
SCALABLE TENSOR DECOMPOSITIONS IN HIGH PERFORMANCE
COMPUTING ENVIRONMENTS

A Dissertation
Presented to

The Academic Faculty

By

Jiajia Li

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computational Science and Engineering

Georgia Institute of Technology

August 2018

Copyright © Jiajia Li 2018

SCALABLE TENSOR DECOMPOSITIONS IN HIGH PERFORMANCE
COMPUTING ENVIRONMENTS

Approved by:

Dr. Richard W. Vuduc, Advisor
School of Computational Science &
Engineering
Georgia Institute of Technology

Dr. Jimeng Sun
School of Computational Science &
Engineering
Georgia Institute of Technology

Dr. Ümit V. Çatalyürek
School of Computational Science &
Engineering
Georgia Institute of Technology

Dr. Tamara G. Kolda
Department of Data Science and
Cyber Analytics
Sandia National Laboratories

Dr. Bora Uçar
LIP Computer Science laboratory
École normale supérieure de Lyon

Dr. David A. Bader
School of Computational Science &
Engineering
Georgia Institute of Technology

Date Approved: July 25, 2018

There are no gains, without pains.

– Benjamin Franklin

To my parents and my fiancé.

ACKNOWLEDGEMENTS

First and foremost, I thank my advisor Rich Vuduc for being very helpful and support-

ive to my research, giving me freedom to pursue my own ideas, and offering constructive

feedback. I really appreciate him for always backing me up, tolerating my countless short-

comings, and connecting me with good opportunities. He was also very considerate to my

life and health. He has been a great role model. I have learned a lot from him, his kindness,

his open mindedness, his insistence on academic rigor, and his passion for good food.

I also thank other faculty at Georgia Tech. Jimeng Sun has been deeply involved in my

research, giving his valuable time and advice, particularly on applications of tensors. He

made me feel my work has the potential for meaning and impact. I also thank him for his

terrific advice on my career path. I am grateful to David Bader for working together with

and advising me during my first year which is my most “ridiculous” time. I appreciate his

encouragement and career suggestions which helped me to become a better person. I thank

Ümit Çatalyürek, Edmond Chow, Haesun Park, and Srinivas Aluru for taking their time to

serve on my academic committees. I also thank Will Powell, Arlene Washington-Capers,

Nirvana Edwards, Carolyn Young, Anna Stroup, Della Phinisee, and Mimi Haley for their

kind and timely help on annoying “chores.”

External to Georgia Tech, I am very grateful to especially Tamara Kolda, Bora Uçar,

Guangming Tan, Xipeng Shen, Chunhua Liao, Chenggang Yan, Dong Chen, Mikhail Smelyan-

skiy, and David Keyes. Tamara Kolda relayed her many experiences and stories, which en-

couraged me a lot, along with her cute GT scarf gift. I appreciate that she always introduced

me to new people and exposed me to different ideas and areas of work. She is also a great

role model to me, being always organized, friendly, and showing strong leadership. Bora

Uçar is an amazing researcher who contributes tremendously in our collaborated work. I

really appreciate his effort and had a wonderful time to working with him. Guangming Tan

is a good friend to me, who still put faith on me after these many years and dragged me

v

being involved into diverse research topics. I am grateful to Xipeng Shen and Chuanhua

Liao for giving me a chance to continue working on some of my previous topics. I really

enjoyed working with them. I also thank Chuanhua for his valuable advice on my career

path and life plan. I thank Chenggang Yan for collaborating with me and putting his under-

graduate students under my guidance, which gave me good experience in advising. I am

very grateful to Dong Chen, my group manager in IBM Thomas J. Watson Research Center,

who was very supportive for my career. I also thank Mikhail Smelyanskiy, my supervisor

in Intel Parallel Computing Lab, who helped increase my knowledge of architecture-aware

optimization techniques. A special thank to David Keyes, your applause in a SC workshop

for my five-minutes presentation encouraged me a lot and reminded me of being able to do

good presentations.

I am grateful to my colleague collaborators: Jee Choi, Xing Liu, Shaden Smith, Casey

Battaglino, Ioakeim (Kimis) Perros, Srinivas Eswar, Patrick Lavin, Wafa Louhichi, Peter

James Ahrens, Yue Zhao, Junhong Liu, Xiuxia Zhang, Keren Zhou, Zhonghai Zhang for

their help to make the research great. I thank my lab mates Marat Dukhan, Oded Grean,

Piyush Sao, Patrick Flick, Michael Isaev, Robert Chen, Sara Karamati, Bo Dai, Eisha

Nathan, SaBra Neal, Lluis Munguia, Elias Khalil, Xiaojing An, Chunxing Yin, Kasimir

Gabert, Cong Chen, and Jing Shui, without you guys the Ph.D. life will not be such enjoy-

able.

I was fortunate to have worked with a couple of great undergraduate researchers, espe-

cially Yuchen Ma, Nick Liu, and Junghyun Kim. I learned both knowledge and advising

experience from this process. I specially thank Yuchen Ma for helping build the infrastruc-

ture of PARTI! library.

Finally, I owe my deepest gratitude to my family. My mom supported me as always,

encouraged me, pointed me out the most appropriate direction, and cheered me up with her

never-ending love. I give the full credit of my good health after the second Ph.D. program

to my mom, who traveled to the U.S. on several occasions to take care of and feed me, and

vi

her continually nudges to stay on-track EVERYDAY.

I am also grateful to my fiancé, Xiaolong, who has accompanied me to complete my

two Ph.D. programs. I am sorry I made him suffer from time to time over these last few

years because of my “endless” bad temper, of which he often ended up being the target.

Despite that, he remained always supportive, understanding (sometimes even more than

my mom), and being the best listener. I could not have gotten this far without him.

This research is supported by the U.S. National Science Foundation (NSF) Award Num-

ber 1533768, 2017–2018 IBM Ph.D. Fellowship Award, and the Laboratory Directed Re-

search and Development program at Sandia National Laboratories, a multi-mission labo-

ratory managed and operated by National Technology and Engineering Solutions of San-

dia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Depart-

ment of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Any opinions, findings, and conclusions or recommendations expressed in this material are

those of the author and do not necessarily reflect the views of NSF, IBM, or Sandia National

Laboratories.

vii

TABLE OF CONTENTS

Acknowledgments . v

List of Tables . xv

List of Figures . xvii

Chapter 1: Introduction . 1

1.1 Contributions . 4

Chapter 2: Background on Tensors and Parallel Platforms 6

2.1 Tensor Representations . 8

2.1.1 Mathematical Representations . 8

2.1.2 Dense Tensor Layout . 9

2.1.3 Sparse Tensor Formats . 10

2.2 Fundamental Tensor Operations . 13

2.2.1 Element-wise Operations . 13

2.2.2 Tensor-Times-Matrix . 14

2.2.3 Kronecker and Khatri-Rao Products 15

2.2.4 Matriced Tensor Times Khatri-Rao Product 15

2.3 Tensor Decompositions and Algorithms 16

viii

2.3.1 CP Decomposition . 16

2.3.2 Tucker Decomposition . 18

2.4 Parallel Computer Architectures . 20

2.4.1 Multicore CPUs . 20

2.4.2 NVIDIA GPU Architecture . 20

2.4.3 Intel Xeon Phi Processors . 21

Chapter 3: ADATM: Memoized Sparse CPD . 22

3.1 Why to Optimize the MTTKRP Sequence? 24

3.1.1 MTTKRP is the performance bottleneck of CP-ALS. 24

3.1.2 The time of an MTTKRP sequence grows with tensor order. 24

3.1.3 An MTTKRP sequence has arithmetic redundancy. 25

3.2 MTTKRP Algorithms and Semi-sparse Tensor Format (vCSF) 26

3.2.1 MTTKRP Algorithms . 26

3.2.2 Sparse Tensor Product Property 28

3.2.3 vCSF Format . 29

3.3 Memoization for the MTTKRP Sequence 30

3.3.1 Two Fourth-Order Tensor Memoization Algorithms 30

3.3.2 Memoization Strategy Analysis 33

3.4 ADATM: Adaptive Tensor Memoization 36

3.4.1 Parameter Selection . 36

3.4.2 A Model-Driven Framework . 37

3.4.3 Predictive Model . 38

ix

3.4.4 Strategy Guided Trade-off . 39

3.4.5 Parallelization . 39

3.5 Experiments and Analyses . 40

3.5.1 Data Sets and Platforms . 40

3.5.2 Performance . 41

3.5.3 Analysis . 42

3.5.4 CPD . 45

3.6 Related Work . 45

3.7 Summary . 47

Chapter 4: A Novel Sparse Tensor Format — HICOO 48

4.1 Sparse Tensor Format Comparison . 51

4.1.1 Summary . 52

4.1.2 COO Format . 53

4.1.3 CSF Format . 54

4.1.4 F-COO Format . 56

4.2 HICOO Format . 57

4.2.1 Conversion . 58

4.2.2 Improvement of CSB . 59

4.2.3 Analysis . 60

4.3 HICOO-MTTKRP Algorithms on Multicore CPUs 61

4.3.1 Sequential Algorithm . 62

4.3.2 Parallel Algorithm . 64

x

4.3.3 Parameter Guidance . 66

4.4 Experiments and Analyses . 67

4.4.1 Experimental Setup . 67

4.4.2 Overall Performance . 69

4.4.3 Optimization Breakdown . 71

4.4.4 Thread Scalability . 72

4.4.5 Storage Space . 73

4.4.6 Superblock Size L . 73

4.4.7 CPD . 75

4.4.8 Experiments on KNL . 76

4.5 Related Work . 76

4.6 Summary . 77

Chapter 5: Tensor Reordering for HICOO . 79

5.1 BFS-LIKE-MCS . 80

5.2 LEXI-ORDER . 82

5.3 Evaluation . 87

5.3.1 Experimental Setup . 87

5.3.2 HICOO-MTTKRP with Reordering 88

5.3.3 Other Formats with Reordering . 89

5.3.4 Reordering Methods Comparison 92

5.3.5 Effect of the Number of Iterations in LEXI-ORDER 92

5.3.6 HICOO Parameters . 93

xi

5.3.7 Reordering Overhead . 94

5.4 Related Work . 95

5.5 Summary . 95

Chapter 6: INTENSLI: An Input-Adaptive and In-Place Dense TTM 97

6.1 Motivating Observations . 99

6.2 In-Place and Input-Adaptive TTM . 104

6.2.1 A Third-Order Tensor Example . 105

6.2.2 Algorithmic Strategy . 107

6.3 An Input Adaptive Framework . 111

6.3.1 Parameter Estimation . 112

6.3.2 Code Generation . 116

6.4 Experiments and Analyses . 116

6.4.1 Basic benchmark. 118

6.4.2 Comparison to other tools. 119

6.4.3 Parameter selection. 120

6.5 Related Work . 121

6.6 Summary . 123

Chapter 7: Sparse TTM and Tucker Decomposition on CPU-GPU Platforms . . 124

7.1 Semi-sparse Tensor Format (sCOO) . 126

7.2 SPTTM on CPUs . 127

7.3 SPTTM on GPUs . 129

7.3.1 Naı̈ve implementation . 129

xii

7.3.2 Fine thread granularity . 131

7.3.3 Coalesced memory access . 131

7.3.4 Rank Blocking . 132

7.3.5 Using Shared Memory . 132

7.4 Semi-Sparse Tensor Times Matrix . 133

7.5 Sparse Tucker decomposition . 135

7.5.1 TTM-Chain . 135

7.5.2 SVD . 136

7.6 Experiments . 136

7.6.1 Platforms and Dataset . 136

7.6.2 Overall Performance . 138

7.6.3 Analysis . 139

7.7 Summary . 144

Chapter 8: PARTI! Library Design and Implementation 145

8.1 PARTI! Design and Implementation . 145

8.1.1 COO-CPD on Multicore CPUs . 146

8.1.2 COO-CPD on GPUs . 147

8.1.3 COO-CPD on Distributed Systems 147

8.1.4 COO-CPD on Emu . 148

8.1.5 HICOO-CPD on GPUs . 148

8.1.6 HICOO-CPD on Distributed Systems 148

8.2 Summary of Standard Library Interfaces 149

xiii

Chapter 9: Conclusion and Future Directions . 152

9.1 Conclusion . 152

9.2 Future Directions . 153

9.2.1 CP Decomposition . 153

9.2.2 Tucker Decomposition . 154

9.2.3 Higher-Order Tensor Decompositions 154

9.2.4 Develop Highly Hybrid Tensor Algorithms 154

References . 179

Vita . 180

xiv

LIST OF TABLES

2.1 List of general symbols and notations in this dissertation. 7

3.1 List of symbols and notations in Chapter 3. 23

3.2 The number of flops and storage size of products and algorithms. 39

3.3 Experimental Platforms Configuration . 40

3.4 Description of sparse tensors. 41

3.5 Storage size of sparse tensors. 43

4.1 List of symbols and notations in Chapter 4. 51

4.2 The analysis of tensor formats and their MTTKRP algorithms for a third-
order tensor (N = 3) with M nonzero entries. The word size parameters
are βint = 32, βlong = 64, βbyte = 8, and βfloat = 32 bits for single-precision
floating-point values and discarding insignificant items. 52

4.3 Description of sparse tensors. 68

4.4 Sparse tensor space comparison in different formats. 74

5.1 Description of sparse tensors. 87

5.2 HICOO parameters change before and after LEXI-ORDER reordering. . . . 94

6.1 List of symbols and notations in Chapter 6. 99

6.2 A third-order tensor’s different representation forms of mode-1 TTM. The
input tensor is X ∈ RI1×I2×I3 , the input matrix is U ∈ RI1×R, and the
output tensor is Y ∈ RR×I2×I3 . 104

xv

6.3 Experimental Platforms Configuration . 117

7.1 List of symbols and notations in Chapter 7. 126

7.2 Experimental Platforms Configuration . 137

7.3 Description of sparse tensors. 137

7.4 Sequential SPTTM performance comparison. 141

7.5 Total storage (GBytes) of sparse tensors. 141

7.6 Tucker decomposition performance. 144

8.1 PARTI! supported Tensor methods. To be supported methods are shown in
gray. 145

8.2 PARTI! supported tensor formats, factorizations and platforms. 147

8.3 Capabilities of tensor frameworks. 151

xvi

LIST OF FIGURES

2.1 Visualization of dense and sparse third-order tensors X ∈ RI×J×K 6

2.2 Slices and fibers of a third-order tensor. 9

2.3 Mode-2 matricization of an example third-order tensor and its tensorization. 9

2.4 Dense tensor layout examples. 10

2.5 Sparse tensor formats of an example 4 × 4 × 3 tensor. This CSF tree and
F-COO representation are both for mode order MO = [1, 2, 3]. 11

2.6 CP and Tucker decompositions illustrated using a tensor networks dia-
gram [44]. Each node in a tensor network corresponds to a tensor with
each incident edge represents a mode of it. Each edge between nodes cor-
responds to a product mode that will be contracted upon, and each uncon-
nected edge corresponds to an index mode. 16

3.1 The runtime of SPLATT sequence on synthetic, sparse tensors. 25

3.2 A fourth-MTTKRP sequence of a CPD. 26

3.3 Sparse tensor product property in third-order tensors. 29

3.4 A sparse tensor X ∈ R2×2×2×2 in COO and CSF formats, tensor Y(1) in
vCSF format without storing indices. 30

3.5 Graphical description of the simple tensor memoization algorithm. 31

3.6 Graphical description of the optimal tensor memoization algorithm. 32

3.7 Graphical process of the simple and optimal tensor memoization algorithms.
“red circle” represents TTM and “blue block” is q-TTM. 33

3.8 The model-driven framework of ADATM. 37

xvii

3.9 Speedup of ADATM over SPLATT and Tensor Toolbox. 42

3.10 Time and space relation for ehr85. 43

3.11 Multithreading scalability of ADATM and SPLATT on nell2 and ehr85. . . . 44

3.12 ADATM’s dimension scalability on synthetic sparse tensors. 44

3.13 Accuracy of ADATM model on Xeon E7-4820 and Core i7-4770K. 45

3.14 CP-ALS runtime using SPLATT and ADATM. 46

4.1 A COO-MTTKRP example in mode 1 showing the operations on one non-
zero tensor entry 7. Its corresponding matrix rows are plotted as solid boxes
inside. 53

4.2 The conversion between COO and HICOO formats for an example third-
order tensor. HICOO uses 2×2×2 blocks (B = 2) with word sizes marked
above. 58

4.3 A HICOO-MTTKRP example in mode 1 showing the operations on one
non-zero tensor entry 7. Its corresponding matrix blocks Ab,Bb,Cb are
shown as bounded blank boxes, and its corresponding matrix rows are plot-
ted as solid boxes inside. 62

4.4 Superblock scheduling table for mode-1 MTTKRP. Write conflicts are shown
as two-way arrows. 65

4.5 MTTKRP performance comparison with the “max” and “best” thread con-
figurations. The longest modes and shortest modes of every tensor are
marked in red and blue respectively. 70

4.6 HICOO optimization breakdown on 3D tensors. 72

4.7 Thread scalability of parallel COO, CSF, and HICOO MTTKRPs on two
representative cases. 73

4.8 Superblock size L influences on HICOO-MTTKRP, x-axis shows logL val-
ues, times are normalized to L = 28 or 210. Lower is better. 74

4.9 CPD time and tensor storage comparison relative to CSF in ALLMODE setting. 75

4.10 HICOO-MTTKRP speedup of KNL over Haswell. 75

xviii

5.1 A hypergraph example of a sparse tensor. 80

5.2 A doubly lexical ordering of a zero-one matrix and its vector comparison
operation. 83

5.3 Comparison of HICOO representations before and after LEXI-ORDER— a
good example. 83

5.4 Comparison of HICOO representations before and after LEXI-ORDER— a
fair example of figure 4.2. 84

5.5 The steps of LEXI-ORDER (Algorithm 9) illustrated. 85

5.6 Reordered sequential HICOO-MTTKRP speedup. 88

5.7 Reordered parallel HICOO-MTTKRP speedup. 89

5.8 Reordered sequential COO-MTTKRP speedup over an unordered imple-
mentation. 90

5.9 Reordered parallel COO-MTTKRP speedup over an unordered implemen-
tation. 90

5.10 Reordered sequential CSF-MTTKRP speedup over an unordered implemen-
tation. 90

5.11 Reordered parallel CSF-MTTKRP speedup over an unordered implementa-
tion. 91

5.12 Format comparison with LEXI-ORDER on parallel MTTKRPs. 92

5.13 Sequential HICOO-MTTKRP behavior varying the number of iterations. . . 93

5.14 The reordering time of different numbers of iterations. 93

5.15 The reordering overhead over HICOO construction. 95

6.1 Structure of the baseline mode-1 TTM computation. 100

6.2 Profiling of algorithm 10 for mode-2 product on 3rd, 4th, and 5th-order ten-
sors, where the output tensors are low-rank representations of correspond-
ing input tensors. 101

xix

6.3 Performance of dense, double-precision general matrix multiply from the
Intel Math Kernel Library for C = BAT , where A is n × k, B is m × k.
The value ofm is fixed at 16, while k (x-axis) and n (y-axis) vary. Note that
the x- and y-axis labels show log2 k and log2 n, respectively. Each square
is color-coded by performance in GFLOP/s. 103

6.4 Two examples of the slice representation. 106

6.5 Structure of new mode-3 in-place tensor-times-matrix multiply (INTTM)
computation for a sixth-order tensor using forward strategy. 110

6.6 Input adaptive framework (INTENSLI). 112

6.7 Mode-3 INTTM for a sixth-order tensor using forward strategy under dif-
ferent NC settings. 113

6.8 Performance variation of MM on different sizes of n, when m = 16, k =
512, using 4 threads. MM kernels with different NCs are also shown. 114

6.9 Performance of INTENSLI-generated INTTM algorithm for mode-2 prod-
uct on 3rd, 4th, and 5th-order tensors. Each bar represents the performance
of a specific tensor size. 117

6.10 Performance comparison among INTENSLI-generated INTTM, TENSOR

TOOLBOX (TT-TTM), Cyclops Tensor Framework (CYCLOPS Tensor Frame-
work (CTF)), and GEMM on 3rd, 4th, and 5th-order tensors of mode-2 prod-
uct. 119

6.11 Performance behavior of INTENSLI-generated INTTM against TENSOR

TOOLBOX (TT-TTM) for different mode products on a 160× 160× 160×
160 4th-order tensor. 120

6.12 Comparison between the performance with predicted configuration and the
actual highest performance on 5th-order tensors of mode-1 product. 121

7.1 COO and sCOO formats of a semi-sparse 3×3×2 tensor, with dense mode 3.127

7.2 Our GPU-SPTTM and FCOO-SPTTM [107] speedups over CPU-SPTTM. . 138

7.3 GPU-SPTTM performance in GFlop/s. 139

7.4 GPU optimization methods comparison on GPU P100. 140

xx

7.5 GPU-SPTTM and GPU-SSPTTM speedups over corresponding OpenMP
parallelized CPU implementations on two NVIDIA GPU platforms. 142

7.6 Relative SPTTM time in different modes. 143

7.7 Execution time of small tensors in different rank sizes. 143

xxi

SUMMARY

This dissertation presents novel algorithmic techniques and data structures to help build

scalable tensor decompositions on a variety of high-performance computing (HPC) plat-

forms, including multicore CPUs, graphics co-processors (GPUs), and Intel Xeon Phi pro-

cessors.

