition [14], optimal matrix chain [15], predicting

RNA secondary structures etc. In this paper, we will focus on the

NPDP used in predicting RNA secondary structures. (Without specific

comments, we will refer to DP as NPDP in the rest parts.) In RNA

secondary structures, the algorithm searches an optimal structure with

a minimal free energy. Assume that the length of a RNA sequence

is n , and the minimal free energy is m, thus the DP algorithm is

formulated as Eq. 1, where a(i) is the free energy of each RNA

and m(i, j) is the minimal free energy for a RNA sequence i...j.

So m(0, n − 1) will be the minimal free energy to form a whole

secondary structure. A straightforward implementation of DP algo-

rithm is described in Figure 1(a), which is adopted by most of current

programs (especially for bioinformatics), and considered as a baseline

for comparison in the previous work. Therefore, optimizing and auto-
tuning DP is extremely important to achieve better performance and
portability, and provide a better baseline for accelerating dynamic
programming applications, i.e. predicting RNA secondary structures.

m(i, j) =

{
mini≤k<j{m(i, j), m(i, k) + m(k + 1, j)} 0 ≤ i < j < n

a(i) j = i
(1)

dp_base
(MATRICES_TYPE X, INT n)
{

for (j=0; j<n; j++)
for (i=j; i>=0;i--){

indxj=indx[j];
ij=i+indxj;
t=X[ij];
for (k=i;k<j;k++)

t=min2(t,
X[i+indx[k]]+X[k+1+indxj]);

X[ij]=t;
}

}

dp_base
(MATRICES_TYPE X, INT n)
{

for (i=n-2; i>=0; i--)
for (j=i; i<n;i++){
indxj=indx[j];
ij=i+indxj;
t=X[ij];
for (k=i;k<j;k++)

t=min2(t,
X[i+indx[k]]+X[k+1+indxj]);

X[ij]=t;
}

}
(a) DP BASE jik (b) DP BASE ijk

Fig. 1. The naive base programs for dynamic programming and its data
dependence

Contribution For this DP algorithm, G.Tan et.al. have pre-

sented a cache-oblivious implementation, and a good idea to improve

the memory locality [16], [17]. However, there is still room for

raising performance. Meanwhile, on state-of-art architectures with

deep memory hierarchy, blocking is an efficient technique extensively

(a) Data dependence (b) Performance

Fig. 2. Data dependence and Performance achieved by compiler (icc -O3)

used in optimizing the performance. So we challenge to develop an

algorithm-by-blocks for DP with a specific data dependence in this

paper. The term of algorithm-by-blocks is refined by R. Geijn’s group

for their FLAME project [18], [19]. The approach of algorithm-by-

blocks views submatrices (blocks) as units of data, and algorithms

as operations on these blocks. The work on FLAME has shown the

advantages of programming and performance for dense linear algebra.

It is not clear how this approach can be applied to an automatically

tuned framework for high performance and portablility. This paper

demonstrates an example of cooperating algorithm-by-blocks with

auto-tuning. Specifically, the main contributions of this paper include:

• We propose an algorithm-by-blocks for dynamic programming,

which is a computational kernel in combinatorial optimization

application. By transforming data dependence, the algorithm-

by-blocks is achieved with a combination of three basic compo-

nents.

• We build an automatically tuned system for optimizing DP on

current general-purpose processors. The auto-tuning system is

driven by several architectural and algorithmic parameters to

search an optimal implementation on a given architecture. A

hill climbing search algorithm is also presented.

• The automatically tuned system for DP is evaluated on two x86
platforms—Intel Nehalem and AMD Opteron. The generated

programs run faster by over 10 times than the baseline and

the previous cache-oblivious programs. Additional optimization

with SIMD parallelism further improves the performance by 4 or

2 times for single-precision and double-precision, respectively.

Organization of this paper The rest of this paper is organized

as follows. Section II details the algorithm-by-blocks for DP in this

paper. The algorithm-by-blocks acts as the framework of the auto-

tuning system, is presented in section III. Also, the parameters are

explained and the hill climbing algorithm is presented. In section IV

we evaluate performance of the generated programs by an experi-

mental approach on two x86 processors. Finally, section V concludes

this paper.

II. AN ALGORITHM-BY-BLOCKS FOR DYNAMIC PROGRAMMING

The main loop of a dynamic programming program is to fill an

array called DP table (matrices). Therefore, a key issue is about how

to partition the DP table. Although the DP formulation (Eq. 1) appears

to be similar to the relation in matrix multiplication, special data

dependence of DP prevents us from directly applying the conventional

blocking strategies to the DP table. Looking at Figure 3(a), we

partition the table into ten blocks. The left table represents a direct

partition without challenging the inherent data dependence. In the

following context, let’s denote the table and its sub-matrices at row

i column j to be X and X(i, j), respectively. (The row and column

are corresponding to the submatrices.) We refer to the sum of two

elements or sub-matrices as paring. There are two flaws in this

partition of the blocking algorithm:

• The calculation of X(1, 3) depends on

{X(1, 1), X(1, 2), X(2, 3), X(3, 3), X(1, 3)}. The lines in

Figure 3(a) depict the data dependence for calculating one

element (the colored solid point). Assume that we are calculating

the intermediate results of X(1, 3) using {X(1, 1), X(1, 3)},

and all blocks are fit in cache. Due to the data dependence,

the right-most column of X(1, 1) must read the top-most row

of X(2, 3), which may not be in cache. Thus we have to

load X(2, 3) into cache. Unfortunately, this extra operation

may increase working set and incur the side-effect of cache

453

replacement, which hurts the effective memory bandwidth and

increases latency. There exists the same case for the pair of

{X(1, 2), X(2, 3)}.