A tensor may be regarded as a multiway array, generalizing matrices to more than two

dimensions. This dissertation conquers some challenges of tensor algorithms: the curse of

dimensionality, mode orientation, tensor transformation, irregularity, and arbitrary tensor

dimensions (or orders), in the specific context of the two of the most popular tensor de-

compositions, the CANDECOMP/PARAFAC (CP) and Tucker decompositions, which are,

roughly speaking, the tensor analogues to low-rank approximations in standard linear al-

gebra. Within that context, two of the critical computational bottlenecks are the operations

known as Tensor-Times-Matrix (TTM) and Matricized Tensor Times Khatri-Rao Product

(MTTKRP). We consider these operations in cases when the tensor is dense or sparse.

ADATM work is the application of memoization to overcome the curse of dimension-

ality challenge that exists in a sequence of tensor operations. By saving and reusing the

intermediate results of MTTKRPs, our method also reduces the overall floating-point oper-

ations and memory transfers, with increasing benefits as the order of the tensor increases.

Our proposed algorithm is parameterized in a way that may be tuned for performance given

a specific hardware platform.

A novel data structure, hierarchical coordinate format (HICOO), is proposed to address

the challenge of mode orientation for sparse tensors. Mode orientation refers to the concept

of a particular format favoring iteration of tensor modes. By compressing the indices in

units of sparse tensor blocks, with the goals of preserving the “mode-agnostic” simplicity

of coordinate (COO) format while reducing the bytes needed to represent the tensor and

promoting data locality. A parallel scheduler to avoid the locks for write-conflict memory

xxii

is also proposed. CP decomposition using HICOO format achieves considerable speedups

over COO and another state-of-the-art compressed sparse fiber (CSF) format. We also

propose reordering methods to arrange non-zeros for denser tensor blocks to pursue higher

performance.

By avoiding tensor-matrix conversions, we are able to carry out TTM operation in-

place, for dense and sparse cases. INTENSLI uses loops of matrix-matrix multiplications

(GEMM) to implement dense TTM in-place and choose an appropriate matrix shape to

achieve high performance. The computation of the sparse TTM operation is implemented

on all non-zero elements with no explicit conversion. Sparsity is challenging because it

induces irregular memory access. We employ optimization techniques such as increasing

memory coalescing, dynamic parallelism, and ranking blocking, among others, in our GPU

implementations.

To validate these ideas, we have implemented them in three prototype libraries, named

ADATM, INTENSLI, and PARTI!, for arbitrary-order tensors. ADATM is a model-driven

framework to generate an adaptive tensor memoization algorithm with the optimal parame-

ters for sparse CP decomposition. INTENSLI produces fast single-node implementations of

dense TTM of an arbitrary dimension. PARTI! is short for a Parallel Tensor Infrastructure

which is written in C, OpenMP, MPI, and NVIDIA CUDA for sparse tensors and supports

MATLAB interfaces for application-level users.

xxiii

CHAPTER 1

INTRODUCTION

Tensors, which generalize matrices to more than two dimensions, have found numerous

uses in data analysis and mining. In particular, tensor-based analysis methods have been

noted for their ability to discover multi-dimensional dependencies [3, 4, 6, 44, 46, 50, 51,

54, 89, 111, 123, 131, 134, 150], and has been applied to healthcare analytics [75, 175],

social networks analytics [129, 130], computer vision [169], natural language processing

[80], signal processing [6], and neuroscience [98], to name a few. However, while the

number of potential uses of tensor methods has grown, much of the available software

implementing those methods is not yet capable of fully exploiting the computing potential

of high-performance computing (HPC) platforms, such as multicore CPUs, graphics co-

processors (GPUs), and Intel Xeon Phi processors. Such a capability is needed to apply

tensor methods at scale.

When attempting to implement tensor algorithms efficiently on HPC platforms, there

are several obstacles. This dissertation is particularly concerned with five such issues,

which we will refer to as the curse of dimensionality, mode orientation, tensor transfor-

mation, irregularity, and arbitrary tensor dimensions (or orders). These challenges bring

non-trivial computational and storage overheads. Some of them, such as the curse of di-

mensionality, tensor transformation, and arbitrary tensor dimensions (or orders), are partic-

ular to tensor methods; while other challenges, such as mode orientation and irregularity,

are even harder to overcome than their counterparts in classical linear algebra, i.e., matrix

decompositions.

The overarching goal of this dissertation is to develop techniques that overcome these

challenges. Our approach is to use algorithmic and data structure changes combined with

better engineering of the implementations. We validate our ideas by realizing these tech-

1

niques in several prototypes of high-performance libraries, rigorously evaluated on modern

parallel platforms. For concreteness, we work in the context of what are arguably the

two of the most popular tensor decompositions, namely, CANDECOMP/PARAFAC (CP)

and Tucker decompositions, both of which can produce low-rank representations of data.

Their two main computational bottlenecks are known as Tensor-Times-Matrix (TTM) and

Matricized Tensor Times Khatri-Rao Product (MTTKRP). We consider large-scale dense

and sparse tensors with a focus on sparse tensors because of their wide use in numerous

real-world data.

In the remainder of this section, we briefly explain the challenges and provide pointers

into the dissertation where we consider them.

The curse of dimensionality refers to the issue that the number of entries of an interme-

diate or output tensor can grow exponentially with the tensor order, resulting in significant

computational and storage overheads. Even when the tensor is structurally sparse, mean-

ing it consists mostly of zero entries, the execution time of one important tensor method,

the so-called CP decomposition considered elsewhere in this dissertation, generally grows

quadratically with the number of non-zeros [15, 16]. And there is an increasing interest

in applications involving a large number of dimensions [55, 99, 123]. While there is some

current research looking at this challenge in the context of Khatri-Rao products in CP for

dense tensors [137, 190], we will be particularly interested in the sparse case (Chapter 3).

Mode orientation refers to the issue of a particular storage format favoring the iteration

of tensor modes in a certain sequence, which is of particular concern in the sparse case.

Since most methods of interest require more than one sequence, being efficient for every

sequence generally requires storing the tensor in multiple formats, thereby trading extra

memory for speed. Today, three commonly used formats are coordinate (COO) [15], com-

pressed sparse fibers (CSF) [152], and flagged coordinate (F-COO) [107] formats. While

COO is considered to have a neutral mode orientation, meaning it does not favor any par-

ticular iteration sequence, CSF and F-COO do; however, COO is also larger in size than

2

CSF and F-COO to begin with. A natural question arises, which is whether one can achieve

both a neutral mode orientation and compact storage. We propose one such scheme, which

we call hierarchical coordinate (HICOO) format (Chapter 4).

Tensor transformation(s) refers to a common pattern for attaining speed in some imple-

mentations of tensor algorithms, which starts by reorganizing the tensor into a matrix and

then perform equivalent matrix operations using highly tuned linear algebra libraries. Done

naı̈vely, this approach appears to require an extra memory copy, which can even come to

dominate the overall running time. We observe instances in which such a copy consumes

70% or more of the total running time (in the case of a TTM operation). We devise ways

to avoid such transformations using in-place alternative formulations, specifically for TTM

and MTTKRP operations for dense (Chapter 6) and sparse cases (Chapter 7).

Irregularity refers to two issues. The first is that a tensor may have dimension sizes that

vary widely; the second is that a sparse tensor may have an irregular non-zero pattern, re-

sulting in irregular memory references. We consider the problem of irregular tensor shape

in a dense TTM operation (Chapter 6), sparse MTTKRP (Chapter 4), and sparse TTM oper-

ation on GPUs (Chapter 7), using a variety of algorithmic reorganization, parallelization,

and performance engineering strategies.

Arbitrary tensor orders generate various implementations of a tensor operation. For the

sake of performance, programmers usually implement and optimize third-order tensor al-

gorithms apart from higher-order ones. These implementations makes no one optimization

method can fit all variations, e.g., different number of loops and diverse memory access be-

havior. One optimization usually behaves well for a fixed, traceable implementation such

as matrix-vector multiplication and other matrix operations. All of our work in this disser-

tation supports arbitrary order of tensors and flexibly chooses an optimal implementation

for a particular tensor order if possible.

3

1.1 Contributions

We briefly summarize the main contributions of this dissertation as follows.

• We propose a novel, adaptive tensor memoization algorithm, which we refer to as

ADATM1. Our proposed method reduces the flop-complexity of CPD from prior

implementations [15, 41, 80, 84, 156], which scales better as the tensor order grows.

We develop a model-driven framework to tune several parameters of our method and

determine their time and space tradeoff. (See Chapter 3, which is published [101].)

• We propose a novel sparse tensor format, hierarchical coordinate, or HICOO2,

that tries, heuristically, to achieve both compactness and neutral mode orientation.

HICOO compresses tensor indices in units of sparse tensor blocks and exploits

shorter integer types to express offsets within the blocks. Z-Morton order is em-

ployed between and inside tensor blocks to further improve data locality. A su-

perblock scheduler and two parallelization strategies are used to accelerate MTTKRP

and CPD on multicore CPUs based on HICOO. We also employ reordering meth-

ods to obtain better data locality for HICOO. (See Chapter 4, which is accepted for

publication [104].)

• We present a novel framework INTENSLI3 for automatically generating high-performance

in-place dense TTM implementations. It considers several strategies for decompos-

ing the specific type of TTM that the user requires in order to maximize the use of

the fast GEMM. The code generation framework produces several parameterized im-

plementations; and we use a heuristic model to select the parameters, which need to

be tuned for a given input. (See Chapter 6, which is published [100].)

• We optimize tensor-times-dense matrix multiply (TTM) and Tucker decomposition

1Read, “Ada-Tee-Em,” as in Ada Lovelace.
2pronounced “haiku”
3pronounced as “intensely”

4

for general sparse and semi-sparse tensors on multicore CPUs and NVIDIA GPUs.

An in-place sequential SPTTM algorithm is designed to avoid tensor-matrix con-

version. We propose several optimizing approaches for SPTTM on NVIDIA GPUs

and implement SSPTTM on GPUs accordingly by better exploring the dense sub-

structures. A faster Tucker decomposition is obtained by integrating the optimized

SPTTM and SSPTTM. (See Chapter 7, which is accepted for publication [113].)

Several of these ideas are now combined in a software library named PARTI!, which

is short for “parallel tensor infrastructure.” (See Chapter 8, which is partially published

[102]) It intends to support high-performance CP and Tucker decompositions on several

platforms, including multicore CPUs, GPUs, distributed systems, and even a new architec-

ture, the Emu. At present, it includes support for two sparse tensor formats, the popular

COO and our new HICOO. With PARTI!, we aim to hasten the translation of the ideas of

this dissertation into analysis practice.

5

CHAPTER 2

BACKGROUND ON TENSORS AND PARALLEL PLATFORMS

A tensor, abstractly defined, is a function of three or more indices. In computational data

analytics, one may regard a tensor as a multidimensional array, where each of its dimen-

sions is also called a mode and the number of dimensions or modes is its order. For exam-

ple, a scalar is a tensor of order 0; a vector is a tensor of order 1; and a matrix, order 2, with

two modes (its rows and its columns). Notationally, we represent tensors as calligraphic

capital letters, e.g., X ∈ RI×J×K ; matrices by boldface capital letters, e.g., U ∈ RI×J ;

vectors by boldface lowercase letters, e.g., x ∈ RI ; and scalars by lowercase letters, such

as xijk for the (i, j, k) element of a third-order tensor X. A third-order tensor is illustrated

in figure 2.1(a).

A tensor may be dense, meaning all or most of its entries are non-zero; or sparse,

meaning most of its entries are zeros. Sparsity implies that one may implement operations

on the tensor using a compact data structure that avoids storage of and operations on these

zeros. Figure 2.1(b) uses solid dots to show non-zero entries of a sparse third-order tensor.

For a more complete description see Kolda and Bader’s survey [89]. Table 2.1 lists the

general symbols and notations used in this dissertation. More specific symbols will be

shown separately in each chapter below.

i = 1,…,I

j = 1,…,J k =
 1,

…,K

i = 1,…,I

j = 1,…,J k =
 1,

…,K

(a) Dense (b) Sparse

Figure 2.1: Visualization of dense and sparse third-order tensors X ∈ RI×J×K .

6

Table 2.1: List of general symbols and notations in this dissertation.

Symbols Description

Word size parameters
βbyte Bit-length of a byte or character
βint Bit-length of an integer
βlong Bit-length of a long integer
βfloat Bit-length of a single-precision floating point value
βdouble Bit-length of a double-precision floating point value

Data representation
X,Y,Z,G Tensors

X(n) Matricized tensor X in mode-n
A, Ã,U Dense matrices

a,ar Dense vectors
xi1...iN A tensor entry

λ Weight vector

Input parameters
N Tensor order

I, J,K,L, In Tensor mode sizes
MO Tensor mode order

ND, NS #Dense modes and #Sparse modes
M #Nonzeros of the input tensor X
Ml #Nodes at level l of a CSF tree of tensor X

R,Rn Approximate tensor ranks (usually a small value)

Operations
a ◦ b Outer product of two vectors
a ∗ b Hadamard or element-wise product of two vectors

A⊗B Kronecker product of two matrices
A�B Khatri-Rao product of two matrices
X⊕ Y Element-wise addition of two tensors

X×n U Mode-n tensor-times-matrix product (TTM)
X(n)(�i 6=n

i=1,...,NUi) mode-n Matriced Tensor Times Khatri-Rao Product (MTTKRP)

COO Data structure
inds A two-level index array of COO, βint bits
val A non-zero value array of COO, βfloat or βdouble bits

7

2.1 Tensor Representations

There are different ways to view a tensor logically, as well as different ways of storing

tensor data in a concrete program. We will distinguish between the logical or mathematical

representations (Section 2.1.1) and “physical” data structures (Sections 2.1.2 to 2.1.3), as

described next.

2.1.1 Mathematical Representations

Frequently, we will take a high-order tensor and extract or operate on some lower-order

object. For instance, we might wish to reshape or fold all the elements of a tensor of

order 3 or higher into a matrix or a vector; these operations are called matricization or

vectorization, respectively. Alternatively, we might ask for a subset of the elements of a

tensor in the form of a matrix or a vector; these are called slices or fibers, respectively.

All of these representations are “logical” or “mathematical” in the following sense: we

might describe some tensor operation in terms matricized or vectorized tensors or slices or

fibers, but the implementation of that operation need not involve a physical reorganizing of

elements in memory.

Given a tensor, there are multiple ways to select a sub-tensor. A slice is a two-dimensional

cross-section of a tensor, achieved by fixing all mode indices but two, e.g., S::k = X(:, :, k)

in MATLAB notation. A fiber is a vector extracted from a tensor along some mode, se-

lected by fixing all indices but one, e.g., f :jk = X(:, j, k). They are illustrated in figure 2.2

for a third-order tensor. We will make heavy use of sub-tensors when optimizing the TTM

operation in Chapter 6.

Matricization, or unfolding, is the process of flattening a tensor into an equivalent ma-

trix. Some subset of the modes constitute the matrix row, while the remaining modes

constitute the matrix column. In the mode-n matricization of X, which we denote by

X(n) ∈ RIn×I1···I(n−1)I(n+1)···IN , the fibers along the single mode n are stacked along the

8

(a) Horizontal, lateral, and frontal slices (b) Column (mode-1), row (mode-2),
and tube (mode-3) fibers

Figure 2.2: Slices and fibers of a third-order tensor.

columns. The order in which they are stacked may use the lexicographic ordering of the

remaining modes, or any other consistent ordering. We may also want to matricize along

multiple modes, e.g., X[I1I2]×[I3I4···IN] stacks vectors formed from the first two modes along

the columns. Vectorization, y = vec(X), refers to the conversion of a tensor into a vector.

Vectorization can be implemented by concatenating tensor fibers, again in some consistent

order. The reverse process of creating a tensor from a matrix or vector is called tensoriza-

tion, and it appears in some applications to extract more hidden information [55, 99, 123].

A third-order example of mode-2 matricization and its reverse tensorization process are

shown in figure 2.3.

J=2

K=
2

I=
2

1 3

2 4

5 7

6 8
1 2
3 4

5 6
7 8 J=

2

IK=4

X X(2)

Matricization

Tensorization

Figure 2.3: Mode-2 matricization of an example third-order tensor and its tensorization.

2.1.2 Dense Tensor Layout

Analogous to the way dense matrices may be stored in row-major or column-major con-

ventions under different language environments or user specifications, we need some con-

ventions for laying out a dense tensor in memory. We will use a mode order descriptor,

MO = permute[1, . . . , N], to indicate the layout. For instance, consider a third-order ten-

9

sor stored in the mode order, MO = [3, 2, 1]. The tensor elements that are contiguous in

mode 3 will be immediately adjacent in memory, followed by mode 2, and lastly mode 1.

This example appears as “Last-mode dominated” in figure 2.4. A third-order tensor has

6 distinct data layouts, [3, 2, 1], [3, 1, 2], [2, 3, 1], [2, 1, 3], [1, 3, 2], [1, 2, 3], where [3, 2, 1]

and [1, 2, 3] are the most common last- and first-mode dominated layouts, respectively.

Figure 2.4 shows these two layout examples for a third-order tensor.

J=2

K=
2

I=
2

1 3

2 4

5 7

6 8

1
2

3
46

7
8

X
5

Last-mode dominated (“Row-major”)
Logical Physical

1 2 3 4
6 7 85

MO=[3,2,1]

MO=[1,2,3]

First-mode dominated (“Column-major”)

Figure 2.4: Dense tensor layout examples.

Different data layouts affect the performance of a tensor algorithm, depending on what

order it uses to iterate over the tensor’s elements. If an algorithm’s memory access pattern

matches the tensor’s layout, meaning that the data access in the algorithm has good spatial

locality, we may observe relatively higher performance than if not; otherwise, the data

access is in a strided pattern (at a possibly large stride) may be relatively slower. We study

the influence of data layout for the tensor-times-matrix multiplication (TTM) operation in

Chapter 6.

2.1.3 Sparse Tensor Formats

In data-oriented applications of tensors, the tensor object is often extremely sparse. There-

fore, most of this dissertation concerns the sparse case.

Analogous to the dense case, there is a considerable body of work on efficient imple-

mentation of operations on sparse matrices [13, 30–33, 43, 93, 105, 110, 120, 172, 173,

10

178, 180, 181, 187]. As with sparse matrices, we will need to consider how to store a sparse

tensor to minimize storage and computational overheads.

This dissertation will be especially concerned with general sparse tensors, for which

we will make few assumptions about numerical symmetry or other pattern structure. For

a tensor symmetric along some mode, we might expect storage to go down by half [20,

158, 159]; and a sparse tensor with dense blocks could be compressed to a smaller much

one with each element holding a dense block [34, 50, 51, 54, 60, 127, 148]. Instead,

this dissertation will take as its baseline representations three state-of-the-art sparse tensor

formats, COO, CSF, and F-COO, summarized below.

Coordinate, or COO, format. COO is the simplest and arguably de facto standard way

to store a sparse tensor. We use inds and val to represent the indices and values of the

non-zeros of a sparse tensor respectively (listed in table 2.1). val is a size-M array of

floating-point numbers, inds is a size-M array of integer tuples. Figure 2.5(a) shows a

4 × 4 × 3 sparse tensor in COO format. The indices of each mode are represented as i, j,

and k. Observe that some indices in inds repeat, for example, entries (1, 0, 0) and (1, 0, 2)

have the same i and j indices. This redundancy suggests some compression of this indexing

metadata should be possible.

(a) COO

i j k val

0 0 0 1

0 1 0 2

1 0 0 3

1 0 2 4

2 1 0 5

2 2 2 6

3 0 1

3 3 2

7

8

(b) CSF

i

j

k

val

0

0

0

1

1

0

2

1

0

0

3

2

4

2

0

1

5

1

3

0 3

2

2

2

6 7 8

(c) F-COO

bf j k val

1 0 0 1

0 1 0 2

1 0 0 3

0 0 2 4

1 1 0 5

0 2 2 6

1 0 1

0 3 2

7

8

sf[0]=1

sf[1]=1

Figure 2.5: Sparse tensor formats of an example 4×4×3 tensor. This CSF tree and F-COO
representation are both for mode order MO = [1, 2, 3].

11

Compressed sparse fiber, or CSF, format. The Compressed Sparse Fiber (CSF) format

is a hierarchical, fiber-centric format that generalizes the popular Compressed Sparse Row

(CSR) format from sparse matrices to tensors [152, 154, 156]. It is memory-efficient and

exhibits good speedups on matricized tensor times Khatri-Rao product (MTTKRP) opera-

tion (see § 2.2) compared to a COO-based implementation.

CSF format is mode-oriented, by which we mean that distinct mode orders (MOs) lead

to different CSF representations. A CSF representation with a given MO is called a CSF

tree. Figure 2.5(b) shows a CSF tree with MO = [1, 2, 3]. This CSF tree takes indices in

mode 1 as the root nodes, indices in mode 2 as the internal nodes, and indices in mode

3 as the leaf nodes. Observe that there is compression wherever there are shared nodes

(indices). For instance, entries (1, 0, 0) and (1, 0, 2) share the same internal and root nodes.

Since CSF format places the modes in some sequence, tensor operations based on CSF

format exhibit mode-dependent performance behavior. In particular, if a tensor algorithm

requires iterating over the modes in a sequence that differs from the sequence implied by

a root-to-leaf path in the CSF tree, then one may expect inefficient memory access and

duplicated computation to occur, thereby reducing algorithmic performance compared to

an iteration sequence that matches that of the CSF tree. The naı̈ve way to avoid such

inefficiencies are to maintain copies of the CSF tree in multiple mode orders, at the price

of extra storage.

Flagged-coordinate, or F-COO, format. A recently proposed Flagged-COOrdinate (F-

COO) format uses a different compression idea [107], which is inspired by segmented scan

operations [25]. In particular, it maintains two bit-arrays, “bit-flag” (bf) and “start-flag”

(sf), to replace the index mode(s), while product mode(s) and their indices are left un-

changed. The bf represents changes in the index mode(s) which consequently separates

independent computations. The sf indicates whether the segments processed by the current

thread start new indices of the index mode(s). An example F-COO representation for MT-

12

TKRP is shown in figure 2.5(c) withMO = [1, 2, 3]. F-COO format relies not only the mode

order but also the particular tensor operation. Therefore, multiple F-COO representations

may be needed for different tensor operations and for the same operation when operating

on a different mode.

CSF and F-COO formats speed up tensor operations over COO format, but they show

mode-oriented behavior. We propose a hierarchical coordinate (HICOO) format with neu-

tral mode-orientation to improve this issue in Chapter 4.

2.2 Fundamental Tensor Operations

There are a variety of computational operations we will perform on and using tensors. The

most important are products, meaning the tensor analogues of matrix products (multiplica-

tion) in conventional linear algebra.

In describing these operations, there is some additional terminology we will use through-

out to distinguish specific properties of a tensor’s modes:

• Product mode(s): the mode(s) in which a tensor is “joined” with another tensor dur-

ing a product operation. For example, when multiplying a matrix A by another B,

the product mode of A is its columns, which must be joined with the product mode

of B, its rows.

• Index mode(s): the remaining mode(s) excluding the product mode(s). In the A · B

example, the rows of A and the columns of B are the index modes.

• Dense mode(s): the mode(s) in which all non-empty fibers are fully dense.

• Sparse mode(s): the mode(s) in which at least one non-empty fiber is sparse.

2.2.1 Element-wise Operations

Element-wise operations include addition, subtraction, multiplication, and division oper-

ations, which are applied to every corresponding pair of elements from two tensor ob-

13

jects having the same order and mode sizes. For example, element-wise tensor addition of

X,Y ∈ RI1×···×IN is Z = X⊕ Y, where

zi1···iN = xi1···iN + yi1···iN . (2.1)

Element-wise operations can be easily implemented by iterating all non-zeros of the two

sparse tensors.

2.2.2 Tensor-Times-Matrix

The Tensor-Times-Matrix (TTM) in mode n, also known as the n-mode product, is the

multiplication of a tensor X ∈ RI1×···×In×···×IN with a matrix U ∈ RIn×R, along mode n,

and is denoted by Y = X×n U.1 This results in a I1 × · · · × In−1 ×R× In+1 × · · · × IN

tensor, and its operation is defined as

yi1···in−1rin+1···iN =
In∑
in=1

xi1···in−1inin+1···iNuinr. (2.2)

TTM is a special case of tensor contraction. We consider TTM specifically because of

its more common usage in tensor decompositions for data analysis, such as the Tucker

decomposition. Also, note thatR is typically much smaller than In in such decompositions,

and typically R ≈ 100.

TTM is also equivalent to a matrix-matrix multiplication in the following form:

Y = X×n U ⇔ Y(n) = UX(n). (2.3)

Therefore, a practical way to implement an efficient TTM is to first matricize the tensor,

then use an optimized matrix-matrix multiplication to compute the matricized output Y,

1Our convention for the dimensions of U differs from that of Kolda and Bader’s definition [89]. In
particular, we transpose the matrix modes U, which leads to a more efficient TTM under the row-major
storage convention of the C language.

14

and, finally, tensorize to obtain Y.

2.2.3 Kronecker and Khatri-Rao Products

The Kronecker product generalizes the outer product for matrices. Given U ∈ RI×J and

V ∈ RK×L, the Kronecker product U⊗V ∈ RIK×JL is

U⊗V =

u11V u12V · · · u1JV

u21V u22V · · · u2JV

...
...

uI1V uI2V · · · uIJV

The Khatri-Rao product is a “matching column-wise” Kronecker product between two

matrices with the same number of columns. Given matrices A ∈ RI×R and B ∈ RJ×R,

their Khatri-Rao product is denoted by A�B ∈ R(IJ)×R,

A�B = [a1 ⊗ b1, a2 ⊗ b2, . . . , aR ⊗ bR] , (2.4)

where ar and br, r = 1, . . . , R, are columns of A and B.

Kronecker and Khatri-Rao products appear frequently in tensor decompositions that are

formulated as matrix operations. However, such formulations typically also require redun-

dant computation or extra storage to hold matrix operands, so in practice these operations

are not implemented directly but rather integrated into other operations.

2.2.4 Matriced Tensor Times Khatri-Rao Product

For an N th-order tensor X and given matrices U(1), . . . ,U(N), the mode-n MTTKRP is

Ũ
(n)

= X(n)

(
�i 6=ni=1,...,NUi

)
= X(n)

(
U(N) � · · · �U(n+1) �U(n−1) � · · · �U(1)

)
, (2.5)

where X(n) is the mode-n matricization of tensor X, � is the Khatri-Rao product. The

output Ũ
(n)

is used to update the matrix operand U(n) for the next MTTKRP in a ten-

15

sor decomposition. MTTKRP is a critical computational kernel of a popular CANDE-

COMP/PARAFAC decomposition.

2.3 Tensor Decompositions and Algorithms

This dissertation is specifically interested in efficient computation of low-rank tensor de-

compositions, the two most popular ones being the CANDECOMP/PARAFAC (CP) and

Tucker decompositions. These models produce, as their main outputs, dense matrices.

I1

X

I2

I3

I1
I2

I3

R

RR

D

I1

X

I2

I3

I1

G

I2

I3

R3

R2R1

(a) CP decomposition (b) Tucker decomposition

Figure 2.6: CP and Tucker decompositions illustrated using a tensor networks diagram [44].
Each node in a tensor network corresponds to a tensor with each incident edge represents a
mode of it. Each edge between nodes corresponds to a product mode that will be contracted
upon, and each unconnected edge corresponds to an index mode.

2.3.1 CP Decomposition

The CANDECOMP/PARAFAC decomposition (CPD) [37, 73] decomposes a tensor into a

sum of component rank-one tensors, shown in figure 2.6(a). It approximates an N th-order

tensor X ∈ RI1×···×IN as

X ≈
R∑
r=1

λru
(1)
r ◦ · · · ◦ u(N)

r ≡ Jλ;U(1), . . . ,U(N)K, (2.6)

where R is the canonical rank of tensor X, taken as the number of component rank-one

tensors [89]. In a low-rank approximation, R is usually chosen to be a small number less

than 100. The outer product of the vectors u
(1)
r , . . . ,u

(N)
r produces R rank-one tensors,

16

and U(n) ∈ RIn×R, n = 1, . . . , N are the factor matrices, each one formed by taking the

corresponding vectors as its columns, i.e., U(n) = [u
(n)
1 u

(n)
2 . . .u

(n)
R]. We normalize these

vectors to unit magnitude and store the factor weights in the vector λ = {λ1, . . . , λr}. The

format Jλ;U(1), . . . ,U(N)K is called a Kruskal tensor [90], which is used in the discovery

and interpretation of latent relationships in data analytics. For an N th-order hypercubical

tensor X ∈ RI×···×I , its factored Kruskal tensor only needsO(NRI) parameters (or entries)

which is smaller than O
(
IN
)

if it is dense or O(NM) if it is sparse.

Compared to matrix decomposition, low-rank CP decomposition is unique under mild

conditions with the exception of “the elementary indeterminacies of permutation and scal-

ing” [89]. Matrix decomposition is never essentially unique, unless the rank is one or

imposing additional constraints on low-rank factors [89]. However, given a particular ten-

sor, determining its rank is NP-hard [89]. Therefore, the rank is often estimated by trial and

error or by assumptions made on the data. A conceptual limitation of CPD is that, if we

attempt to decompose a tensor as a set of relationships between “concepts,” this represen-

tation assumes that every tensor mode is involved with every other concept. If our data is

noisy and of high order, this assumption may be overly strong and may introduce artificial

relationships.

Despite these limitations, CPD has been proven both scalable and effective in broad

applications [89, 150]. Take, as an example, the use of CPD in healthcare analytics. There,

analysts have used CPD to identify useful medical concepts, or phenotypes, from raw elec-

tronic health records (EHR), which can then be used by medical professionals to facilitate

diagnosis and treatment [75, 175]. Given a target rank R, CPD provides the top-R pa-

tient phenotypes, where each rank-one component of the decomposition corresponds to a

phenotype.

The most popular algorithm to compute a CPD is arguably the alternating least squares

method, or CP-ALS [37, 89]. Each iteration of CP-ALS loops over all modes and updates

each mode’s factor matrix while keeping the other factors constant. This process repeats

17

until user-specified conditions for convergence or maximum iteration counts are met. An

N th-order CP-ALS algorithm appears in algorithm 1. Line 5 is the mode-n MTTKRP.

The combined result of all mode-{1, . . . , N} MTTKRPs is called the N th-order MTTKRP

sequence which will be referred to in Chapter 3.

Algorithm 1 The N th-order CP-ALS algorithm.
Input: An N th-order sparse tensor X ∈ RI1×···×IN and an integer rank R;
Output: Dense factors U(1), . . . ,U(N), U(n) ∈ RIn×R and weights λ;
1: Initialize U(1), . . . ,U(N);
2: do
3: for n = 1, . . . , N do
4: V← U(1)†U(1) ∗ · · ·U(n−1)†U(n−1) ∗U(n+1)†U(n+1) ∗ · · · ∗U(N)†U(N)

5: Ũ
(n) ← X(n)(U

(N) � · · · �U(n+1) �U(n−1) � · · · �U(1))

6: U(n) ← Ũ
(n)

V†

7: Normalize columns of U(n) and store the norms as λ
8: while Fit ceases to improve or maximum iterations exhausted.
9: Return: Jλ,U(1), . . . ,U(N)K;

2.3.2 Tucker Decomposition

The Tucker Decomposition, introduced in 1966 [165], produces a dense core tensor G

multiplied by a factor matrix in every mode (figure 2.6(b)). Tucker expands algebraically

as follows:

X ≈ G×1 U
(1) · · · ×N U(N) ≡ JG;U(1), . . . ,U(N)K, (2.7)

where G ∈ RR1×···×Rn and U(n) ∈ RIn×Rn . Rn, n = 1, . . . , N , named the n-rank of X,

is the column rank of X(n). The tuple (R1, R2, . . . , RN) is called the multilinear rank of

Tucker decomposition. Different from the canonical rank used in CPD, multilinear ranks

are relatively easy to determine. Therefore, we can find an exact Tucker decomposition

of rank (R1, R2, . . . , RN) for a given tensor. However, the Tucker decomposition is not

unique. The core tensor can be modified without affecting the fit as long as we apply the

inverse modification to the factor matrices. This freedom opens the door to choosing trans-

formations that simplify the core structure in some way so that most of its elements become

zeros, thereby eliminating interactions between corresponding components and improving

18

uniqueness. The format JG;U(1), . . . ,U(N)K is called a Tucker tensor [90], which is used

to interpret or compress tensor X. In fact, CPD can be viewed as a special case of Tucker

decomposition, with diagonal core tensor G constituted by entries {λ1, . . . , λN}.

For a hypercubical tensor X ∈ RI×···×I and a unified rank R, a Tucker tensor has

O
(
RN +NIR

)
parameters, which is smaller than O

(
IN
)

if it is dense or O(NM) if it is

sparse but larger than a Kruskal tensor from CPD. If the input data is high-dimensional but

sparse, which is the case in many data applications, the storage of the dense core tensor

may become problematic as it grows exponentially in the number of modes.

The Higher-Order Orthogonal Iteration (HOOI) algorithm is a popular Tucker decom-

position algorithm [53]. In each of its iterations, the algorithm updates all factor matrices at

once. In this dissertation, we study HOOI based on the alternating least squares paradigm

(Algorithm 2). This HOOI algorithm takes random factor matrices or a decomposition

produced by Higher-Order SVD (HOSVD) [52] as the initial values and then iterates un-

til a predefined convergence rate is satisfied or some maximum number of iterations has

occurred. Within an iteration, each factor matrix is updated by a TTM-chain and an SVD

operation in its corresponding mode. After all factor matrices have converged, the core

tensor G is computed. Therefore, TTM-chain and SVD are the dominant computations of

the Tucker decomposition.

Algorithm 2 Tucker decomposition algorithm (HOOI) with ALS.
Input: A sparse tensor X ∈ RI1×I2×···×IN , and a set of ranks R1, . . . , RN ;
Output: Factor matrices U(1), . . . ,U(N), U(n) ∈ RIn×R and a core tensor G;

1: Initialize U(1), . . . ,U(N) randomly or using HOSVD
2: do
3: for n = 1, . . . , N do
4: Y← X×1 U

(1) · · · ×(n−1) U
(n−1) ×(n+1) U

(n+1) · · · ×N U(N)

5: Un ← Rn leading left singular vectors of Y(n)

6: while fit ceases to improve or maximum iterations exhausted
7: G← X×1 U

(1) · · · ×N U(N)

8: Return G,U(1), . . . ,U(N);

Although there are other higher-order decompositions, the above two are the fundamen-

tal ones and contain computational patterns representative of other variations. In applica-

19

tions, CP and Tucker decompositions have their own advantages and disadvantages. Given

a tensor with known low-rank property, CP decomposition could be enough to compute

quickly; otherwise, Tucker decomposition may be needed to compute a more accurate rep-

resentation. Notice that the factor matrices of CP and Tucker decompositions are dense in

general, which makes semi-sparse tensor objects useful during computation, as we discuss

in Chapter 7.

2.4 Parallel Computer Architectures

Ultimately, we are interested in implementations on modern parallel computing platforms.

The specific classes of systems we target are summarized below.

2.4.1 Multicore CPUs

Multicore CPUs become the mainstream in various devices, such as personal computers

(PCs), tablets, even cell phones, to name a few. Take the example of a four-socket Intel

Xeon E7-4850 v3 machine consisting 56 physical cores, each with 2.2 GHz frequency.

It is a Haswell platform with 32 KiB L1 data cache and 1970 GiB memory. Its peak

memory bandwidth is 273 GB/s. Because of its tens of threads and non-uniform memory

access (NUMA) memory design, reasonable thread scalability is important to a parallel

algorithm’s performance.

2.4.2 NVIDIA GPU Architecture

NVIDIA Graphic Processor Units (GPUs) are highly parallel, many-core processors with

high memory bandwidth [1]. We particularly consider GPUs that support CUDA, a general-

purpose parallel computing platform and programming model. A GPU consists of many

CUDA cores, which are organized as groups of Streaming Multiprocessors (SMs). The

P100 GPU card used in this work employs Pascal architecture, which integrates 56 SMs and

each SM consists of 64 CUDA cores. All cores in an SM share 64KB configurable on-chip

20

memory, L1 cache and shared memory. Three configurations are available: 16KB/48KB,

32KB/32KB, and 48KB/16KB for L1 cache and shared memory respectively. Global mem-

ory is cached by both L1 and L2 caches depending on the data is writable or read-only.

Writable global memory data can only be cached by the L2 cache, read-only global mem-

ory data also can be cached by the L1 cache by marking the data with both “const”

and “ restrict ” keywords. For performance reasons, it is necessary to carefully co-

ordinate memory access paths for different types of data. CUDA has three-level thread

hierarchy, grids, thread blocks, and threads. The maximum of their sizes varies among

different GPU architectures. A P100 GPU supports up to 1024 threads per thread block.

Threads are executed simultaneously in warps, usually a group of 32 threads. It is critical to

have enough blocks and threads, good thread behavior inside a warp, and efficient memory

access to achieve a satisfiable performance of CUDA programs.