• We refer to data dependence among different blocks as cross-
block dependence. The divide-and-conquer algorithm is expected

to operate on a pair of blocks as a recursive sub-problem

independently. However, the cross-block dependence violates

this rule.

An alternative solution is to replicate the elements along boundary of

a block at the cost of extra memory overhead. Another more clever

trick is to add “ghost” elements along diagonal as shown in right

table in Figure 3(a). The original domain is logically enlarged to a

virtual domain. The partition is performed on the virtual domain so

that cross-block dependence is eliminated. In fact, mathematically the

transformed DP formulation is represented as:

m(i, j) =

{
mini+1≤k<j{m(i, j), m(i, k) + m(k, j)} 0 ≤ i < j < n′

a(i) j ≤ i + 1
(2)

where n′ is the size of the virtual domain. Note that, to make sure

the calculation is right, the item m(k + 1, j) in Eq. 1 is changed into

m(k, j), meanwhile the cross-block dependence is resolved. Without

loss of generality, assume that n′ is a power of two. In a real

implementation, it is easy to avoid “physical” cost (computation

and memory) of “ghost” elements through simple control statements

(e.g.,branch instructions) with almost zero overhead.

1 2 3 4 1 2 3 4

1

2

3

4

1

2

3

4 T2T

RR2R
TT2R

X11 X12 X13

X23

X11 X13

X33

(a) (b)

Fig. 3. (a). The partition strategies of dynamic programming table. The dark
nodes in the right picture are “ghost” ones. (b). The basic components for
calculating a sub-matrices. It also shows an example for X(1, 3) in (a).

The basic arithmetic operations involved in filling DP table are

addition and minimum. Since both operators are associative, it

is obvious that Eq. 2 is also associative. Based on the partition

framework in Figure 3, we observe that the computation of each

block is a combination of three components.

• C = T2T(C), where C is self-contained triangular matrices,

and C is directly filled following the original definition of DP

formulation Eq. 1, i.e. T2T is a kind of implementation of DP

algorithm. But when come to the algorithm-by-blocks, they are

different. The naive program of T2T is in Figure 1(a). Obviously,

all sub-matrices along diagonal belong to this component.

• C = RR2R(C, A, B), where A, B, C are rectangular matrices and

A, B contain their final values. X(1, 3), X(1, 4), X(2, 4) need this

type of module to calculate their intermediate results,

e.g. X(1, 3) = RR2R(X(1, 3), X(1, 2), X(2, 3)). The naive base

program is in Figure 4(b).

• C = TT2R(C, A, B), where C is rectangular matrices and trian-

gles A, B contain their final values. All sub-matrices off diagonal

need this component to get their final values, e.g. X(1, 3) =

TT2R(X(1, 3), X(1, 1), X(3, 3)). The naive base program is in

Figure 4(a).

Because of the data dependence between blocks, we need to

take care of the order of the three components above. For instance

in Figure 3(b), when filling X(1, 3) the computation order should

tt2r_base
(MATRICES_TYPE X, INT n)
{

for (j=n/2; j<n; j++)
for (i=n/2-1; i>=0;i--){
indxj=indx[j];
ij=i+indxj;
t=X[ij];
for (k=i;k<j;k++)
t=min2(t,

X[i+indx[k]]+X[k+1+indxj]);
X[ij]=t;

}
}

rr2r_base(MATRICES_TYPE C,
MATRICES_TYPE A,
MATRICES_TYPE B,INT n) {

for(i=0;i<n;i++)
for(j=0;j<n;j++){
t=C[i+indx[j]];
for(k=0;k<n;k++)
t=min2(t,

A[i+indx[k]]+B[k+indx[j]]);
C[i+indx[j]]=t;

}
}

(a) TT2R BASE (b) RR2R BASE

Fig. 4. The naive base programs for TT2R BASE and RR2R BASE

follow the sequence:

T2T(X(1, 1)), T2T(X(3, 3), RR2R(X(1, 3), X(1, 2), X(2, 3)),

TT2R(X(1, 3), X(1, 1), X(3, 3))

where there is no order requirement between two T2T operations.

Before discussing algorithm-by-blocks for the three components, we

describe an algorithmic framework DP for filling the entire DP table

block-by-block in Figure 5(a). The algorithm partitions the table

into ten sub-matrices as shown in the right table Figure 3(a), and

calculates the blocks along each diagonal.

Algorithm: DP(MATRICES_TYPE X)
{

Partition X →

⎛
⎜⎝

X(1, 1) X(1, 2) X(1, 3) X(1, 4)

X(2, 2) X(2, 3) X(2, 4)

X(3, 3) X(3, 4)

X(4, 4)

⎞
⎟⎠

X(i,i)=T2T(X(i,i)), i=1,2,3,4

X(1,2)=TT2R(X(1,2), X(1,1),X(2,2))

X(2,3)=TT2R(X(2,3), X(2,2),X(3,3))

X(1,3)=RR2R(X(1,3), X(1,2),X(2,3))

X(1,3)=TT2R(X(1,3), X(1,1),X(3,3))

X(3,4)=TT2R(X(3,4), X(3,3),X(4,4))

X(2,4)=RR2R(X(2,4), X(2,3),X(3,4))

X(2,4)=TT2R(X(,24), X(2,2),X(4,4))

X(1,4)=RR2R(X(1,4), X(1,3),X(3,4))

X(1,4)=RR2R(X(1,4), X(1,2),X(2,4))

X(1,4)=TT2R(X(1,4), X(1,1),X(4,4))

}

Algorithm:
T2T(MATRICES_TYPE C)
{

Partition C →

(
C(1, 1) C(1, 2)

C(2, 2)

)
C(i,i)=T2T(C(i,i)), i=1,2

C(1,2)=TT2R(C(1,2), C(1,1),C(1,2))

}

Algorithm: TT2R(MATRICES_TYPE

C,

MATRICES_TYPE A,

MATRICES_TYPE B)

{
Repartition the combined matrices of

C, A, B according to Eq. 3

X(2,3)=TT2R(X(2,3), X(2,2),X(3,3))

X(1,3)=RR2R(X(1,3), X(1,2),X(2,3))

X(1,3)=TT2R(X(1,3), X(1,1),X(3,3))

X(2,4)=RR2R(X(2,4), X(2,3),X(3,4))

X(2,4)=TT2R(X(,24), X(2,2),X(4,4))

X(1,4)=RR2R(X(1,4), X(1,3),X(3,4))

X(1,4)=RR2R(X(1,4), X(1,2),X(2,4))

X(1,4)=TT2R(X(1,4), X(1,1),X(4,4))

}
(a) (b)

Fig. 5. The algorithm-by-blocks framework

Note that when calculating each output element value, there’s no

data dependence in RR2R(C, A, B), that is, both A and B are not paring

with C. Therefore, it is not difficult to develop a block algorithm. (The

details will be discussed in the next section.) However, such output

454

data dependence is observed in T2T(C) and TT2R(C, A, B), e.g. both

X11 and X33 are paring with X13 in Figure 3(b). Here we derive

block algorithms based on properties of T2T and TT2R.

First, given an undefined sub-matrices C, the computation of

T2T(C) is in Figure 5(b). Then, we repartition the sub-matrices to

find out more recursive sub-problems in TT2R. Like the algorithm

described in Figure 5(b), the sub-matrices which TT2R(C, A, B)

operates on is repartitioned into ten sub-matrices:

(
A C

B

)
→

⎛
⎜⎝

A(1, 1) A(1, 2) C(1, 1) C(1, 2)

A(2, 2) C(2, 1) C(2, 2)

B(1, 1) B(1, 2)

B(2, 2)

⎞
⎟⎠ (3)

=

⎛
⎜⎜⎝

X(1, 1) X(1, 2) X(1, 3) X(1, 4)

X(2, 2) X(2, 3) X(2, 4)

X(3, 3) X(3, 4)

X(4, 4)

⎞
⎟⎟⎠ (4)

According to the definition of TT2R,

X(1, 1), X(1, 2), X(2, 2), X(3, 3), X(3, 4), X(4, 4) are known, and

C, insteaded by the sub-matrices X(1, 3), X(1, 4), X(2, 3), X(2, 4),

is unknown. It is easy to deduct that these sub-matrices can be

recursively solved using TT2R. Its recursive algorithm with blocks

is described in Figure 5(b).

III. AUTOMATICALLY TUNING WITH PARAMETERS

In order to implement an automatically tuned system for perfor-

mance optimization and portablility, a parameterized variant of the

proposed algorithm-by-blocks is crucial. Typically, the performance

critical parameters including several features of an architecture,

e.g. cache, TLB, register and pipeline [9]. For simplicity, current

experimental work only takes cache and register parameters into con-

sideration. In this section, we first build a parameterized algorithm-

by-blocks for DP, then describe an architecture and search algorithm

of the automatically tuned system.

A. Parameterized Algorithm-by-Blocks

Again we naturally focus on the three components T2T, TT2R, RR2R,

since they are the major parts of program execution. Note that, for

a program executed on memory hierarchy, tiling is the most efficient

technique to improve its performance and is extensively used in other

automatically tuned systems, like ATLAS [9]. So, we are also closely

following this approach. Since in our algorithmic framework both

T2T and TT2R are recursive, the parameterization is applied to the

depth of recursion. The consideration of recursive depth is mainly

driven by overhead of a recursive function call on current computers.

Therefore, we set two parameters ndiv_t2t and ndiv_tt2r to

be the stopping criterions for T2T and TT2R, respectively.