2.4.3 Intel Xeon Phi Processors

Intel Xeon Phi processors are manycore architectures that delivers massive parallelism and

vectorization. Knights Landing (KNL) is the codename for the second generation Xeon

Phi, we use Intel Xeon Phi Processor 7250 as an example. It has 68 physical cores, each

has 1.4 GHz frequency four-way simultaneous multi-threading and two 512-bit vector pro-

cessing units. Each core has 32KB L1 cache and two cores share 1MB L2 cache. KNL sup-

ports differently configuring multi-channel DRAM (MCDRAM) memory to three modes:

flat mode (explicitly managed by software), cache mode (as a last-level cache for DDR4),

or hybrid mode. MCDRAM offers up to 490 GB/s memory bandwidth in flat mode, mea-

sured by the STREAM benchmark [114], which is approximately 2× the bandwidth of

4-socket Xeon E7-4850.

21

CHAPTER 3

ADATM: MEMOIZED SPARSE CPD

This chapter concerns performance enhancement techniques for the CANDECOMP/PARAFAC

decomposition (CPD) for sparse tensors. The running time of a typical CPD on an N th-

order tensor is dominated by the evaluation of a sequence of N matricized tensor times

Khatri-Rao product (MTTKRP) operations (§ 3.1) [41, 80, 85, 156]. Prior performance

studies have focused on optimizing a single MTTKRP [41, 80, 85, 156]. By contrast, we

look for ways to improve the entire sequence of N MTTKRPs, which can lead to a much

faster implementation, especially when N is large. A similar idea has been proposed by

Phan et al. [137]; however, our method applies to the sparse (rather than dense) case and

exploits the structure of an MTTKRP sequence to preserve sparsity and thereby reduce

space.

Here, we propose a novel, adaptive tensor memoization algorithm, which we refer to as

ADATM.1 To perform a rank-R CPD of anN th-order sparse tensor withm non-zeros, prior

implementations require O
(
N (1+ε)mR

)
floating-point operations (flops), where ε ∈ [0, 1]

is an implementation- and input-dependent parameter [15, 41, 80, 85, 156]. By contrast,

our proposed method reduces this flop-complexity toO
(
ÑmR

)
, where Ñ is usually much

less than N (1+ε); furthermore, the user may control the degree of improvement by trading

increased storage for reduced time (smaller Ñ) (§ 3.3).

Our method has several parameters, such as tensor features (order, size, non-zero dis-

tribution), target rank, and memory capacity. Thus, we develop a model-driven framework

to tune them. By model-driven, we mean the framework includes a predictive model for

pruning the space candidate implementations, using a user-selectable strategy to prioritize

time or space concerns. We further accelerate ADATM within a node by multithreading

1Read, “Ada-Tee-Em,” as in Ada Lovelace. This work has been published [101].

22

(§ 3.4).

ADATM’s MTTKRP sequence outperforms the state-of-the-art SPLATT [157] and Ten-

sor Toolbox [16] by up to 8× and 820×, respectively, on real sparse tensors with orders as

high as 85. Our predictive model effectively selects an optimal implementation. Compared

to previous work [41, 80, 85, 156], ADATM scales better as the order (N) grows. For CPD,

ADATM achieves up to 8× speedups over SPLATT (§ 3.5).

Table 3.1 summarizes the symbols and notations will be used only in Chapter 3, other

general symbols are listed in table 2.1.

Table 3.1: List of symbols and notations in Chapter 3.

Symbols Description

Operations
X �n U Mode-n quasi tensor-times-matrix product (q-TTM)

Input parameters
Ml #Nodes at level l of a CSF tree of tensor X

Smem Machine memory size

CSF Data structures
csfinds Indices of CSF, βint bits

ptrs Pointers of CSF, βint or βlong bits

ADATM parameters
TCP Time of CP-ALS

TMTTKRP Time of a single MTTKRP
np #Memoized MTTKRPs in an MTTKRP sequence (#Producer modes)
nc #Non-memoized MTTKRPs in an MTTKRP sequence (#Consumer modes)
nO #Tensor products (TTM or q-TTM) in an MTTKRP sequence
ni #Saved intermediate tensors from a memoized MTTKRP
s Predicted storage size of ADATM
t Predicted running time of ADATM

23

3.1 Why to Optimize the MTTKRP Sequence?

3.1.1 MTTKRP is the performance bottleneck of CP-ALS.

Consider an N th-order sparse hypercubical tensor X ∈ RI×···×I with M non-zeros. The

number of flops in one iteration of CP-ALS (algorithm 1) is approximately

TCP ≈ N(N εMR +NIR2) ≈ NTMTTKRP , (3.1)

where TMTTKRP = O(N εMR) is the time for a single MTTKRP [16, 41, 85, 156]. (The

NIR2 term will typically be neglible because in practice IR � M .) Tensor Toolbox [16,

85] has ε = 1, while SPLATT [156] and DFacTo [41] have ε ≈ 0 for third-order sparse

tensors and ε ∈ (0, 1) for higher-order sparse tensors.2 The value of ε depends on both

the implementation and sparse tensor features, e.g., mode sizes, non-zero distribution. MT-

TKRPs dominate the running time of CP-ALS: We ran CP-ALS using the state-of-the-art

SPLATT library [156] on all of the tensors in table 3.4 (see § 3.5) and found that MTTKRP

accounted for 69-99% of the total running time. Therefore, we focus on optimizing the

sequence of MTTKRPs.

3.1.2 The time of an MTTKRP sequence grows with tensor order.

Researchers have successfully optimized a single MTTKRP operation through various meth-

ods [41, 80, 85, 156], which reduces the hidden constant of TMTTKRP . However, the over-

all time TCP still grows with the tensor order since CP-ALS executes a sequence of N

MTTKRPs.

Figure 3.1 shows the runtime of an MTTKRP sequence using SPLATT on synthetic, hy-

percubical, sparse tensors generated from Tensor Toolbox [16]. The tensor orders increase

from 10 to 80, while the mode size (1,000), rank size R (16) and number of non-zeros
2SPLATT and DFacTo improve TMTTKRP of a third-order sparse tensor from 3MR to 2(M + P)R ≈

O(MR) where P is the number of non-empty mode-n fibers, P � M . However, this P � M does not
apply when N is large, thus ε ∈ (0, 1) instead.

24

(100,000) remain fixed. These synthetic tensors have ε = 1, thus the runtime of an MT-

TKRP sequence increases close to quadratically with N , since each MTTKRP grows with

N linearly per equation (3.1) and the sequence performs N MTTKRPs. Others have im-

proved an MTTKRP sequence by saving large Khatri-Rao product results [137, 190]. In

this chapter, we propose a new time and space efficient algorithm to solve this problem.

0

5

10

15

20

25

30

SPLATT

8070605040302010
Tensor order

Ti
m

e
(s

ec
)

Figure 3.1: The runtime of SPLATT sequence on synthetic, sparse tensors.

3.1.3 An MTTKRP sequence has arithmetic redundancy.

In the N th-order MTTKRP sequence in algorithm 1, each mode-n MTTKRP shares all but

one factor matrix with the mode-(n− 1) MTTKRP. Figure 3.2 gives an example of factor-

ing a fourth-order tensor, the mode-1 MTTKRP Ã ← X(1)(D � C � B) and the mode-2

MTTKRP B̃ ← X(2)(D � C � Ã) redundantly compute D and C with tensor X. Same

redundancy happens between mode-2 and mode-3, mode-3 and mode-4 MTTKRPs. The-

oretically, if we could save all of the intermediate results from the mode-1 MTTKRP, we

could avoid about 1
2
N2 redundant computations. The number of redundant computations

quadratically increases with the tensor order, which is not well scalable. Our proposed

method seeks to memoize these redundant computations.

25

J

K

I

J

K

I

L

A

C

B

D

J

K

I

J

K

I

L

A

B

C

D

J

K

I

J

K

I

L

A

B

C

D

J

K

I

J

K

I

L

A

B

C

D

(1) (2) (3) (4)

X X
X X

Redundant Computation

Figure 3.2: A fourth-MTTKRP sequence of a CPD.

3.2 MTTKRP Algorithms and Semi-sparse Tensor Format (vCSF)

We introduce two standalone MTTKRP algorithms, which are the building blocks for our

memoization scheme. We also propose vCSF format for semi-sparse tensors, which is an

auxiliary format of CSF.

3.2.1 MTTKRP Algorithms

We first introduce a simplifying building block, quasi tensor times matrix multiplication

(q-TTM) through Hadamard product. Given an (N+1)th-order tensor X ∈ RI1×···×In×···×IN×R

and a matrix U ∈ RIn×R, the q-TTM product in mode n is denoted by Y = X �n U, where

Y ∈ RI1×···×In−1×In+1×···×IN×R is an N th-order tensor. In scalar form, q-TTM is

y(i1, . . . , in−1, in+1, . . . , iN , r) =
In∑
in=1

x(i1, . . . , in−1, in, in+1, . . . , iN , r)u(in, r). (3.2)

By fixing indices i1, . . . , in−1, in+1, . . . , iN , a Hadamard product is taken between each

slice X(i1, . . . , in−1, :, in+1, . . . , iN , :) and the matrix U. Every resulting In × R matrix is

sum-reduced along with mode-n for all ins.

MTTKRP could operate on the non-zeros of a sparse tensor X without explicitly ma-

tricizing. It also avoids explicit Khatri-Rao products, thereby saving space. For example,

26

consider the mode-1 MTTKRP of the fourth-order example:

Ã = X(1)(D�C�B), (3.3)

Smith et al. proposed an MTTKRP algorithm, SPLATT [156], which factors out the inner

multiplication with B and C thereby reducing the number of flops:

Ã(i, r) =
J∑
j=1

B(j, r)
K∑
k=1

C(k, r)
L∑
l=1

X(i, j, k, l)D(l, r). (3.4)

We define two types of standalone MTTKRP algorithms to help clarify our memoization

approach. A memoized MTTKRP is the traditional MTTKRP computed from scratch using

SPLATT [156] and saving its intermediate results, the semi-sparse tensors (algorithm 3). A

partial MTTKRP is the MTTKRP computed based on the saved intermediate results from

a memoized MTTKRP. It generally takes less time than a memoized MTTKRP. (See its

embedded usage in algorithm 4 and 5 in § 3.3.)

Algorithm 3 starts with a TTM, yielding a semi-sparse tensor Y(1) ∈ RI×J×K×R, where

mode-4 is dense. Then, a q-TTM is performed on Y(1) with C to generate the second semi-

sparse tensor, Y(2), with a dense mode-3; then a second q-TTM is performed on Y(2) with B

to produce the final result Ã. In this chapter, we consider an MTTKRP as the integration of

the two products TTM and q-TTM. For an arbitraryN th-order tensor, a memoized MTTKRP

has O(N εMR) , ε ∈ [0, 1) flops, while the number of products is (N − 1).

Algorithm 3 Memoized MTTKRP algorithm using SPLATT.
Input: A fourth-order sparse tensor X ∈ RI×J×K×L, dense factors B ∈ RJ×R,C ∈ RK×R, D ∈ RL×R;
Output: Updated dense factor matrix Ã ∈ RI×R;

. Ã← X(1)(D�C�B)

1: Save Y(1): Y(1) ← X×4 D
2: Save Y(2): Y(2) = Y(1) �3 C
3: Ã = Y(2) �2 B
4: return Ã;

27

3.2.2 Sparse Tensor Product Property

Property SPTTM outputs a semi-sparse tensor whose product mode is dense, while index

modes remain unchanged.

Proof. Assume an SPTTM takes a sparse tensor X, a dense matrix U as inputs and a tensor

Y as output. Mode-n fibers of X and Y tensors are defined as

fXn = X(i1, . . . , in−1, :, in+1, . . . , iN),

fYn = Y(i1, . . . , in−1, :, in+1, . . . , iN),

where i1, . . . , in−1, in+1, . . . , iN are given. fXn is a sparse fiber because of the sparsity of X.

Thus, Equation 2.2 is equal to

fYn (r) =
In∑
in=1

fXn (in)uinr. (3.5)

When r is fixed, element fYn (r) is a dot-product of fiber fXn and u(:, r), a column of U.

Since u(:, r) is a dense vector, each fYn (r) is non-zero if at least one non-zero exists in fiber

fXn . That is, a non-empty fiber fXn generates a dense fiber fYn . For each pair of fixed indices

(i1, . . . , in−1, in+1, . . . , iN), we compute a mode-n fiber of Y, which shows the indices

i1, . . . , in−1, in+1, . . . , iN are unchanged for the resulting tensor Y. Figure 3.3(a) shows the

behavior of a third-order sparse tensor times a dense matrix. The product mode 1 (size-I)

is a dense mode in the resulting tensor Y (size-R), while its index mode 2, 3 (size-J,K) is

the same with the input sparse tensor, except it indexes dense fibers of the output.

Similarly, the q-TTM of a semi-sparse tensor and a dense matrix yields another semi-

sparse tensor whose index modes are unchanged while its product mode(s) disappears.

Figure 3.3(b) shows the behavior of a third-order semi-sparse tensor times a dense matrix.

The product mode 3 (size-K) does not exist in the resulting matrix V, while its index mode

28

J

K

I

RR

J K

I

...

XY U

Product
ModeIndex Mode

R

X UV

R
J K K

... R
J

Product
ModeIndex Mode

(a) Sparse tensor-dense matrix multiply (b) Semi-sparse tensor-dense matrix multiply

Figure 3.3: Sparse tensor product property in third-order tensors.

1, 2 (size-R, J) is the same with the input sparse tensor.

3.2.3 vCSF Format

Besides the algorithms, we need to specify a data structure for the sparse tensors. More

recently, Smith et al. proposed a Compressed Sparse Fiber (CSF) format (figure 3.4(b))

[152] which is memory-efficient and generally leads to a faster MTTKRP compared to COO

format [152, 156]. Therefore, our tensor memoization algorithm assumes CSF for storing

the input sparse tensor; to store the intermediate semi-sparse tensors, we use a variant of

CSF, which we call vCSF, shown in figure 3.4(c).

In CSF, each root-to-leaf path corresponds with a coordinate tuple of a non-zero entry,

where replicated indices at the same level are compressed to reduce storage. When com-

puting a sparse tensor-dense matrix product (TTM), the output tensor Y(1) in algorithm 3

has the same i, j, k indices with X and a dense mode-l (see § 3.2.2). Thus, when storing

a semi-sparse tensor Y(1), we do not need to store indices of all modes since i, j, k can be

reused from X and dense indices l need not to be stored. We refer to this storage scheme

as vCSF, as an auxiliary format of CSF, storing only the non-zero values of an intermediate

semi-sparse tensor.

29

i j k l

1 1 1 1 1

1 2 1 1 2
1 2 2 1 3
2 2 1 1 4

2 2 1 2 5
2 2 2 2 6

val

(a) COO (b) CSF

1i

1 2

1

1

1

1 1

2

2

2

2

2 2

1

1

j

k

l

1 2 3 5 64val

1i

1 2

1 1 2

2

2

21

j

k

l
val

(c) vCSF

Figure 3.4: A sparse tensor X ∈ R2×2×2×2 in COO and CSF formats, tensor Y(1) in vCSF
format without storing indices.

3.3 Memoization for the MTTKRP Sequence

We present two tensor memoization algorithms for the MTTKRP sequence. To simplify the

presentation, we show them assuming the fourth-order example but have implemented the

general algorithm for N th-order tensors.

3.3.1 Two Fourth-Order Tensor Memoization Algorithms

A Simple Memoization Scheme

A simple memoized algorithm appears in algorithm 4, shown for simplicity for the fourth-

order case (N = 4). It saves every intermediate semi-sparse tensor (Y(1) and Y(2)) gener-

ated from the mode-1 MTTKRP using the memoized MTTKRP algorithm (algorithm 3) and

then reuses them to speedup subsequent MTTKRPs using the partial MTTKRP algorithm.

Note that the mode-3 MTTKRP has more flops than the mode-2 one. The mode-4 MT-

TKRP cannot reuse any saved intermediates, therefore, it is computed from scratch using

SPLATT [156], which directly operates on the tensor X and does not save any intermediate

tensors. Figure 3.5 graphically illustrates this algorithm.

30

Algorithm 4 A simple tensor memoization algorithm of a fourth-order sparse MTTKRP

sequence.
Input: A fourth-order sparse tensor X ∈ RI×J×K×L, dense initial factors A ∈ RI×R, B ∈ RJ×R, C ∈

RK×R, D ∈ RL×R;
Output: Updated factors Ã, B̃, C̃, D̃;

. Ã← X(1)(D�C�B).
1: Save Y(1): Y(1) ← X×4 D;
2: Save Y(2): Y(2) ← Y(1) �3 C;
3: Ã← Y(2) �2 B;

. B̃← X(2)(D�C� Ã).
4: Reuse Y(2): B̃← Y(2) �1 Ã

. C̃← X(3)(D� B̃� Ã).
5: Reuse Y(1): C̃← (Y(1) �2 B̃) �1 Ã

. D̃← X(4)(C̃� B̃� Ã).
6: SPLATT: D̃← X(4)(C̃� B̃� Ã)

7: Return: Ã, B̃, C̃, D̃;

J

K

I

J

K

I

L

A

B

C

D

(4)

X

A

B

C

J

K
I

J

K

I
Y(1)

I

R

(3)

AB

I

J

K

I

Y(2)

(2)

J

K

I

J

K

I

J

K

I

J

K

I

L

A

C

B

D

J

K

I

Y(1)

I

Y(2)

X

R

(1)

Memoized
Intermediate Tensors:

Figure 3.5: Graphical description of the simple tensor memoization algorithm.

An Optimal Memoized Scheme

The simple method of algorithm 4, which memoizes all intermediates from one MTTKRP

in a sequence, is not the only or the best approach.

For instance, consider algorithm 5. Whereas algorithm 4 memoizes only the mode-1

MTTKRP, algorithm 5 memoizes with respect to the mode-1 and mode-3 MTTKRPs. In

particular, it saves only one intermediate tensor Y(2) during the mode-1 MTTKRP, which

is then reused in the mode-2 MTTKRP; then, during the mode-3 MTTKRP it saves Z(2).

To be able to apply Z(2) during the mode-4 MTTKRP, we need to permute X, which in

31

our scheme creates another sparse tensor X̃ ∈ RK×J×I×L. (It is possible to avoid this

extra storage cost but we do not consider that in this work to pursue better performance.)

Figure 3.6 graphically illustrates this algorithm.

Algorithm 5 An optimal tensor memoization algorithm of a fourth-order sparse MTTKRP

sequence.
Input: A fourth-order sparse tensor X ∈ RI×J×K×L, dense initial factors A ∈ RI×R, B ∈ RJ×R, C ∈

RK×R, D ∈ RL×R;
Output: Updated factors Ã, B̃, C̃, D̃;

. Ã← X(1)(D�C�B).
1: Save Y(2): Y(2) ← (X×4 D) �3 C;
2: Ã← Y(2) �2 B;

. B̃← X(2)(D�C� Ã).
3: Reuse Y(2): B̃← Y(2) �1 Ã

. C̃← X(3)(B̃� Ã�D).
// Permute X to X̃ ∈ RK×L×I×J .

4: Save Z(2): Z(2) ← (X̃×4 B̃) �3 Ã;
5: C̃← Z(2) �2 D;

. D̃← X(4)(B̃� Ã� C̃).
6: Reuse Z(2): D̃← Z(2) �1 C̃
7: Return: Ã, B̃, C̃, D̃;

J

K

I

J

K

I

L

A

C

B

D

J

R

I

Y(2)

AB

J

R

I

Y(2)
C

D

K

R

L

Z(2)

K
R

L

J

K

I

J

K

I

L

A

B

C

D

Z(2)

(1) (2) (3) (4)

X X

Memoized
Intermediate Tensors:

Figure 3.6: Graphical description of the optimal tensor memoization algorithm.