Tiled TT2R: When the recursive T2T stops, it calls the function

TT2R BASE to calculate the rectangular sub-matrices. Note

that TT2R is recursive and satisfies the condition of cache-

oblivious algorithm [17], the parameter ndiv_tt2r natu-

rally achieves tiling for cache hierarchy. The register tiling

is achieved by unrolling the nested loops. It is shown

in Figure 6(a) and is parameterized by unrolling factors

U ′i, U ′j, U ′k. Note that the innermost loop k can not be

changed to outer ones due to the data dependence.

Tiled T2T: This case is similar to TT2R and the same idea can be

applied to it. The recursive stopping function is DP BASE.

In fact, the program DP BASE is almost the same with

tt2r_tile
(MATRICES_TYPE X, INT n)
{
for (j=n/2; j<n; j+=U’j)
for (i=n/2-1; i>=0;i-=U’i)
for (j’=j;j’<j+U’j;j++)
for (i’=i;i’>i-U’i;i’--){
indxj’=indx[j’];
i’j’=i’+indxj’;
t=X[i’j’];
for (k=i’;k<j’;k+=U’k)
for (k’=k;k’<k+U’k;k’++)

t=min2(t, X[i’+indx[k’]]
+X[k’+1+indxj’]);
X[i’j’]=t;

}
}

rr2r_tile(MATRICES_TYPE C,
MATRICES_TYPE A,
MATRICES_TYPE B, INT n)
{
for(i=0;i<n;i+=Ui)
for(j=0;j<n;j+=Uj)
for(k=0;k<n;k+=Uk)
for(k’=k;k<k+Uk;k’++)
for(i’=i;i’<i+Ui;i’++)
for(j’=j;j’<j+Uj;j’++){

C[i’+indx[j’]]=
min2(t,A[i’+indx[k’]]

+B[k’+indx[j’]]);
}

}

(a) TT2R TILE (b) RR2R TILE

Fig. 6. The register tiling programs for TT2R BASE and RR2R BASE

TT2R BASE except the boundaries of the outer two-loops

are different. We can get T2T TILE by taking a minor

modification to TT2R TILE (For simplicity of presentation,

we omit the codes of T2T TILE).

Tiled RR2R: This component occupies most of the program execu-

tion time. Fortunately, the proposed algorithm-by-blocks in

the previous section removes the data dependence between

C and A, B for RR2R(C, A, B). That is to say, A, B, C are

mutually distinct, so that we can arbitrarily reorder the

nested loops and introduce full tiling. Figure 6(b) shows

the fully tiled program. Based on the property of cache-

oblivious, both TT2R and T2T are naturally adaptive to

cache hierarchy. Note that the structure of RR2R is the same

with a standard matrix-matrix multiplication (MMM), and

K.Yotov et.al. [20] pointed out that cache-conscious MMM

outperforms its cache-oblivious counterpart, so we adopt

two levels cache tiling (L1 and L2 cache). For simplicity

we only present the algorithm with L1 cache tiling, and the

L2 cache version can be easily derived from the L1 one.

Figure 7 describes the pseudocodes. Within RR2R L1, the

argument tile of size N is divided into tiles of size L1. Thus,

we should replace all RR2R with RR2R L1 or RR2R L2 based

on profile information in the automatically tuned system.

rr2r_l1
(MATRICES_TYPE C, MATRICES_TYPE A,
MATRICES_TYPE B, INT n,
INT L1) {
//A(i,j):
//L1xL1 sub-matrix (i,j) of A, i.e.,
//A[(i-1)*L1+1:i*L1][(j-1)*L1+1:j*L1];
M=n/L1;
for(k=0;k<M;k++)
for(j=0;j<M;j++)

for(i=0;i<M;i++)
rr2r_tile(C(i,j),A(i,k),B(k,j),L1);
}

Fig. 7. The L1 cache tiling programs for RR2R

In addition to cache/register tiling optimization, general-purpose

processors and recent accelerators like CELL [21] and GPGPU [22],

support single-instruction multiple-data (SIMD) execution. We extend

our auto-tuning system to produce SIMD vector codes. Denote the

vector length to be v, we observe that only three elementary vector

operations are required.

• vadd(a,b): element-wise addition of vectors a and b.

• vmin(a,b): element-wise minimum of vectors a and b.

455

• vdup(a): creates a length-v vector that contains the value of the

scalar a in all vector elements.
For example, the innermost loop in RR2R TILE is vectorized as:

for (j’=j; j’<j+Uj;j+=v)
C[i’][j’...j’+v-1]=vmin(C[i’][j’...j’+v-1],

vadd(vdup(A[i’][k’]), B[k’][j’...j’+v-1]))
)

DP

T2T TT2R RR2R

T2T TILE_ TT2R TILE_ RR2R L2_

RR2R L1_

RR2R_TILE

ndiv t2t_ ndiv tt2r_

L2

L1

Ui Uj Uk, ,

ndiv tt2r_

RR2R L2_

RR2R L1_

RR2R_TILE

L2

L1

Ui Uj Uk, ,

U i U j U k' , ' , 'U i U j U k' , ' , '

user

input

search

engine

code

generator source

code

&execution measure

n

v

algo

ndiv t2t_

ndiv tt2r_

(, ,)Ui Uj Uk

(' , ' , ')U i U j U k

L1

L2

(a) Parameterized DP algorithms with block. (b) Architecture of the ATDP system.