For better clarification, we summarize the three algorithms (scratch (SPLATT), simple

and optimal tensor memoization algorithms) in figure 3.7. The optimal algorithm needs

8 products counting both TTM and q-TTM products, which is one less than the simple

algorithm, though the permuted sparse tensor X̃ takes some extra space.

For anN th-order tensor, the simple and optimal algorithms (Algorithm 4 and 5) memo-

ize 1 and np ∈ [1, N
2

] MTTKRPs respectively, where np will be determined from § 3.3.2. The

32

simple algorithm only memoizes the mode-1 MTTKRP, and its total number of products of

the MTTKRP sequence grows like O(N2); by contrast, the optimal algorithm memoizes

more MTTKRPs, reducing the number of products toO(N1.5) (see § 3.3.2). That is, this re-

duction is asymptotic in N . As it happens, this choice of memoization strategies is optimal

under certain conditions. However, it also requires extra space to store intermediate tensors

and the permuted tensor(s). Thus, choosing a strategy may require trading space for time.

This motivates our proposed scheme, which tries to find a time-optimal strategy guided by

a user-specified storage limit.

.(D C B).X(1)A~

.(D C .X(2)B~ A)~

.(D .X(3)C~ A)~B~

. .X(4)D~ A)~B~(C~

D C BXA~

Y(1)

Y(2)

B~ Y(2) A~

C~ Y(1) A~B~

XD~ C~ B~ A~

D C BXA~

Y(2)

B~ Y(2) A~

Z(2)

DXC~ A~B~

D~ Z(2) C~

(a) Traditional 4th-order
 MTTKRP sequence

(b) Simple TM algorithm (c) Optimal TM algorithm

Group 2

Group 1

One
Group

TTM
q-TTM

Figure 3.7: Graphical process of the simple and optimal tensor memoization algorithms.
“red circle” represents TTM and “blue block” is q-TTM.

3.3.2 Memoization Strategy Analysis

To see how the choice of memoization strategy can lead to asymptotic reductions in opera-

tion count, consider a simplified analysis for the following problem:

Problem: Find the number of memoized MTTKRPs that minimizes the total

number of products (TTM and q-TTM) in an N th-order MTTKRP sequence.

Though our experiments involve general sparse tensors, for this analysis suppose the input

tensor X ∈ RI×···×I is hypercubical and dense. Since each product may consume different

amounts of flops, we assume an average number of flops per product that is fixed for a

33

given tensor X. We also assume each partial MTTKRP reuses as many of the memoized

intermediate tensors as possible.

A producer mode is the one that uses a memoized MTTKRP and produces intermediate

tensors, while a consumer mode uses a partial MTTKRP that consumes these intermediates.

One producer mode and some consumer modes constitute an MTTKRP group, in which

all the consumer modes reuse the intermediate tensors that the producer mode memoized.

Let the number of producer modes and consumer modes be np and nc, respectively, where

nc = N − np; and let the total number of products in the N th-order MTTKRP sequence

be nO. Thus, np = 1 and nO = O(N2) in algorithm 4 and np = 2 and nO = O(N1.5) in

algorithm 5.

Lemma 3.3.1. Given np producer modes, the minimum nO can be achieved by evenly

assigning producer modes to consumer modes for reuse.

Proof. Consider any assignment of ci consumer modes to the ith producer mode in group-i,

where i = 1, ..., np. Then,

np + nc = np +

np∑
i=1

ci = N. (3.6)

The products in group-i consists of (N − 1) products in the one memoized MTTKRP

plus the products of ci partial MTTKRPs. From figure 3.7(b), the number of products of all

ci consumer modes in group-i is 1 + · · · + ci = ci(ci + 1)/2; thus the number of products

in group-i,

Oi = N − 1 +
ci(ci + 1)

2
. (3.7)

The total number of products of an MTTKRP sequence is

nO =

np∑
i=1

Oi =
1

2

[np∑
i=1

c2
i +

np∑
i=1

ci + 2np(N − 1)

]
. (3.8)

Substituting equation (3.6) yields

nO =
1

2

[np∑
i=1

c2
i + 2npN +N − 3np

]
. (3.9)

34

Since np and N are fixed, minimizing nO is equivalent to minimizing the sum of

squares,
∑np

i=1 c
2
i , subject to the constraint equation (3.6). This elementary optimization

problem has a minimum when c1 = · · · = cnp , by applying the Cauchy-Schwarz inequal-

ity. Therefore, the np producer modes should be evenly assigned to approximately nc

np

consumer modes for reuse in order to minimize nO.

Lemma 3.3.2. n∗p =
√
N/2 minimizes nO for an N th-order MTTKRP sequence.

Proof. For simplicity, assume np divides N . Then, by applying lemma 3.3.1,

ci = N/np − 1, i = 1, . . . , np. (3.10)

Substituting equation (3.10) into equation (3.9),

nO =
1

2

[
N2

np
+ 2(N − 1)np −N

]
, 1 ≤ np ≤

N

2
, (3.11)

where the largest possible N
2

is choosing all np by memoizing every other mode.

By taking the derivative of nO with respect to np, the minimum occurs at

n∗p =
N√

2(N − 1)
≈
√
N

2
. (3.12)

The minimum nO is n∗O ≈
√

2N1.5.

We know nO = N(N + 1)/2 when np = 1 and nO = N2/2 when np = N/2. The

optimal n∗p achieves the minimum n∗O = O(N1.5), which is asymptotically better especially

for higher-order tensors. Lemma 3.3.2 shows that even if we have infinite storage space to

memoize all N/2 MTTKRPs, that would not actually minimize the number of products.

Intuitively, even though consumer modes benefit from the saved intermediate tensors, the

memoized MTTKRP itself consumes (N − 1) operations. This analysis shows there is an

optimal balance.

Given an input tensor, we first calculate the optimal number of memoized MTTKRPs

based on these lemmas, and then design our adaptive tensor memoization algorithm (ADATM)

such as algorithm 5 for fourth-order tensors. As we assumed, this optimal np is calculated

35

on dense, hypercubical tensors, it is not accurate for diverse sparse tensors. In § 3.4, we

construct a model-driven framework to predict the optimal parameters considering input

tensor features and storage efficiency.

3.4 ADATM: Adaptive Tensor Memoization

Based on the discussion of § 3.3, we are motivated to develop a framework to choose an

optimal memoization strategy. This section explains our approach, which we refer to as the

adaptive tensor memoization framework, ADATM.

3.4.1 Parameter Selection

The memoized algorithm has several natural parameters, which can be tuned to trade stor-

age for time:

np The number of producer modes (or memoized MTTKRPs). Lemma 3.3.2 shows that, in

theory, there exists an optimal choice for np; for hypercubical dense tensors, n∗p =
√
N/2.

Therefore, our adaptive framework heuristically considers all np ∈ {1, . . . ,
√
N/2}. (In

our experiments, we find that the optimal np is always smaller than n∗p.)

mo The mode order of a sparse tensor, the same meaning with MO in table 2.1 but not

input-determined. As the discussion of algorithm 5 suggests, one may choose the order

of modes for each memoized MTTKRP. The two memoized MTTKRPs in algorithm 5 are

X ∈ RI×J×K×L and X̃ ∈ RK×L×I×J , with different mode orders in each case. The new

X̃ ∈ RK×L×I×J is created that mode-4 MTTKRP is able to reuse the memoized semi-sparse

tensor Z(2) ∈ RK×L×R. In fact, X̂ ∈ RK×L×J×I can also generate the same Z(2), so we

heuristically choose to contract long modes first, as originally suggested in the SPLATT

work [156]. Thus, if J > I , we prefer X̃ ∈ RK×L×I×J .

36

ni The number of intermediate semi-sparse tensors saved from a memoized MTTKRP.

For every memoized MTTKRP, the choice of ni allows us to trade space for time. The

range of ni is {1, . . . , N/np − 1}.

For any choice of preceding parameters, we have a model that estimates the storage

s(np,mo, ni) in bytes and time t(np,mo, ni) in flops (see below). This capability is what

enables us to quickly search the parameter space. Besides, armed with this model, we are

able to construct a model-driven framework to find good values of these parameters.

3.4.2 A Model-Driven Framework

Our model-driven framework tunes the parameters (np,mo, ni) and then selects an ADATM

implementation, as illustrated in figure 3.8. The inputs are the orderN of a sparse tensor, its

number of non-zeros M , and the target rank R. The user may specify a memory limit and

preferred strategy, e.g., maximize performance or minimize storage by a certain degree.

The framework considers a large set of configurations, then uses a predictive model to

estimate each configuration’s storage and time and prune the candidates that, for instance,

do not meet the memory limit.

M
em

or
y

Li
m

it

Co
n�

gs

Tensor Order

Rank

Nonzero Dist

St
ra

te
gy

AdaTM

Predictive
Model

Pr
ed

ic
te

d
Co

n�
gs

Cn
ad

id
at

e
Co

n�
gs

<np, mo, ni>

Trade-o�

<np, mo, ni, s, t>

Figure 3.8: The model-driven framework of ADATM.

37

3.4.3 Predictive Model

The input sparse tensor is stored in the standard coordinate format, we predict the space s

as the sum of np sparse tensors in CSF format and np × ni semi-sparse tensors in vCSF

format both under the mode order mo. The time t is predicted by adding the flops of all

products, TTMs and q-TTMs. The model for t need not be accurate in an absolute sense;

rather, it need only be accurate enough to produce a correct relative ranking.

We show the formulas used for the estimates of s and t in table 3.2. The number

of fibers at the lth-level of a CSF tree is Ml for l = 1, . . . , N in figure 3.4(b), where

M1 ≤ · · · ≤ MN = M (see [152] for details). We assume the sparse and semi-sparse

tensors in evaluating TTM and q-TTM products are both in order-N and have M non-zeros.

And since a CSF tensor is stored hierarchically, MCSF = 16
∑N

l=1Ml. In q-TTM, the semi-

sparse tensor in vCSF format only stores non-zero values, 8M bytes. One MTTKRP group

consists of one memoized MTTKRP and (N/np − 1) partial MTTKRPs. The memoized

MTTKRP takes 2
∑N

l=2MlR = O(N εMR) time, ε ∈ [0, 1), since Ml ≤ M , when l <

N . The partial MTTKRPs in the same group, adhered to this memoized MTTKRP, have

different non-zeros for each semi-sparse tensor. Finally, we sum all np MTTKRP groups up

and get the time and space of ADATM algorithm for an MTTKRP sequence. When using

SPLATT [156] to compute an MTTKRP sequence, the space is smaller than ADATM with

the price of slower execution. From this table we get

s =

np∑
i=1

M i
CSF + 8

N
np∑

l= N
np
−ni+1

MlR

 (3.13)

t = 2

np∑
i=1

 N∑
l=2

MlR+

N
np
−1∑

l=1

l+1∑
j=2

Mj

R , 2ÑMR. (3.14)

38

Table 3.2: The number of flops and storage size of products and algorithms.
Algorithms #Flops Storage Size (Bytes)

Product TTM 2MR MCSF

q-TTM 2MR 8M

One MTTKRP group Memoized MTTKRP 2
∑N

l=2MlR MCSF + 8
∑ N

np

l= N
np

−ni+1
MlR

Partial MTTKRPs 2
∑ N

np
−1

l=1

∑l+1
j=2MjR -

MTTKRP sequence ADATM 2
∑np

i=1

(∑N
l=2MlR+

∑ N
np

−1

l=1

∑l+1
j=2Mj

)
R

∑np

i=1

(
M i

CSF + 8
∑ N

np

l= N
np

−ni+1
MlR

)
SPLATT [156] 2NMR MCSF

Indices and values use “uint64 t” and “double” respectively. Ml is the number of fibers at the
lth-level of a CSF tree in figure 3.4(b), MCSF = 16

∑N
l=1Ml.

3.4.4 Strategy Guided Trade-off

Having predicted time and space, the framework searches the implementation under two

strategy options: performance-essential, for the maximum performance; space-efficient,

for the close-to-maximum performance but saving more space. In particular, for space-

efficient strategy ADATM chooses the configuration with the smallest predicted space

while having predicted performance no worse than some fraction of the optimal perfor-

mance of all candidate configurations. (Our experiments use a fraction of 90%.)

3.4.5 Parallelization

Two parallel strategies are employed in ADATM: parallelizing among one mode and among

multiple modes. Multiple-mode parallelism becomes possible because a partial MTTKRP

can be parallelized among all the fibers of the saved intermediate tensors. For lower-order

tensors with long modes, this strategy may not be attractive because parallelizing only one

mode can expose enough parallelism for relatively small numbers of cores, as for current

multicore architectures. Since multiple-mode parallelism is finer-grained than single-mode

parallelism, for higher-order tensors with short modes, this strategy has performance ad-

vantages. Additionally, it would most likely map better to manycore co-processors (e.g.,

NVIDIA GPUs, Intel Xeon Phi processors), though we have not explored this possibility

in this work.

39

3.5 Experiments and Analyses

Our experimental evaluation considers (a) reporting the speedup of ADATM over the state-

of-the-art SPLATT and Tensor Toolbox libraries; (b) analyzing the needed storage to obtain

this speedup; (c) evaluating the space-time tradeoff to choose the optimal np; (d) assessing

thread scalability and dimension scalability; and (e) verifying our model. Lastly, we apply

our framework to CPD and show its performance.

3.5.1 Data Sets and Platforms

This evaluation uses the two platforms shown in table 3.3. We mainly show the results on

the Xeon-based system because of its larger memory size and more cores, while the Core-

based system is used to verify the portability of our model. All computations are performed

in double-precision and the rank R is set to 16.

Table 3.3: Experimental Platforms Configuration
Intel Intel

Parameters Xeon E7-4820 Core i7-4770K

Microarchitecture Westmere Haswell
Frequency 2.0 GHz 3.5 GHz

#Physical cores 16 4

Memory size 512 GiB 32 GiB
Memory bandwidth 34.2 GB/s 25.6 GB/s

Compiler gcc 4.4.7 gcc 4.7.3

We use two types of data. The first are third-order sparse tensors from real applications

including Never Ending Language Learning (NELL) project [36] (nell1 and nell2 with noun-

verb-noun) and data crawled from tagging systems [64] (deli with user-item-tag). (Refer

FROSTT [151], the Formidable Repository of Open Sparse Tensors and Tools, for more

details.) The second are higher-order, hyper-sparse tensors constructed from Electronic

Health Records (EHR), with orders as high as 85. (In domains other than data analysis,

constructing higher-order tensors to do low-rank approximation has been extensively used

40

to achieve good data compression [45, 70].) Additional details appear in table 3.4.

Table 3.4: Description of sparse tensors.
Tensors Order Max Mode Size NNZ Density

nell2 3 30K 77M 1.3× 10−05

nell1 3 25M 144M 3.1× 10−13

deli 3 17M 140M 6.1× 10−12

ehr36 36 19 11K 4.7× 10−26

ehr71 71 21 221K 1.4× 10−55

ehr85 85 21 920K 7.9× 10−68

3.5.2 Performance

We test the speedups of ADATM over SPLATT [157] and TENSOR TOOLBOX libraries [16]

for an MTTKRP sequence in figure 3.9.3 SPLATT v1.1.1 is tested under “SPLATT CSF TWOMODE”

mode, which is usually the best case, without preprocessing nor tiling 4 , and Tensor Tool-

box v2.6 is tested in MATLAB R2014a environment. ADATM achieves a speedup up to

1.7× for the third-order tensors and up to 8.0× for the higher-order tensors compared to

the best parallel performance of SPLATT. The higher speedups on higher-order tensors

in figure 3.9(a) show the advantage of ADATM with respect to the tensor order. Ten-

sor deli merely show speedup since ADATM in mode-2 has worse threading scalability

than SPLATT. Compared to TENSOR TOOLBOX, ADATM obtains 93 − 820× speedups,

because TENSOR TOOLBOX uses COO format and a less efficient and sequential MT-

TKRP algorithm. Tensor nell2 achieves an even higher speedup than higher-order tensors

in figure 3.9(b) because of its best threading scalability among all tensors. (Its sequen-

tial speedup over Tensor Toolbox (58×) is much less than that of higher-order tensors

(325− 617×).) We mainly use SPLATT to evaluate our algorithm afterwards.

3We show speedups because the running time of the MTTKRP sequence varies a lot on these tensors.
4Cache tiling is beneficial cooperatively with tensor reordering in [156], which requires expensive pre-

processing.

41

0
1
2
3
4
5
6
7
8

ehr85ehr71ehr36delinell1nell2

Sp
ee

du
p

Sparse Tensors

0

200

400

600

800

1000

ehr85ehr71ehr36delinell1nell2

Sp
ee

du
p

Sparse Tensors
(a) SPLATT (b) Tensor Toolbox

Figure 3.9: Speedup of ADATM over SPLATT and Tensor Toolbox.

3.5.3 Analysis

Storage Table 3.5 shows the needed storage for all tensors, when achieving the best per-

formance in figure 3.9. Traditional software (e.g., TENSOR TOOLBOX) uses COO format,

while SPLATT proposed the more efficient CSF format. Since we use “CSF TWOMODE”

mode for good SPLATT performance, two CSF tensors are created (refer to [152] for de-

tails). Thus, some tensors in CSF format need more space than in COO format. ADATM’s

space is shown as “CSF+vCSF” by summing the space of CSF format for sparse tensors

and vCSF format for semi-sparse tensors. We calculate the ratios of the ADATM’s space

to COO and CSF respectively in the right-most two columns. ADATM uses 102%-411%

space of CSF and 78%-265% of COO, while achieving up to 8× speedup in figure 3.9. We

also calculated the space for tensor nell2 using the “avoid duplicated computation” method

in [190], which stores the large dense matrices generated from Khatri-Rao product chain,

77952 MBytes extra space is needed. This is much larger than the storage size of ADATM

(2581 MBytes). When ADATM is guided by “space-efficient” strategy, we can save some

space without harming much performance.

Choosing np Theoretic optimal n∗p = 7 is calculated from lemma 3.3.2 for tensor ehr85,

figure 3.10 shows the relation between time and space for np in the range [1, 7]. np = 0 is

the time and space of SPLATT. ADATM gets the shortest execution time on np = 2, when

42

Table 3.5: Storage size of sparse tensors.
Storage Size (MBytes) Ratios

Dataset COO CSF CSF+vCSF /CSF /COO

nell2 2290 2540 2581 102% 113%
nell1 4280 6430 8510 132% 199%

deli 4180 5570 11090 199% 265%
ehr36 3.04 1.94 7.97 411% 262%
ehr71 121 62 205 333% 169%
ehr85 604 200 470 236% 78%

np > 2 the running time of ADATM increases as well as its space. Because of this relation,

ADATM can adapt the output configuration according to user-defined tradeoff strategy.

Though the space on np = 2 is 236% of SPLATT’s, ADATM achieves 6.4× speedup.

0

2

4

6

8

10 space

time

76543210

Ti
m

e
(s

ec
) o

r
Sp

ac
e

(G
By

te
s)

np

Figure 3.10: Time and space relation for ehr85.

Scalability We analyze thread scalability and dimension scalability. Figure 3.11 shows

the thread scalability of ADATM and SPLATT on tensors nell2 and ehr85. The numbers

above the bars are the speedup of ADATM over SPLATT when using the same number of

threads. ADATM and SPLATT both obtain good scalability on nell2. However, SPLATT

does not scale at all on ehr85, while ADATM gets the highest performance on 4 threads.

The speedups in the two figures mainly increase with growing thread numbers, showing

ADATM has better scalability using multiple-mode parallelism. Similar behavior is also

observed from the other tensors, demonstrating that the thread scalability of higher-order

43

tensors needs further improvement.

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

SPLATTAdaTM

168421
Number of threads

Ti
m

e
(s

ec
)

1.50x

1.34x

1.51x
1.54x

1.73x

0

3

6

9

12

15
SPLATTAdaTM

168421
Number of threads

Ti
m

e
(s

ec
) 6.46x 7.50x 8.42x

9.25x 6.68x

(a) nell2 (b) ehr85

Figure 3.11: Multithreading scalability of ADATM and SPLATT on nell2 and ehr85.

To better evaluate the dimension scalability, we use the method from [40] in TENSOR

TOOLBOX to create synthetic higher-order sparse tensors. We generate eight sparse hy-

percubical tensors from 10 to 80th-order, all with 100,000 non-zeros and equal mode size

1000. The running time of ADATM and SPLATT is shown in figure 3.12. As tensor or-

der grows, SPLATT’s time increases much faster than ADATM’s, which verifies ADATM’s

good speedup on higher-order tensors.

0

5

10

15

20

25

30 SPLATT
AdaTM

80d70d60d50d40d30d20d10d
Tensor order

Ti
m

e
(s

ec
)

Figure 3.12: ADATM’s dimension scalability on synthetic sparse tensors.

Model Analysis We test all possible nps of tensor ehr85 to record their actual time on

the two platforms and compare with our predicted time in § 3.4. Figure 3.13 draws the

44

relative value by normalizing to each time value on np = 1. Model-predicted time can

find the optimal np, which is 2, and predicts a similar trend to the actual time on the two

platforms. Since the MTTKRP is dominated by TTM and q-TTM products which have

relatively predictable behavior by timing a dense matrix, our model works well. However,

since our model has not considered architecture characteristics, the prediction is constant

for different platforms.

0.5

1.0

1.5

2.0

2.5

Actual-Core i7

Actual-Xeon E7

Predict

7654321

Re
la

tiv
e

np

Figure 3.13: Accuracy of ADATM model on Xeon E7-4820 and Core i7-4770K.

3.5.4 CPD

We compare the running time of CP-ALS using ADATM and SPLATT in figure 3.14. Since

the MTTKRP sequence dominates CP-ALS, ADATM shows good speedups especially on

higher-order tensors. ADATM speedups CP-ALS by 4%− 69% for the third-order tensors

and 2− 8× for the higher-order tensors. The speedups are similar to or slightly lower than

those of MTTKRP sequence in figure 3.9(a). This figure shows ADATM is applicable to

tensor decompositions in real applications.

3.6 Related Work

Researchers have successfully optimized a single MTTKRP operation through various meth-

ods. TENSOR TOOLBOX [16] and Tensorlab [171] implemented MTTKRP in the most pop-

ular COO format by multiple sparse tensor-vector products using MATLAB, with a high

45

0
1
2
3
4
5
6
7
8

ehr85ehr71ehr36delinell1nell2

Sp
ee

du
p

Sparse Tensors

Figure 3.14: CP-ALS runtime using SPLATT and ADATM.

number of flops O(NMR). SPLATT [152, 156], the implementation achieving the highest

performance so far, algorithmically improved MTTKRP by factoring out inner multiplica-

tions and proposed a more compressed CSF format, reducing MTTKRP to O(N εMR) , ε ∈

[0, 1) flops. GigaTensor [80] reformulated MTTKRP as a series of Hadamard products to

utilize the massive parallelism of MapReduce. However, this algorithm is not suitable

for multicore machines because of its high complexity (O(5MR) for third-order tensors).

DFacTo [41] considered MTTKRP as a series of sparse matrix-vector multiplications for

distributed systems. Though it has the same number of flops as SPLATT, the explicit matri-

cization takes non-negligible time. HyperTensor [85] investigated fine- and coarse-grained

distributed algorithms also for distributed systems, while its MTTKRP implementation is

based on COO format. These approaches require O
(
N (1+ε)MR

)
, ε ∈ [0, 1] flops for the

MTTKRP sequence. Our work is based on the SPLATT algorithm by memoizing intermedi-

ate results to explore data reuse and reduces this flop-complexity to O
(
ÑMR

)
, where Ñ

is generally much less than N (1+ε).

Recently, S. Zhou et al. [190] and A. Phan et al. [137] exploited data reuse for the

MTTKRP sequence by storing the results of dense Khatri-Rao products. The extra stor-

age is Θ
(
I(N−1)R

)
and Ω

(
I

N
2 R
)

respectively for a hypercubical sparse tensor, which is

extremely larger than the number of non-zeros and exponentially grows with tensor or-

der N . ADATM efficiently stores intermediate semi-sparse tensors instead and in a very

46

compressed pattern to avoid redundant computation and also memory blowup. Baskaran

et al. [21] and Kaya et al. [84] also brought similar ideas to save intermediate results in

Tucker decomposition. However, our work does a detailed analysis on the most signifi-

cant factor – the space and time tradeoff. Very recently, Kaya et al. [86] applied the above

method in CP decomposition by using dimension trees and considered MTTKRP as a group

of tensor-times-vector products. Our work uses TTM and q-TTM for better data locality,

and ADATM allows user-defined strategy for the space-time tuning in our model-driven

framework.

3.7 Summary

The methods underlying ADATM derive performance improvements from three key ideas.

First, we consider not just a single MTTKRP, but the sequence as it arises in the context of

CPD. Indeed, the lemmas in § 3.3 and the optimization method apply to other algorithms

that might involve a Khatri-Rao product chain, such as the CP-APR algorithm [40]. Sec-

ondly, we develop an “any-space” memoization technique that permits a gradual tradeoff of

storage for time. A user or higher-level library may therefore control our method according

to whichever criterion is more important in a given application. Thirdly, we parameterize

our algorithm and build a model-driven and user-guided framework for it. This technique

gives end-user application developers some flexibility in how they employ our algorithm.

47

CHAPTER 4

A NOVEL SPARSE TENSOR FORMAT — HICOO

A central problem in sparse tensor computations is designing a data structure that is com-

pact, locality-enhancing, and easy to integrate into applications. The problem of picking a

sparse tensor data structure is similar to the classical one of how to choose a sparse matrix

format. There are many options for sparse matrices that tradeoff size, speed, and “fit” to the

non-zero structure of a given input matrix and requirements of the applications [12, 13, 30–

33, 43, 88, 93, 105, 109, 110, 117, 120, 147, 172, 173, 178, 180–182, 187]. Similarly,

there are several proposals for sparse tensor storage [15, 21, 103, 107, 152]. This chapter

proposes a new alternative. We refer to it as hierarchical coordinate format, or HICOO

(pronounced “haiku”).1

The design of HICOO is motivated by two critical issues that affect one’s choice of

format: compactness and mode orientation. Compactness refers to keeping the total bytes

small. Mode orientation is the idea that a format favors iteration of the tensor modes in a

particular order, as we explain next.

First consider the simpler case of mode orientation for sparse matrices. We say that

a matrix has two modes, or “axes”, namely, its rows and its columns. Let us number the

modes, referring to the rows as the first mode, or “mode 1,” and the columns as “mode 2.”

If the matrix is sparse, you might store it in compressed sparse row (CSR) format [147],

where each row is a sparse vector and rows are packed contiguously one after the other.

You can randomly access any row i from only its index in O(1) time; however, to find

an (i, j) element, you must search the sparse vector representing row i’s non-zeros to find

j. If one wishes simply to iterate over all non-zeros, as a sparse matrix-vector multiply

might do, it is the most efficient to have an outer-loop over rows and an inner-loop over the

1At the time of this writing, this work has been accepted for publication [104].

48

sparse non-zeros within the row. Therefore, we say CSR is oriented first toward mode 1,

then mode 2; its mode orientation may be denoted by 1 ≺ 2 (1 precedes 2), reflecting this

loop-order structure. A compressed sparse column (CSC) matrix orients modes as 2 ≺ 1.

The idea of mode orientation generalizes for tensors. Consider an N th-order tensor to

be anN -way array, meaning it hasN modes. CSR generalizes toN modes naturally; in the

literature, this format is known as compressed sparse fiber (CSF) [152], which is parame-

terized by some mode orientation. For instance, a CSF-1 tensor has a mode orientation of

1 ≺ 2 ≺ 3 ≺ · · · ≺ N , with some ordering convention for other cases, CSF-k.

Mode orientation matters because sparse tensor analysis methods may require iterating

over the modes in several orientations during the same computation [15]. The MTTKRP

sequence in CPD is one motivating example. For a fixed storage format, iteration might be

fast in one orientation but slow when the orientation switches. For a low-order (small-N)

tensor, e.g., a matrix, it might be feasible to store multiple copies of the matrix to mitigate

this effect. For example, one might store the matrix in both CSR and CSC formats and use

the appropriate one when it applies, so the order no longer matters. But for tensors, as the

order N grows, a multiple-copy strategy can become infeasible.

One can avoid mode orientation altogether. The simplest, and arguably most popular,

storage format for sparse tensors is COOrdinate (COO) format [15, 77, 171]. COO records

each non-zero as a tuple, (i1, i2, . . . , iN ; v), where ik is an index coordinate and v is the

non-zero value. Thus, it has a neutral or “agnostic” mode orientation. However, the price is

that it is less compact than formats like CSF, which can exploit mode orientation to reduce

the average amount of index metadata (i.e., the ik values) per non-zero.

Our proposed HICOO format tries, heuristically, to achieve both compactness and neu-

tral mode orientation. By contrast, essentially all proposed formats [15, 107, 152] can

achieve compactness but not, simultaneously, neutral mode orientation, at least not without

paying a performance penalty. This situation includes CSF [152] from above, as well as

the more recent flagged-coordinate (F-COO) format [107]. For example, consider the com-

49

monly occuring tensor operation MTTKRP (§ 2.2.4). Performing it in a given mode using

the CSF representation oriented toward a different mode can suffer 3× slowdown for tensor

choa in mode 2. A tensor operation for an F-COO representation can only be performed in

a designated mode orientation implied in its representation (§ 4.1).

Our claimed contributions of HICOO and the present study may be summarized as

follows.

• We first compare and analyze COO, CSF, and F-COO formats, along the criteria of

compactness and mode orientation, as well as their expected behavior on real tensor

computations, such as the matricized tensor-times-Khatri-Rao product (MTTKRP),

which motivates this work (§ 4.1).

• We describe HICOO, which compresses tensor indices in units of sparse tensor

blocks and exploits shorter integer types to express offsets within the blocks. Since

HICOO has a neutral mode orientation, only one HICOO representation is needed

(§ 4.2).

• We accelerate MTTKRP on multicore CPU architectures based on HICOO. Using a

superblock scheduler and two parallelization strategies, our parallel HICOO-MTTKRP

exhibits better thread scalability than COO- and CSF-based MTTKRPs (§ 4.3).

• Overall, HICOO achieves up to 23.0× (6.8× on average) speedup over COO and

15.6× (3.1× on average) speedup over CSF for a single MTTKRP operation; it can

also use up to 2.5× less storage than COO format and comparable storage with only

one CSF representation. When MTTKRP is integrated into a complete tensor decom-

position algorithm (known as “CPD”), the HICOO-based implementation is also

faster than COO- and CSF-based implementations (§ 4.4).

• HICOO and these CPD and MTTKRP algorithms are implemented in PARTI! library

(will be discussed in Chapter 8).

50

Table 4.1 summarizes the symbols and notations only in Chapter 4, other general symbols

are listed in table 2.1.

Table 4.1: List of symbols and notations in Chapter 4.

Symbols Description

Input parameters
Ml #Nodes at level l of a CSF tree of tensor X
P #CPU threads

Scache Cache size

HICOO Data structures
einds Element indices of HICOO, βbyte bits
binds Block indices of HICOO, βint bits
bptr Block pointers of HICOO, βlong bits
lptr Superblock pointers of HICOO, βlong bits

lschr Superblock scheduler of HICOO, βint bits

HICOO parameters
L Tensor superblock size
B Tensor block size, B � L
c Average slice size, c = M

In
nl #Nonzero tensor superblocks
nb #Nonzero tensor blocks
αb Block ratio, αb = nb

M

Mb Geometric mean of #Nonzeros per tensor block
cb Average slice size per tensor block, cb = Mb

B

4.1 Sparse Tensor Format Comparison

Let us regard COO as the baseline storage format and compare it analytically to two state-

of-the-art formats: CSF [152] and F-COO [107], described in § 2.1.3. We consider general

unstructured sparse tensors and assess the formats in terms of their storage and behavior

for the MTTKRP operation, e.g., floating-point operations or flops, memory traffic, and

arithmetic intensity. The results motivate the present work on HICOO.

For simplicity, this analysis assumes anN th-order sparse tensor X ∈ RI1×···×IN withM

non-zeros. We assume an integer index needs βint bits and a non-zero floating-point value

takes βfloat bits. Lastly, we use βlong bits for a pointer to index all non-zeros in a very large

tensor. The summarized comparison of Table 4.2 substitutes values for them that reflect

typical choices based on standard primitive types.

51

Table 4.2: The analysis of tensor formats and their MTTKRP algorithms for a third-order
tensor (N = 3) with M nonzero entries. The word size parameters are βint = 32, βlong =
64, βbyte = 8, and βfloat = 32 bits for single-precision floating-point values and discarding
insignificant items.

Data Structure MTTKRP Behavior

Format
Index Update Work Memory Arithmetic

Space (Bits) Needed? (Flops) Access (Bytes) Intensity (AI)

COO 96M NO 3MR 12MR 1/4
F-COO 65M YES 3MR 12MR 1/4

CSF [32M, 128M] YES1 [2MR, 4MR] [8MR, 16MR] 1/4
HICOO [24M, 184M] NO 3MR min{ 12

cb
, 12}MR max{ 1

4 ,
cb
4 }

1 MTTKRPs in all tensor modes can use less CSF representations than tensor order or even only one CSF
representation with performance payoff.

4.1.1 Summary

We begin with an overall summary of our observations, followed by the detailed analysis.

• Observation 1: CSF generally achieves the best compression for a single represen-

tation, but it is worse than COO by storing multiple representations for all modes.

However, using only one CSF representation could suffer a performance penalty.

(Table 4.2, column “Index Space”)

• Observation 2: CSF and F-COO need extra time and space to construct another

representation for the same tensor operation but in a different mode. That is, neither

format is, on its own, neutral to mode orientation. (See table 4.2, “Update Needed?”)

• Observation 3: MTTKRP implementations based on COO, CSF, and F-COO formats

are expected to have arithmetic intensities of approximately 0.25 flops per byte, which

means they will be memory-bound on most platforms. Reducing memory traffic by

enhancing data locality could be beneficial for MTTKRP. (See table 4.2, “Arithmetic

Intensity”)

52

4.1.2 COO Format

The COOrdinate (COO) format is the simplest yet arguably most popular format, which

is described in § 2.1.3 and figure 2.5(a). It stores each non-zero value along with all of its

position indices. COO does not favor any mode over the others, which gives it a neutral

mode orientation.

COO format analysis Storing all the indices uses

Scoo = N ·M · βint (4.1)

bits.

Algorithm 6 COO-MTTKRP algorithm([15]).
Input: A third-order sparse tensor X ∈ RI×J×K , dense matrices B ∈ RJ×R,C ∈ RK×R;
Output: Updated dense matrix Ã ∈ RI×R;

. Ã← X(1)(C�B)
1: for x = 1, . . . ,M do
2: i = inds(x, 1), j = inds(x, 2), k = inds(x, 3);
3: for r = 1, . . . , R do
4: Ã(i, r)+ = val(x)C(k, r)B(j, r)

5: return Ã;

COO

B

j=0
R

C

k=1

R

A

i=3

R

*7 ()Entry-wise

i j k val

0 0 0 1

0 1 0 2

1 0 0 3

1 0 2 4

2 1 0 5

2 2 2 6

3 0 1

3 3 2

7

8

7

Figure 4.1: A COO-MTTKRP example in mode 1 showing the operations on one non-zero
tensor entry 7. Its corresponding matrix rows are plotted as solid boxes inside.

53

COO-MTTKRP For illustration purposes, the pseudocode of COO-MTTKRP for third-

order tensors appears in Algorithm 6 and its graphical plot is in figure 4.1. MTTKRP multi-

plies every non-zero entry at position (i, j, k) with row-j of B and row-k of C, then reduces

the rows to row-i of Ã. The three rows may be irregularly distributed in the matrices de-

pending on the sparsity pattern of X.

For a general N , a rank-R COO-MTTKRP performs

Flopscoo = N ·M ·R (4.2)

flops, where N operations per non-zero for a matrix column consist of (N − 1) multipli-

cations and one addition. Assume no reuse exists in Ã, B, and C,2 its memory traffic is

Bytescoo =
M

8
(Nβint︸︷︷︸

indices

+ βfloat︸︷︷︸
values

+NRβfloat︸ ︷︷ ︸
matrices

) (4.3)

bytes, by counting the instant read and write operations of Ã as a one-time memory access.

Therefore, its arithmetic intensity (AI), or ratio of the number of flops to the number of

memory accesses, is about 1/4 when βint, βfloat = 32 bits (as listed in Table 4.2).

4.1.3 CSF Format

CSF (compressed sparse fiber) is a hierarchical, fiber-centric format (described in § 2.1.3

and figure 2.5(b)) implemented in the SPLATT package [157], which has a strong mode

orientation.

For an N th-order tensor, N CSF trees would be needed for the best performance if the

tensor operation of interest needs to be iterated over the tensor multiple times, once in each

mode, as stated in [154]. An analogy would be a computation that needed both parallel

matrix-vector and matrix-transpose-vector multiplies without write conflicts; a simple and

2Even though this is the worst case of memory traffic, it is reasonable as an approximation of real sparse
tensors which typically have a very small degree of data reuse in MTTKRP. Similar assumption is also made
for the following CSF and F-COO analysis.

54

fast approach would be to store the matrix in both CSR and CSC formats at the cost of

doubling the space as suggested in [174]. However, storing multiple CSF trees consumes a

large extra storage space (as will be shown in Table 4.4).

CSF format analysis The CSF format uses

Scsf =
N−1∑
l=1

(Ml + 1) · βlong︸ ︷︷ ︸
pointers

+
N∑
l=1

Ml · βint︸ ︷︷ ︸
indices

(4.4)

bits for a single CSF tree, where Ml represents the number of nodes at level l in Fig-

ure 2.5(b). Ml = M when l = N , and Ml = In when l = 1. Besides indices for all N

levels, CSF stores pointers at non-leaf levels to index the beginning locations of every sub-

tree, i.e., sub-tensor. These pointers are analogous to the row pointers in CSR for sparse

matrices. If a tensor has Ml � M, l = 1, . . . , N − 1, CSF achieves good compression;

otherwise, if Ml ≈ M , it may need even more storage than COO because of the overhead

of storing additional pointers with more bits (βlong instead of βint). These two extreme cases

are shown in Table 4.2 as lower and upper bounds. When maintaining multiple CSF trees

for higher MTTKRP performance, the total storage will be their sum.

CSF-MTTKRP CSF-MTTKRP performs

Flopscsf = 2R
N∑
l=2

Ml (4.5)

flops [156]. It incurs

Bytescsf =
1

8
[βlong

N−1∑
l=1

Ml︸ ︷︷ ︸
pointers

+ βint

N∑
l=1

Ml︸ ︷︷ ︸
indices

+Mβfloat︸ ︷︷ ︸
values

+ (2R
N∑
l=2

Ml)βfloat︸ ︷︷ ︸
matrices

] (4.6)

55

bytes of memory accesses 3 [152, 156]. Therefore, its arithmetic intensity (AI) is also

about 1/4 when βint, βfloat = 32 bits, βlong = 64 bits.

4.1.4 F-COO Format

Flagged-COOrdinate (F-COO) format, recently proposed in [107], which is described in

§ 2.1.3 and figure 2.5(c) as an example of a F-COO representation for mode-1 MTTKRP.