Fig. 8. The naive base programs for dynamic programming and its data
dependence

Figure 8(a) depicts the parameterized DP with blocks. It shows the

different algorithmic components, their recursive structures, and their

parameters: U∗ are unrolling/tiling parameters, L∗ are cache tiling

parameters, ndiv∗ are recursive stopping criterions. The branches of

T2T → T2T TILE and TT2R → TT2R TILE are recursive steps. A rule of

thumb for cache-oblivious algorithm indicates that ndiv∗ are selected,

so that the working sets fit in cache. The automatically tuned system

sets the initial values of ndiv∗ to be L1 cache size and L2 cache

size, respectively. Table II summarizes the parameters used in the

auto-tuning system.

TABLE II
INPUT PARAMETERS TO THE AUTOMATICALLY TUNED SYSTEM.

Parameters Description
n problem size (user input)
v SIMD vector length (user input)

algo T2T, TT2R, RR2R
ndiv t2t recursive base of T2T
ndiv tt2r recursive base of TT2R

(Ui,Uj,Uk) Unrolling factors for RR2R TILE
(U’i,U’j,U’k) Unrolling factors for T2T TILE and TT2R TILE

L1 level-1 tile size
L2 level-2 tile size

B. Automatically Tuning

Figure 8(b) shows the diagram of our Automatically Tuning for

DP (ATDP), which is similar to other systems like ATLAS. The

auto-tuning system takes user-specified parameters into its search

engine, which selects a parameter set described in Table II. Based

on the selected parameters, a code generator outputs source codes.

The tuning system is a feedback loop, where the generated programs

are measured and the performance results drive the search engine

to iteratively generate an alternative implementation until the best

program is found out.

The heart of the auto-tuning system is the search engine. An

exhaustive search is not practical, due to the explosive parameter

space. We leverage the hill climbing search algorithm proposed in [4]

to speed up the search engine. The basic idea of such search algorithm

is to find a reasonable choice of parameters first, then use hill

climbing to further refine the parameters. The search algorithm is

described in Figure 9.

Initial guess: Since there exists similarity among the components,

it is reasonable to assume that the best unrolling parameters

for different components and input sizes would be similar,

//Step 1: Initial guess of unrolling parameters
(a) Find best (Ui,Uj,Uk) for rr2r_tile with N=64;
(b) Find best
(U’i,U’j,U’k) for t2t_tile and tt2r_tile with N=64;
//Step 2: Optimize T2T
(a) Set (U’i,U’j,U’k) as found in Step1(a);
(b) Set ndiv_t2t to an analytical estimate;
(c) Refine (ndiv_t2t,U’i,U’j,U’k) by hill climbing;
//Step 3: Optimize RR2R_L1
(a) Set (Ui,Uj,Uk) as found in Step1(a);
(b) Set L1 to an analytical estimate;
(c)Refine(L1,Ui,Uj,Uk) by hill climbing;
//Step 4: Optimize RR2R_L2
(a) Set (Ui,Uj,Uk) as found in Step1(a);
(b) Set (L1,L2) to an analytical estimate;
(c) Refine (L1,L2,Ui,Uj,Uk) by hill climbing;
//Step 5: Optimize TT2R
(a) Set (U’i,U’j,U’k) as found in Step1(a);
(b) Set (L1,L2,Ui,Uj,Uk) as found in Step4(c);
(c) Set ndiv_tt2r to an analytical estimate;
(d) Refine (ndiv_tt2r,L1,L2,Ui,Uj,Uk,U’i,U’j,U’k)

by hill climbing;

Fig. 9. Outline of the search engine.

though may not be the same. Based on empirical results of

other auto-tuning system [4], [9]–[11], we choose a problem

size of n = 64(The whole matrices can be held in L1cache)

and set Uk = 1. Because the problem size is small, we

search exhaustively by considering all unrolling parameters

(Ui, Uj) with 1 ≤ Ui ≤ 16 and 1 ≤ Uj ≤ 64 (two-powers

only). Finally we search all possible 1 ≤ Uk ≤ 64 (two-

powers only) with the best (Ui, Uj). The same approach is

adaptive to search (U ′i, U ′j, U ′k).

Optimize T2T: This component is actually a recursive proce-

dure defined by the DP formulation. It is a “pure”

cache-oblivious algorithm, therefore, ndiv_t2t is set to

make the sub-matrices fit L1 cache. Let’s denote the i-th

level cache size to Ci (i=1,2), ndiv_t2t should satisfy

ndive t2t ≤
√

2 × C1/DATATY PE (DATATYPE: the

datatype (single/double-precision) of elements in matrices).

Optimize RR2R_L1 and RR2R_L2: Inspecting the definition

of RR2R shows that the working set is at most

the sum of three sub-matrices. Therefore, in Step

4, we set L1 ≤
√

C1/(3 × DATATY PE). Step 5

sets L1 ≤
√

C1/(3 × DATATY PE) and L2 ≤√
C2/(3 × DATATY PE).

Optimize TT2R: Although it is also a recursive procedure, it

contains RR2R as a sub-routine. Since RR2R considers L2

cache tiling, ndiv_tt2r is expected to initially satisfy

ndive tt2r ≤
√

2 × C2/DATATY PE.

TABLE III
MACHINE CONFIGURATION FOR THE PLATFORMS USED FOR

EXPERIMENTS.

Parameter Intel Nehalem AMD Opteron
clock rate 2.4Ghz 1.9GHz
L1 data cache 32KB 64KB
L2 cache 256KB 512KB
Compiler icc -O3 gcc -O3

IV. PERFORMANCE EVALUATION

In this section we report performance results on our automatically

tuned system for generating DP codes. Our experiments are con-

ducted on two commercial general-purpose processors–Intel Nehalem

456

and AMD Opteron. Table III summarizes the architectural parameters

and software environment in the auto-tuning framework. As input to

the generated DP algorithms, we generate triangular matrices with

random floating-point number, since the computational behaviors

have nothing to do with the actual values. The problem size n (one

dimension length of the matrix), is constrained to be a power of two in

range 1024 ≤ n ≤ 8192. When n ≥ 1024, there exists data tranfered

from memory, thus we can measure the algorithm-by-blocks with

cache optimization better. As for the performance measure, we use the

million floating-points per second (MFLOPS), which is extensively

used in high performance computing applications. The number of

floating-point operations (#flops) is calculated by #flops = n3−n

3
.

Let’s denote execution time of a generated DP program to be t, its

MFLOPS is calculated by MFLOPS = n3−n

3t
.

A. Experiment Setup

Because cache-oblivious model is an important approach for

improving performance through memory hierarchy [23]. Cache-

oblivious shows its algorithmic elegance for designing a cache effi-

cient algorithm with a theoretically optimal I/O complexity. However,

K. Yotov et.al. [20] found that cache-oblivious programs are defeated

by cache conscious ones for dense linear algebra, even though

the cache-oblivious programs are highly optimized. On one hand,

our practice on DP echo the view of them by comparing with a

cache-oblivious program. On the other hand, our algorithm-by-blocks

successfully leverage a divide-and-conquer, which is a principle

way to design cache-oblivious algorithms, to build the auto-tuning

framework. We compare the performance of four different algorithm

implementations, one of which are cache-oblivious algorithms with

register tiling described in [17].

• dpLOOP: It is a three-nested-loops implementation as shown

in Figure 1(a), according to DP’s definition. As explained in

previous sections, the three loops can not be simply interchanged

based on the direct loop iteration.

• dpTILING: It is the cache-oblivious algorithm with register

tiling optimization. The naive cache-oblivious algorithm model

does not consider register optimization. Considering that there

exists unrolling loops for register in our tuning system r, we also

implement register tiling optimization for the original cache-

oblivious algorithm.

• atdpS: In order to identify the effect of vector instructions,

the automatically tuned system generates two versions of DP

program. The basic version is a scalar algorithm.

• atdpV: This program is generated with SIMD instructions

provided by the underlying machine, e.g. SSE instruction set.

SSE instructions operate 4-way 32-bit values or 2-way 64-bit

values on the target platforms. The v_add and v_min are

implemented with addps(addpd) and minps(minpd) of SSE

instructions.

In the following context, we refer to dpLOOP and dpTILING as

reference programs.

B. Experiment Results

The experiment results are reported in terms of performance and

sensitivity of ATDP system. We first perform an analysis of floating-

point performance of the generated programs. Then the sensitivity to

tuning parameters (cache/register) is also presented.

1) Performance: Figure 10 measures the performance comparison

of the four programs on two x86 platforms. The generated optimal

codes achieve higher MFLOPS (higher is better) than the reference

programs. As the problem size increases to 8192, the MFLOPS of the

(a) Intel Nehalem (icc). (b) AMD Opteron (gcc).

Fig. 10. Performance comparison. The figures show MFLOPS for single-
precision (float) and double-precision (double) on two x86 processors.

reference program decreases. Although the cache-oblivious algorithm

with register tiling improves the performance by about two times,

the improvement is little when the problem size increases to 4096.

The scalar codes, generated by our auto-tuning system, improve the

MFLOPS by about 10 times depending on different problem sizes.

The performance results are consistent with matrix multiplication

performance observed by K.Yotov [20], who claimed that even highly

optimized cache-oblivious programs perform significantly worse than

corresponding cache conscious programs. The vector programs fur-

ther improve the performance. We also observe that the increasing

problem sizes have little effect on the performance of the scalar

programs, however the vector programs achieve better performance

on larger problem sizes. When the problem size comes to 8192, the

program achieves speedup over the naive program by a factor of 40

(20) for single-precision (double-precision) floating-point operations.

In order to give in-depth analysis of the performance improvement,

we measure the cache performance of various algorithms. We use

Oprofile to collect samples of L1 cache and L2 cache misses during

the execution of the programs. Figure 11 plots the number of both

L1 and L2 cache misses. The trend of cache misses coincides with

the MFLOPS performance as shown in Figure 10. As for dpLOOP

and dpTILING, when the problem size increases to 8192, the cache

performance of the reference programs becomes worse and worse.