Intuitively, bf and sf indicate any changes in the index mode(s), then FCOO-MTTKRP uses

segmented scan primitive to avoid locks or atomic operations.

F-COO format analysis We only analyze F-COO for the MTTKRP operation in this

work, interested readers could refer to [107] for other scenarios, e.g., tensor-times-matrix

multiplication (TTM). The F-COO format uses

Sfcoo = M [(N − 1)βint︸ ︷︷ ︸
indices

+ 1︸︷︷︸
bit-flag

+
1

Mthread︸ ︷︷ ︸
start-flag

] (4.7)

bits to hold the indices, where Mthread is the number of non-zeros assigned to a thread. It

is strongly mode-oriented, thus a F-COO representation is required for every mode of a

tensor operation.

F-COO MTTKRP MTTKRP based on F-COO performs

Flopsfcoo = N ·M ·R (4.8)

3CSF-MTTKRP in SPLATT uses a R-array to accumulate intermediate results of inter-nodes. Since this
small R-array could be easily cached between two adjacent node levels, only one of the two reads is counted.

56

flops, which is the same as COO-MTTKRP. It moves

Bytesfcoo =
M

8

(N − 1) · βint + 1 +
1

Mthread︸ ︷︷ ︸
indices and flags

+ N ·R · βfloat︸ ︷︷ ︸
matrices

 (4.9)

bytes of data to and from memory. Therefore, its AI is about 1/4 when βint, βfloat = 32 bits.

From the above three observations and detailed analysis, we propose a new sparse ten-

sor format HICOO to overcome the drawbacks of current formats, maintain neutral mode

orientation, meanwhile, pursue higher performance by optimizing memory locality.

4.2 HICOO Format

HICOO stores a sparse tensor in a sparse-blocked pattern with a pre-specified block size

B, meaning in B × · · · ×B blocks (only hypercubical blocks are considered in this work).

It represents every block by compactly storing its non-zero triples using fewer bits. A

tensor is sorted and then partitioned and compressed by every mode into sized-B chunks,

resulting in at most I1
B
×· · ·× IN

B
(assume all Ins are dividable byB) non-zero tensor blocks.

Figure 4.2 shows the same third-order tensor example as figure 2.5 given 2× 2× 2 blocks

(B = 2). For a third-order tensor, bi, bj, bk are block indices in βint bits, indexing tensor

blocks, and ei, ej, ek are element indices in βbyte bits, indexing non-zeros within a tensor

block. A bptr array in βlong bits stores the pointers of every block’s beginning locations,

and val saves all the non-zero values, which is the same as COO’s val array. HICOO treats

every mode equally and does not assume any mode order, these preserve the neutral mode

orientation of COO.

57

HiCOO

ek val
0 0 0 1
0 1 0 2
1 0 0 3
1 0 0 4
0 1 0 5
1 0 1 7
0 0 0
1 1 0

6
8

0 0 0

0 0 1
1 0 0

1 1 1

0

3
4

6

ei ejbi bj bkbptr

B1

B2

B3

B4

i j k val
0 0 0 1
0 1 0 2
1 0 0 3
1 0 2 4
2 1 0 5
3 0 1 7
2 2 2
3 3 2

6
8

Compress

i = bi*B+ei; j = bj*B+ej; k= bk*B+ek
COO

i j k val
0 0 0 1
0 1 0 2
1 0 0 3
1 0 2 4
2 1 0 5
2 2 2 6
3 0 1
3 3 2

7
8

Z-Order
Sorting

i j k val
0 0 0 1
0 1 0 2
1 0 0 3
1 0 2 4
2 1 0 5
3 0 1 7
2 2 2
3 3 2

6
8

0

3
4

6

bptr

Partition

int long int bytefloat float

Figure 4.2: The conversion between COO and HICOO formats for an example third-order
tensor. HICOO uses 2× 2× 2 blocks (B = 2) with word sizes marked above.

4.2.1 Conversion

Sorting, partitioning, and compression are the three steps to convert from a COO tensor to a

HICOO tensor. We first sort all non-zeros of a COO tensor in Z-Morton order [119] using a

variation of quick sort. A Morton key is computed from non-zero indices and is used for the

comparison of sorting. In Figure 4.2, the sorted COO tensor switches two non-zero entries

(marked in red). We then partition the sorted tensor into sparse tensor blocks according to

the given block size B and record the block pointers bptr simultaneously. Since we limit

the block size to a power-of-two constant, this partitioning maintains the sorted Z-order

between tensor blocks and among the non-zeros within a block. Lastly, we compress COO

indices into block and element indices correspondingly. By having a HICOO tensor, no

need to explicitly convert it back to a COO tensor. The COO indices of a non-zero entry

can be calculated from i = bi ·B + ei, j = bj ·B + ej, and k = bk ·B + ek.

In the HICOO format, Z-Morton sorting contributes better data locality for tensor algo-

rithms, while compressed indices save the storage space of a sparse tensor and also reduce

the memory bandwidth of tensor access.

58

4.2.2 Improvement of CSB

Our proposed Hierarchical COOrdinate (HICOO) format may be viewed as an extension

of the Compressed Sparse Blocks (CSB) format for sparse matrices [30]. Two critical

features of CSB inspired us: 1) it targets large matrices with hypersparse matrix blocks;

2) CSB is neutral to mode orientation and allows efficient computation of both Sparse

Matrix-Vector Multiplication (SpMV) and Sparse Matrix-Transpose-Vector Multiplication

(SpMTV) using a single CSB representation.

One distinction between HICOO and CSB is that the latter uses relatively larger matrix

blocks. In CSB, block sizes are typically around
√
I ×
√
I for an I × I sparse matrix [30].

By contrast, we find that smaller blocks are more suitable for sparse tensors, both for rea-

sons related to better cache usage and better support for higher-order tensor operations.

However, small blocks pose two issues of a straightforward extension of CSB: 1) First,

CSB is not storage-efficient for small blocks as stated in [30]. Small blocks certainly lead

to more compressed non-zero indices by being capable of using fewer bits, however, the

storage of block indices, which is saved contiguously as a dense array, increases much

faster. Therefore, the overall storage of CSB is not beneficial from small blocks. 2) Sec-

ondly, small blocks imply a relatively fine-grained parallelism. On our target multicore

platforms, heavyweight CPU threads are not efficient to schedule a huge number of threads

with a small workload of each.

To solve these challenges, HICOO improves from CSB idea in two aspects.

• First, HICOO further compacts block indices, thus requiring even less storage space

than CSB. We compact block indices in coordinate pattern to control their storage

rise for small blocks and also uses fewer bits when possible.

• Second, for efficient CPU multithreading, HICOO uses a two-level blocking strat-

egy and a small amount of extra space to save runtime scheduling information. We

group a set of small blocks into a large yet logical superblock. The blocks within a

59

superblock are always scheduled together and assigned to a single thread. Within a

superblock, we physically store non-zeros in the same pattern as shown in figure 4.2.

This two-level blocking strategy will be better explained in § 4.3.2 since it is more

related to algorithm parallelization.

4.2.3 Analysis

Our analysis of HICOO will be expressed in terms of parameters listed in table 4.1. We

first explain these parameters and give the format analysis afterwards.

The Average Slice Size (c) is a tensor-dependent parameter. It is an analogy of “row

length” of a sparse matrix. c is the average slice size in a particular mode n, c = M
In

. c

could vary considerably, from being a constant (c = O(1)) if there are only a few non-

zeros per slice, to being as large as c = O(I2) if slices are dense. The value c effectively

measures non-zero density, especially for irregularly shaped sparse tensors.

The Number of Tensor Blocks (nb) depends on the input tensor and HICOO-specific

block size B. The example in figure 4.2 has nb = 4 tensor blocks.

The Block Ratio (αb) is the ratio of the number of tensor blocks to the number of total

non-zero elements, αb = nb

M
. Block ratio directly affects the storage size of HICOO, which

will be shown in Equation (4.10). For a given sparse tensor with a fixed M , αb is not solely

determined by the block size B, but also related to non-zero distribution.

The Geometric Mean of Numbers of Non-zeros per Block (Mb) depends on non-zero

distribution and block size B. We choose geometric mean because it is sensitive to skewed

data and aware of unevenness distribution. From our experiments on real tensors in ta-

ble 4.3, the numbers of non-zeros per block are generally skewed downward, with many

small values and a few large ones, and unevenly distributed. The four tensor blocks in

figure 4.2 consist of 3, 1, 2, 2 non-zeros respectively, thus Mb = 1.9.

The Average Slice Size per Tensor Block (cb) is analogous to c: it is the average slice

size in a block, cb = Mb

B
. The value cb reflects the non-zero density of a block. It is also

60

crucial to MTTKRP performance (details in § 4.3). Note that c = O(1) (or O(I2)) does not

necessarily mean cb = O(1) (or O(B2)) because of potential nonuniform local and global

non-zero distributions.

The HICOO format uses

Shicoo = (nb + 1) · βlong︸ ︷︷ ︸
bptr

+N · nb · βint︸ ︷︷ ︸
block indices

+N ·M · βbyte︸ ︷︷ ︸
element indices

≈M [αb · βlong + αbN · βint +N · βbyte]

(4.10)

bits of storage. The index space shown in table 4.2 takes two extreme values 0 and 1 of αb

to get its lower and upper bounds. This amount will be smaller than COO when Shicoo < Scoo,

or

αb <
βint − βbyte

βint + 1
N
βlong

. (4.11)

For a third-order tensor (N = 3) with βint = 32 bits, βlong = 64 bits, βbyte = 8 bits, then αb <

0.45. This means if there are more than 2 non-zeros per block on average, theoretically,

HICOO consumes less space than COO. The threshold of αb grows with tensor order N ,

i.e., the sparsity restriction of HICOO becomes looser with increasing dimensionality.

Overall, HICOO takes small storage space, explicitly exposes a better data locality

for every tensor mode, and has a neutral mode orientation. HICOO, as a general sparse

tensor format, is able to support diverse types of tensor operations and various computing

platforms. In this chapter, we choose one of the most important tensor operations MTTKRP

as a proof-of-concept.

4.3 HICOO-MTTKRP Algorithms on Multicore CPUs

We use the HICOO format for the MTTKRP operation and introduce our optimization

methods for sequential and multicore parallel algorithms.

61

HiCOO

ek val
0 0 0 1
0 1 0 2
1 0 0 3
1 0 0 4
0 1 0 5
1 0 1 7
0 0 0
1 1 0

6
8

0 0 0

0 0 1
1 0 0

1 1 1

0

3
4

6

ei ejbi bj bkbptr

B1

B2

B3

B4

B

bj=ej
=0

R

C

ek=1
bk=0

R

A

ei=1
bi=1

R

7

*7 ()

Ab

Bb Cb

Entry-wise

Figure 4.3: A HICOO-MTTKRP example in mode 1 showing the operations on one non-
zero tensor entry 7. Its corresponding matrix blocks Ab,Bb,Cb are shown as bounded
blank boxes, and its corresponding matrix rows are plotted as solid boxes inside.

4.3.1 Sequential Algorithm

Figure 4.3 depicts HICOO-MTTKRP algorithm on the example 4 × 4 × 3 HICOO tensor

from figure 4.2. Taking the non-zero entry with a value 7 in block B3 as an example,

its block indices are (1, 0, 0) and element indices are (1, 0, 1). Block indices (bi, bj, bk)

identify the beginning locations of blocked matrices Ab,Bb,Cb (marked as blank boxes)

by offsetting bi · B, bj · B, bk · B rows from A,B,C. Every tensor block only accesses

blocked matrices Ab,Bb,Cb ∈ RB×R. Then the non-zeros within a block can be indexed

only by element indices (ei, ej, ek). The matrix rows needed by this non-zero element

are plotted as solid boxes. At the bottom of figure 4.3, the two rows of C and B first

do element-wise product, then their resulting vector is scaled by the non-zero value 7 to

update one row of A. We use SIMD directives to accelerate the vector operations of each

non-zero entry. Sequential HICOO-MTTKRP algorithm for a third-order tensor is shown

in Algorithm 7.

If block size B is configured to keep Ab,Bb,Cb cached in local memory, they can be

re-used multiple times without memory transfers. Assume the number of non-zeros of a

tensor block isMb, and every slice in the block has an equal size cb, thus the memory traffic

62

Algorithm 7 Sequential HICOO-MTTKRP algorithm.
Input: A third-order HICOO sparse tensor X ∈ RI×J×K , dense matrices B ∈ RJ×R,C ∈ RK×R, block

size B;
Output: Updated dense matrix Ã ∈ RI×R;

. Ã← X(1)(C�B)
1: for b = 1, . . . , nb do . block b
2: bi = binds(b, 1), bj = binds(b, 2), bk = binds(b, 3);
3: Ab = A + bi ·B ·R; Bb = B + bj ·B ·R; Cb = C + bk ·B ·R;
4: for x = bptr[b], . . . , bptr[b+ 1]− 1 do . entry x
5: ei = einds(x, 1), ej = einds(x, 2), ek = einds(x, 3)
6: for r = 1, . . . , R do
7: Ãb(ei, r)+ = val(x)Cb(ek, r)Bb(ej, r)

8: return Ã;

of one blocked matrix is NRmin{B,Mb}βfloat bits. When Mb > B, or equally cb > 1,

at most NBR values are transferred from memory for this blocked matrix because all its

values are already cached after the first transfers; otherwise, if cb < 1, all NRMb values

will be transfered from memory as COO-MTTKRP and no reuse for them. Tensor blocking

exploits data locality in memory transfers for the matrix operands, and also benefits the

parallel algorithms that follow.

Analysis. Sequential HICOO-MTTKRP algorithm has

Flopshicoo = N ·M ·R (4.12)

flops, identical to COO-MTTKRP algorithm in Equation (4.2). Since HICOO-MTTKRP

exploits matrix reuse, its memory traffic is

Byteshicoo =
nb
8

[βlong︸︷︷︸
one bptr value

+ 2N · βint︸ ︷︷ ︸
block indices and blocked matrices pointers

+ Mb(N · βbyte + βfloat)︸ ︷︷ ︸
element indices and values per block

+NRmin{B,Mb} · βfloat︸ ︷︷ ︸
blocked matrix values

]

≈ M

8
[αb · βlong + 2αbN · βint +N · βbyte + βfloat

+NRmin{ 1

cb
, 1} · βfloat]

≈ M

8
[2αb · βint + βbyte +Rmin{ 1

cb
, 1} · βfloat]N

(4.13)

bytes, where nb ×Mb ≈ M, αb = nb

M
. Generally, the last term of loading factor matrices

63

dominates its memory traffic. Therefore, its arithmetic intensity (AI) is about max{1
4
, cb

4
}

when βint, βfloat = 32 bits, βbyte = 8 bits, which is listed in table 4.2. When cb > 1, HICOO-

MTTKRP has higher arithmetic intensity than all the state-of-the-art MTTKRP algorithms.

4.3.2 Parallel Algorithm

As mentioned in § 4.2, our small tensor blocks are good for data locality but have parallel is-

sues on multicore CPUs. Parallelizing small tensor blocks of sequential HICOO-MTTKRP

(Line 1 in Algorithm 7) occurs a huge number of small workloads per thread, which is not

efficient for heavyweight CPU threads. Besides, parallelizing either the first (line 1) or the

second loop (line 4) leads to write conflicts, multiple threads may write the same blocked

matrix Ãb or even the same row of it. Because the rank R is very small, parallelizing the

R-loop (line 6) is not efficient and causes false-sharing for Ãb. A simple solution is to use

expensive locks or atomic operations to protect Ãb. Our work completely removes write

conflicts by taking advantage of pre-knowledge from HICOO construction process.

Logical Superblocks. We increase the workload granularity of scheduling and employ

two-level blocking that groups small blocks into larger ones which we call superblocks. A

superblock is essentially a “logical” subtensor that can potentially consist of many small

blocks. During HICOO format conversion, we first extractL×· · ·×L non-zero superblocks

then treat each superblock as an independent tensor to convert it to the physical HICOO

format with B × · · · ×B blocks (L ≥ B). An additional array lptr is included to store the

beginning pointers of non-zero superblocks, with its size nl, the number of superblocks.

Superblock Scheduling. Since HICOO systematically partitions a Z-order sorted ten-

sor into superblocks, data race information can be recorded and then used to guide parallel

MTTKRP execution. A superblock scheduling table lschr is constructed to indicate write-

conflict information between them. Generally, the overhead of storing lptr and lschr are

negligible compared to the other components of HICOO, e.g., einds, binds, because of the

small number of superblocks. Different superblock sizes will generate different scheduling

64

tables.

Figure 4.4 shows a lschr table for mode-1 MTTKRP. In the y-direction, superblocks

(e.g., 0, 1, 2, 3) have no write conflicts because they are updating different regions of Ã.

These superblocks can be independently parallelized, therefore, a reasonable large number

of superblocks in the y-direction is preferable. In the x-direction, superblocks (e.g., 0, 4,

8) have potential write conflicts (shown as two-way arrows) that are, therefore, avoidable

if they are executed sequentially. In this figure, three iterations are needed to serialize all

the 10 superblocks. The larger the number of iterations, the stronger dependence shown in

this MTTKRP. With this superblock scheduler, we iterate superblocks in two loops: one for

independent superblocks, the other for iterations; and choose a strategy to parallelize one

of them.

SB 0

Write Conflicts

N
o

W
rit

e
C

on
fli

ct
s

SB 1

SB 2

SB 3

SB 4

SB 5

SB 6

SB 7

SB 8

SB 9

x

y
iter 1 iter 2 iter 3

Figure 4.4: Superblock scheduling table for mode-1 MTTKRP. Write conflicts are shown
as two-way arrows.

Parallel Strategies. The easy case is that we have reasonable large independent su-

perblocks to directly parallelize. However, the number of independent superblocks depends

on the product mode size (i.e., In in mode n) and the superblock size L. For mode-n MT-

TKRP, the number of independent superblocks is roughly In
L

. If it is small (e.g., 2 for choa

in mode 3), most superblocks cannot run simultaneously.

We introduce a widely used privatization parallel strategy [155, 156] to parallelize iter-

ations, especially for irregularly-shaped tensors. Thread-local buffers are created locally to

65

keep the updates of the superblocks from distinct iterations, then they can be parallelized

independently. Afterwards, an extra parallel reduction stage is used to get the final results.

The privatization strategy is only used for MTTKRP in short tensor modes, i.e., small cor-

responding factor matrices, due to their disadvantage of direct parallelization. Besides, it

consumes trivial extra memory. To better fit the dynamic workload of superblocks, we use

dynamic OpenMP strategy for parallelism.

4.3.3 Parameter Guidance

Multiple parameters summarized in table 4.1 affect the performance of HICOO-MTTKRP

and HICOO’s storage size. We illustrate five critical parameters from our experiments

and guide users to tune performance by narrowing down parameter space. Our program

outputs suggestions to users if any parameter is out of a reasonable range. The first three

are the parameters of the HICOO format, while the last two are choices among COO, CSF,

and HICOO formats. Since our analyses in § 4.1, 4.2, 4.3 are for general tensors, these

parameters could describe the features of both hypercubical and irregularly-shaped tensors

which frequently occur in real applications.

Block Size. Block sizeB should be set to keep all the blocked matrices in fast cache, i.e.,

NBRβfloat ≤ Scache. Users could compute the largest B for HICOO. This explains almost

all HICOO-MTTKRPs obtain their best performance with B = 128 in our experiments,

when R = 16.