Through auto-tuning with cache parameters, the increasing problem

sizes have little negative effect on cache performance. The plot lines

of atdpS and atdpV are almost flat and overlapped.

(a) L1 cache misses. (b) L2 cache misses.

Fig. 11. Comparison of L1 and L2 cache performance.(The lines of atdpS
and atdpV are overlapped.)

Note that the programs relatively achieve lower performance on

457

AMD Opteron. One reason is the gcc compiler, which is expected

to perform worse than Intel compiler (icc) on Intel Nehalem. In

fact, comparing the performance of programs compiled by icc
and gcc on Intel Nehalem, we observe that degradations caused

by gcc are 9.48%, 15.41%, 20.18%, 24.21% for the problem sizes

of 1024, 2048, 4096, 8192, respectively. Another factor is the higher

memory bandwidth provided by Intel Nehalem (32GB/s vs 21.2GB/s

), since the ratio of arithemetic operations to memory operations

(which is referred to as arithmetic intensity in some literature) is

1 : 2 (See Eq. 1), which means that DP is a more memory-

bound algorithm. The low arithmetic intensity also implies that it

is difficult to achieve performance as high as MMM. As we see

in Figure 10, we only achieve 33% and 42% of the peak Floating-

point computing power, respectively. That is probably because we

do not conduct any optimization on data layout of the DP matrices.

The programs use either column- or row-wise to store the triangular

matrices, and another index array to orientate the start address of

each column or row. Thus, the memory access is not so regular as

that in MMM with rectangular matrices. In view of the algorithm-

by-blocks implemented recursively, to obtain better performance, we

may utilize Z-Morton [24] data layout to store the DP matrices in

the future.

(a) Intel Nehalem. (b) AMD Opteron.

Fig. 12. Improvement of the two levels of cache over one level of cache for
scalar and vector codes.

2) Sensitivity: Note that the tuning system exploits locality for

two levels of caches, we generate a L1 cache block algorithm

for evaluating the benefits of the secondary level of cache block.

Figure 12 plots speedups of the combined L1 and L2 cache block

optimized programs over only L1 cache block ones. The two levels

of cache block algorithms improve performance by 15% on average.

For both scalar and vector codes, the two levels of cache block show

more advantages with the increasing problem sizes.

(a) Intel Xeon. (b) AMD Opteron.

Fig. 13. The sensitivity of performance to Ui, Uj and Uk for problem sizes
of 1024 and 2048.

Figure 13 shows sensitivity to register parameters (Ui, Uj, Uk).

There exist some points which are better than the “optimal” ones by

hill climbing. In fact, in order to achieve parameters sets performance

better near optimal, the search engine should generate good enough

parameters in Step 1(Figure 9). In view of the better points, we may

generate more than one parameters sets in initial guess to improve

performance. On the other hand, as we see in Figure 13, the sensitivity

of Ui, Uj, Uk is not so strong, it means that using local search

methods like hill climbing is still acceptable.

C. Experiment Summary

As mentioned above, compared to both straightforward nested-

loop and cache-oblivious programs, the programs generated by ATDP

improve performance by more than 10 times for scalar programs.

Moreover, when come to vector programs with SIMD parallelism, the

performance advances further 4 or 2 times for single/double-precision

respectively. As for sensitivity, we can see the use of L2 cache can

further advance the performance by 15% on average. And, though

the hill climbing search in auto-tuning couldn’t find the optimal

parameter set all the time, the “best” one found by the hill climbing

can also achieve near optimal performance. In short, our ATDP is

effective to auto-tune the Dynamic Programming in predicting RNA

secondary structures.

V. CONCLUSION

In this paper we implement an automatically tuned system for

a dynamic programming algorithm—Automatically Tuned Dynamic

Programming (ATDP) on general-purpose processors. The cores of

ATDP consist of an algorithm-by-blocks and a search engine with

architectural and algorithmic parameters. Compared to both straight-

forward nested-loop and cache-oblivious programs, the programs

generated by ATDP improve performance by more than 10 times

(further 4 or 2 times with SIMD parallelism). We believe that

automatically tuned methods are the future, at least for domain-

specific programs. This paper expands the auto-tuning area to NPDP,

the most difficult Dynamic Programming problem, and shows that

auto-tuning for all types of Dynamic Programming is not far. The

future work will extend ATDP to multi-core architectures with thread

level parallelism, and develop a universal auto-tuning framework

for all the four types of Dynamic Programming algorithms (SMDP,

NMDP, SPDP and NPDP).

VI. ACKNOWLEDGMENT

This research is supported by National Natural Science Foun-

dation of China (No.60803030, No.60633040, No. 60925009, No.

60921002) and Chinese Academy of Sciences (No.KGCX1-YW-13).

REFERENCES

[1] T. Smith and M. Waterman, “Identification of common molecular
subsequences,” Journal of Molecular Biology, vol. 147, no. 1, pp. 195–
197, 1981.

[2] R. B. Lyngso and M. Zuker, “Fast evaluation of internal loops in rna
secondary structure prediction,” Bioinformatics, vol. 15, no. 6, pp. 440–
445, 1999.

[3] A. Grama, A. Gupta, G. Karypis, and V. Kumar, Introduction to Parallel
Computing. Addison Wesley, 2003.

[4] S.-C. Han, F. Franchetti, and M. Püschel, “Program generation for
the all-pairs shortest path problem,” in PACT ’06: Proceedings of the
15th international conference on Parallel architectures and compilation
techniques. New York, NY, USA: ACM, 2006, pp. 222–232.

[5] T. Oliver and B. Schmidt, “High performance biosequence database
scanning on reconfigurable platforms,” in IEEE International Parallel
and Distributed Processing Symposium, 2004.

[6] P. Zhang, G. Tan, and G. R. Gao, “Implementation of the smith-
waterman algorithm on a reconfigurable supercomputing platform,” in
HPRCTA ’07: Proceedings of the 1st international workshop on High-
performance reconfigurable computing technology and applications.
New York, NY, USA: ACM, 2007, pp. 39–48.

458

[7] Y. Dou, F. Xia, and J. Jiang, “Fine-grained parallel application specific
computing for rna secondary structure prediction using scfgs on fpga,”
in CASES ’09: Proceedings of the 2009 international conference on
Compilers, architecture, and synthesis for embedded systems. New
York, NY, USA: ACM, 2009, pp. 107–116.

[8] A. Jacob and J. Buhler, “Accelerating nussinov rna secondary structure
prediction with systolic arrays on fpgas,” in International Conference on
Application-specific Systems, Architectures and Processors (ASAP’08),
2008, pp. 191–19.

[9] J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes, A. Petite, R. Vuduc,
C. Whaley, and K. Yelick, “Self adapting linear algebra algorithms
and software,” in the IEEE. Special Issue on “Program Generation,
Optimization, and Adaptation”, pp. 276–292.

[10] M. Frigo and S. G. Johnson, “The design and implementation of fftw3,”
in the IEEE. Special Issue on “Program Generation, Optimization, and
Adaptation”, pp. 216–231.

[11] M. Pschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. W.
Singer, J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. W.
Johnson, and N. Rizzolo, “Spiral: Code generation for dsp transforms,”
in the IEEE. Special Issue on “Program Generation, Optimization, and
Adaptation”, pp. 232–275.

[12] A. Ali, L. Johnsson, and J. Subhlok, “Scheduling fft computation on
smp and multicore systems,” in ICS ’07: Proceedings of the 21st annual
international conference on Supercomputing. New York, NY, USA:
ACM, 2007, pp. 293–301.

[13] R. Vuduc, J. Demmel, and K. Yelick, “Oski: A library of automatically
tuned sparse matrix kernels,” Proceedings of SciDAC 2005, Journal of
Physics: Conference Series, June 2005, 2005.

[14] G. K. Pullum and G. Gazdar, “Natural languages and context-free
languages,” Linguistics and Philosophy, pp. 471–502, 1982.

[15] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 2nd ed. Cambridge, MA: MIT Press, 2001.

[16] G. Tan, S. Feng, and N. Sun, “Locality and parallelism optimization
for dynamic programming algorithm in bioinformatics,” in SC ’06:
Proceedings of the 2006 ACM/IEEE conference on Supercomputing.
New York, NY, USA: ACM, 2006, p. 78.

[17] ——, “Cache oblivious algorithms for nonserial polyadic dynamic
programming,” The Journal of Supercomputing, vol. 39, no. 2, pp. 227–
249, 2009.

[18] J. A. Gunnels, F. G. Gustavson, G. M. Henry, and R. A. van de
Geijn, “FLAME: Formal Linear Algebra Methods Environment,” ACM
Transactions on Mathematical Software, vol. 27, no. 4, pp. 422–455,
Dec. 2001. [Online]. Available: http://doi.acm.org/10.1145/504210.
504213

[19] G. Quintana-Ortı́, E. S. Quintana-Ortı́, R. A. van de Geijn, F. G. V. Zee,
and E. Chan, “Programming matrix algorithms-by-blocks for thread-
level parallelism,” ACM Transactions on Mathematical Software, vol. 36,
no. 3.

[20] K. Yotov, T. Roeder, K. Pingali, J. Gunnels, and F. Gustavson, “An exper-
imental comparison of cache-oblivious and cache-conscious programs,”
in SPAA ’07: Proceedings of the nineteenth annual ACM symposium on
Parallel algorithms and architectures. New York, NY, USA: ACM,
2007, pp. 93–104.

[21] M. Gschwind, P. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe, and
T. Yamazaki, “Synergistic processing in cell’s multicore architecture,”
IEEE Micro, pp. 10–24, March 2006.

[22] N. CUDA, “www.nvidia.com/object/cuda home.html.”
[23] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran, “Cache-

oblivious algorithms,” in Proceedings of the 40th Annual Symposium on
Foundations of Computer Sciences, 1999, pp. 285–297.

[24] P. K. P. Siddhartha Chatterjee, Alvin R. Lebeck, “Recursive array layouts
and fast matrix multiplication,” IEEE TPDS, vol. 13, no. 11, pp. 1105
– 1123, 2002.

459