Parallel Strategy. If the number of independent superblocks is too small (e.g., < 4P , P

is the number of threads) to be parallelized efficiently and the iterations are much more than

independent superblocks (e.g., 20× larger in our experiments), we use privatization strategy

to parallelize superblocks between iterations. This case generally occurs on irregularly-

shaped tensors. For example, mode 3 of tensor choa is much smaller than the other two

modes. Given a superblock size L = 512, the number of independent superblocks is only

2 in mode 3, while the number of iterations is as large as 22475. In this case, privatization

66

strategy is chosen for better performance.

Superblock Size. Superblock size L is important to parallel MTTKRP performance. It

can be tuned to ensure reasonable amount of tasks for CPU threads. After fixing a parallel

strategy, we can compute the number of parallel tasks (either independent superblocks or

iterations) for different Ls. When this number is reasonable, e.g., between [4P, 100P], this

L is acceptable; otherwise, a smaller or larger L will be suggested.

Storage space. As explained in § 4.2, αb determines the storage size of HICOO, smaller

is better. The threshold of HICOO to achieve compressed storage than COO can be calcu-

lated from Equation (4.11). We suggest to first compare the value to its threshold (0.45 for

3D tensors), if αb is larger than it, a HICOO representation is highly possible to use more

storage than one COO and also CSF representation.

Performance. cb is critical to HICOO-MTTKRP’s memory traffic and thus its perfor-

mance from table 4.2, larger is better. From our experiments, until cb < 0.01, HICOO-

MTTKRP becomes slower than CSF-MTTKRP on tensors deli and nell1 by taking advantage

of our parallel strategy. Besides, αb is also taken into account because it affects the mem-

ory traffic of loading the input tensor, especially when the tensor is much larger than factor

matrices. If αb is larger and cb is smaller than their thresholds, HICOO-MTTKRP may not

behave well. Therefore, CSF-MTTKRP is favorable.

Note that these thresholds are obtained from the empirical tests on our platform. Users

need to determine their own thresholds by trial-and-error runnings.

4.4 Experiments and Analyses

4.4.1 Experimental Setup

Platform The experiments are ran on a Linux server with Intel Xeon E7-4850 v3 multicore

platform consisting 56 physical cores with 2.2 GHz frequency distributed on four sockets.

It is a Haswell platform with 32 KiB L1 data cache and 1970 GiB memory. Code is written

in C language with OpenMP directives, and is compiled by icc 18.0.2.

67

Dataset We use the sparse tensors, derived from real-world applications, that appear

in Table 4.3, ordered by decreasing non-zero density separately for third- and fourth-order

tensors. Most of these tensors are included in The Formidable Repository of Open Sparse

Tensors and Tools (FROSTT) dataset (Refer to the details in [151]). The darpa (source

IP-destination IP-time triples), fb-m, and fb-s (short for “freebase-music” and “freebase-

sampled”, entity-entity-relation triples) are from the dataset of HaTen2 [78], and choa is

built from electronic health records (EHRs) of pediatric patients at Children’s Healthcare

of Atlanta (CHOA) [135].

Implementations We compare the performance of MTTKRP algorithms on multicore

CPUs using COO and CSF formats4. COO-MTTKRP from ParTI! library [102] is a C

implementation of the MTTKRP that appears in TENSOR TOOLBOX [16]. We use OpenMP

with privatization method to obtain its highest possible performance at a cost of maybe

large extra space to save the local copies. CSF-MTTKRP is from SPLATT v1.1.1 [157]

which is regarded as the state-of-the-art MTTKRP and CPD library [156]. We configured

SPLATT for its best performance, meaning the ALLMODE setting (storing all N CSF trees)

and enabling the tiling option. All parallel programs are configured using “numactl” to

interleave allocated memory system-wide, i.e., on all sockets.

Table 4.3: Description of sparse tensors.
Tensors Order Dimensions #Non-zeros Density

nell2 3 12K × 9K × 29K 77M 2.4× 10−5

choa 3 712K × 10K × 767 27M 5.0× 10−6

darpa 3 22K × 22K × 24M 28M 2.4× 10−9

fb-m 3 23M × 23M × 166 100M 1.1× 10−9

fb-s 3 39M × 39M × 532 140M 1.7× 10−10

deli 3 533K × 17M × 2.5M 140M 6.1× 10−12

nell1 3 2.9M × 2.1M × 25M 144M 9.1× 10−13

crime 4 6K × 24× 77× 32 5M 1.5× 10−2

nips 4 2K × 3K × 14K × 17 3M 1.8× 10−6

enron 4 6K × 6K × 244K × 1K 54M 5.5× 10−9

flickr 4 320K × 28M × 1.6M × 731 113M 1.1× 10−14

deli4d 4 533K × 17M × 2.5M × 1K 140M 4.3× 10−15

4F-COO is implemented only for GPUs.

68

4.4.2 Overall Performance

The tensor rank R is set to 16 in our experiments. For all experiments, we use 32-bit

unsigned integers for indices and pointers, which are enough for these tensors, and 32-bit

single-precision floating-point values. Most experiments find B = 128 achieve the best

performance, even though we can use up to 16 bits for large B, while L varies much from

tensors to tensors. Generally, for a long tensor mode, direct parallelism is used; while for

a very short mode, privatization method is chosen. All execution times are averaged over

five iterations.

Figure 4.5 (a) and (b) show the speedup of parallel MTTKRP in a single mode based

on HICOO over COO and CSF (ALLMODE setting) formats, respectively. We test up to

56 threads and show the performance obtained by the most threads (“max”) and under the

thread configuration with the highest performance (“best”) separately. The y-axis shows the

log2(speedup) and x-axis gives all the cases of MTTKRPs, i.e., MTTKRPs in every mode on

all tensors. A single parallel HICOO-MTTKRP achieves up to 63.5× (12.6× on average)

speedup over COO format and up to 991.4× (62.0× on average) speedup over CSF format

when using 56 threads. The extraordinary high speedup over CSF is achieved on tensors

crime and nips, because CSF-MTTKRP scales poorly in their very short modes. Under the

“best” thread configuration for all implementations, a single parallel HICOO-MTTKRP

achieves up to 23.0× (6.8× on average) speedup over COO and up to 15.6× (3.1× on

average) speedup over CSF. The highest performance of CSF-MTTKRP on tensors crime

and nips is mostly obtained on 2 and 4 threads. In some tensor modes, only a black square

can be recognized since the highest speedup is achieved by using all 56 threads. Mostly

the “max” configuration gets higher or equal speedup than the “best” configuration because

HICOO-MTTKRP is the most scalable in the three implementations (see Figure 4.7 below).

However, in some cases when HICOO-MTTKRP is less well-scaled, the “best” configura-

tion may get better speedup. In the following content, we only refer to the speedup achieves

under the “best” thread configuration.

69

mode-2

0

2

4

6

8 best
max

43214321432143214321321321321321321321321

3-D Tensors
nell2 choa darpa fb-m fb-s deli nell1 crime nips enron deli4d�ickr

4-D Tensors

lo
g 2(s

pe
ed

up
)

(a) Speedups of HICOO over COO

lo
g 2(s

pe
ed

up
)

mode-4

-2

0

2

4

6

8

10 best

max

43214321432143214321321321321321321321321

3-D Tensors
nell2 choa darpa fb-m fb-s deli nell1 crime nips enron deli4d�ickr

4-D Tensors

(b) Speedups of HICOO over CSF in ALLMODE setting

Figure 4.5: MTTKRP performance comparison with the “max” and “best” thread configu-
rations. The longest modes and shortest modes of every tensor are marked in red and blue
respectively.

70

As we mentioned, irregularly-shaped tensors have distinct performance behavior in dif-

ferent modes. We summarize the speedup separately for the longest (marked in red in

Figure 4.5) and the shortest (marked in blue) modes of every tensor. HICOO-MTTKRP

in the shortest mode achieves an average 6.7× speedup over COO and 5.7× speedup over

CSF; while in the longest mode, HICOO-MTTKRP obtains an average 8.1× speedup over

COO and 2.8× over CSF. HICOO is more advantageous in short modes compared to CSF,

because of the less shape-sensitivity and privatization parallel strategy of HICOO. Com-

pared to COO, HICOO shows a marginal win in long modes, because HICOO avoids the

relatively expensive reduction stage of privatization method used in COO.

HICOO-MTTKRP is almost always faster than COO-MTTKRP due to its better data lo-

cality and smaller memory footprint. Compared to CSF-MTTKRP, the speedup of HICOO-

MTTKRP is not stable because CSF-MTTKRP distinctly behaves on long and short modes,

where long modes are more favorable. Some tensors, e.g., nell1 and deli, have almost all

the blocks containing just a few non-zero entries, making them hypersparse (cb � 1).

Thus, HICOO cannot reduce much memory traffic of MTTKRP (see table 4.2). Since our

method flexibly chooses the two parallelization strategies, tensors fb-m and fb-s need only

249KB and 760KB extra space for the local matrix copies, trading that for much higher

performance.

4.4.3 Optimization Breakdown

We show the advantages of HICOO by evaluating three factors separately, which are sort-

ing, compression, and SIMD. The baseline is COO-MTTKRP with the COO representation

sorted in a lexicographic mode order, then we use Z-order sorting to rearrange non-zeros

but still run COO-MTTKRP, where we get 18% speedup on average. We convert tensors to

HICOO by compressing indices, an extra 20% improvement is shown. Lastly, SIMD di-

rectives are applied to vectorize matrix rows, which gives an average of 22% speedup. With

all these optimizations, HICOO-MTTKRP doubles the performance of COO-MTTKRP for

71

a single thread.

0.0

0.2

0.4

0.6

0.8

1.0 SIMD

compression

sorting

COO

nell1delifb-sfb-mdarpachoanell2
Tensors

N
or

m
al

iz
ed

 T
im

e

Figure 4.6: HICOO optimization breakdown on 3D tensors.

4.4.4 Thread Scalability

Figure 4.7 compares the thread scalability of COO, CSF, and HICOO MTTKRPs using

tensors fb-s and choa representing the behavior in the shortest and longest modes of a tensor.

Generally, CSF-MTTKRP scales poorly in short modes: 9 out of all 12 tensors achieve the

best performance in their shortest modes with ≤ 8 threads; while only 2 tensors achieve

the best performance in their longest modes with ≤ 8 threads. COO-MTTKRP does not

scale well in long modes: 7 out of 12 tensors achieve the best performance in their longest

mode with ≤ 8 threads. The x-axis shows the number of threads and the y-axis shows the

log2(speedup) over sequential MTTKRP. HICOO-MTTKRP scales better than COO and

CSF in most cases despite the extra lptr and lschr structures needed to support superblock

scheduling. CSF-MTTKRP has a potentially low parallel degree for short modes and may

uses locks, while COO-MTTKRP always employs privatization with an expensive reduction

stage for long modes, which affects its scalability. These observations verify the results in

Section 4.4.2.

72

0

1

2

3

4

5 HiCOO
CSF
COO

5628148421
#Threads

lo
g 2
(s
pe

ed
up

)

-1

0

1

2

3

4 HiCOO
CSF
COO

5628148421
#Threads

lo
g 2
(s
pe

ed
up

)

(a) tensor fb-s in mode 3 (b) tensor choa in mode 1
(shortest mode) (longest mode)

Figure 4.7: Thread scalability of parallel COO, CSF, and HICOO MTTKRPs on two repre-
sentative cases.

4.4.5 Storage Space

Table 4.4 compares the storage space of COO, CSF, F-COO, and HICOO formats, along

with HICOO’s compression rates over COO and its αb values. We show two settings

for CSF format, ALLMODE (using all CSF trees) and ONEMODE (using only one CSF tree),

while all F-COO representations have to be stored. HICOO format uses less space than

ALLMODE CSF and F-COO formats on all tensors, up to 2.5× less storage than COO format,

and comparable storage with ONEMODE CSF. HICOO consumes more space than COO on

tensors deli, deli4d and nell1. As discussed in Section 4.3.3, the value of block ratio should

satisfy αb < 0.45 (3D) or 0.5 (4D) for a tensor to take less space in HICOO than in COO.

The αb values of these three tensors are much larger than them, so it is not surprising their

HICOO representations are larger. These observations suggest that a simple test, perhaps

based on sampling, could be used to determine when to use COO versus HICOO from

storage aspect, which supports our guidance in Section 4.3.3.

4.4.6 Superblock Size L

The choice of superblock size L affects the number of independent tasks available in

HICOO-MTTKRP as discusses in Section 4.3.3. Figure 4.8 shows how the execution time

of a HICOO-MTTKRP sequence varies with L on 3D tensors. The x-axis shows L values

73

Table 4.4: Sparse tensor space comparison in different formats.

Tensors
COO CSF (MiB) F-COO HICOO Compress αb
(MiB) ALL ONE (MiB) (MiB) Rate Values

choa 411 666 212 935 192 2.14 0.02
darpa 434 958 218 986 308 1.41 0.22
nell2 1150 1850 589 2667 543 2.12 0.02
fb-m 1480 3760 1200 3453 1420 1.04 0.42
fb-s 2080 5410 1720 4854 2100 0.99 0.46
deli 2090 4120 1320 4861 3490 0.60 0.99
nell1 2140 4430 1210 4981 3610 0.59 1.00

crime 102 176 41 328 41 2.49 0.00
nips 59 106 24 191 25 2.36 0.02

enron 1010 2030 421 3334 460 2.20 0.04
flickr 2100 4540 1040 6944 1740 1.21 0.36

deli4d 2610 7340 1860 8619 3540 0.74 0.80

on a log-scale, while the y-axis shows the execution times of parallel HICOO-MTTKRP

normalized to that of L = 28 or 210. Tensors nell2 and choa show their best performance at

L = 210 in figure 4.8(a). By contrast, MTTKRP times on the other tensors in figure 4.8(b)

tend to decrease asymptotically with L, with some small variability beyond a certain point

(L = 214). The main difference between these two groups is non-zero density, which is

relatively high for tensors in figure 4.8(a) and low in figure 4.8(b). The guidance in Sec-

tion 4.3.3 helps users to fast identify the optimal L.

0

3

6

9

12

15 choa
nell2

18161412108
L

no
rm

al
iz

ed
 ti

m
e

0.0

0.2

0.4

0.6

0.8

1.0
nell1
deli

fb-s
fb-m
darpa

1816141210
L

no
rm

al
iz

ed
 ti

m
e

(a) (b)

Figure 4.8: Superblock size L influences on HICOO-MTTKRP, x-axis shows logL values,
times are normalized to L = 28 or 210. Lower is better.

74

4.4.7 CPD

Figure 4.9 depicts a CANDECOMP/PARAFAC decomposition using alternating least squares

algorithm (CP-ALS) [89] in all the three formats, where MTTKRP is the most expensive

computational kernel. The speedup and compression rates are relative to CSF in ALLMODE

setting, and “CSF-1” refers to CSF in ONEMODE setting. HICOO achieves the best speedup

on most tensors with comparable compression rate to CSF ONEMODE. COO does not gain

any advantages either from performance or storage aspect. HICOO-CPD outperforms 6.2×

over COO-CPD and 2.1× over CSF-CPD on average.

3D 4D

�

�

�

�
�

�

�

choa

choa

choa

darpa

darpa

darpa

deli

deli

deli

fb−m

fb−m

fb−m

fb−s

fb−s

fb−s

nell1

nell1

nell1
nell2

nell2nell2

COO

CSF−1

HiCOO

�
�

�

�

�
crime

crime

crime

deli4d

deli4d

deli4d

enron

enron

enron

flickr

flickr

flickr

nips

nipsnips

COO

CSF−1

HiCOO

0.25

0.50

1.00

2.00

4.00

1 2 4 1 2 4
Compression ratio relative to CSF (higher is better)

Speedup over CSF (higher is better)

Figure 4.9: CPD time and tensor storage comparison relative to CSF in ALLMODE setting.

Sp
ee

du
p

mode 0

1

2

3

4

43214321432143214321321321321321321321321

3-D Tensors
nell2 choa darpa fb-m fb-s deli nell1 crime nips enron deli4d�ickr

4-D Tensors

Figure 4.10: HICOO-MTTKRP speedup of KNL over Haswell.

75

4.4.8 Experiments on KNL

We also test HICOO-MTTKRP on a Intel Xeon Phi Processor 7250 (”Knights Landing”)

platform using the native mode. Figure 4.10 shows its speedup of KNL using 68 threads

over Haswell using 56 threads. HICOO-MTTKRP on KNL achieves 0.25−3.27× speedup,

but Haswell behaves better in most cases. This experiment gives a proof-of-concept that

other accelerators, e.g., GPUs, can also benefit from HICOO format with its good thread

scalability.

4.5 Related Work

Study on improving the performance of sparse problems has a long history, for example,

some optimization methods for sparse matrices are enlightening and applicable to tensors

[12, 13, 31, 33, 43, 88, 105, 109, 110, 117, 120, 172, 173, 178, 182]. Optimizing CPD

and the MTTKRP operation has been well-studied recently. TENSOR TOOLBOX [16] and

Tensorlab [171] implemented MTTKRP in the most popular COO format through multi-

ple sparse tensor-vector products using MATLAB. SPLATT [152, 156] algorithmically im-

proved MTTKRP by factoring out inner multiplications and proposed a more compressed

CSF format. According to the experiments in [156], it outperforms Tensor Toolbox, Gi-

gaTensor, and DFacTo (introduced below) on multicore CPUs, becoming the one achieving

the highest performance by far. It has also applied to Intel Knights Landing many-core

processor (KNL) recently [155]. GigaTensor [80] reformulated MTTKRP as a series of

Hadamard products to utilize the massive parallelism of MapReduce. However, this al-

gorithm is not suitable for multicore CPUs because of its high computational complexity.

DFacTo [41] considered MTTKRP as a series of sparse matrix-vector multiplications for

distributed systems, however, it requires explicit matricization which takes non-negligible

time. HyperTensor [85] investigated fine- and also coarse-grained parallel algorithms for

distributed systems, while its MTTKRP implementation is based on COO format. A more

76

recent work [107] proposed Flagged-COOrdinate (F-COO) format. As we state in Chap-

ter 2 and § 4.1, CSF and F-COO formats are mode oriented, which can achieve compactness

but not, simultaneously, neutral mode orientation. Some tensor formats are proposed for

structural sparse tensors. “Mode-generic and mode-specific” [21] and semi-COOrdinate

(sCOO) [103] formats are proposed for tensors with some modes dense.

Our work proposed a new compressed HICOO format for general sparse tensors, which

does not favor one mode over the others and preserves the neutral mode orientation. HICOO

format is proposed to explore an alternative approach of sparse tensor formats. Compared

to the state-of-the-art CSF from SPLATT [156, 157], HICOO has the following advantages.

First, HICOO could exploit data locality for all tensor dimensions while CSF’s tree struc-

ture limits this mostly to the leaf level. Second, HICOO has more potential of its storage

compression because of the avoidance of larger and indeterminate-length pointers com-

pared to indices. We are pursuing more aggressive compression techniques, as proposed

for sparse matrices [177], as part of our future work for HICOO. Third, from our paral-

lel strategies and the experiments, HICOO-MTTKRP is less sensitive to irregularly-shaped

tensors which frequently appear in real applications. Besides, our blocking strategy has

similarities with cache tiling used in SPLATT, but is fine-grained and totally removes write

conflicts. SPLATT uses coarse-grained parallelism which is quite similar to row parallelism

in SpMV. This work is orthogonal to some optimization work for an MTTKRP sequence

as a whole (Chapter 3), such as [86, 101], we will consider integrating them as our future

work.

4.6 Summary

HICOO is a flexible, compact, and mode-neutral format for general sparse tensors. It de-

rives from but also improves upon COO by compressing the indices in units of sparse tensor

blocks, which compresses the storage while promoting data locality. Our multicore-parallel

HICOO MTTKRP achieves remarkable speedups over COO and another state-of-the-art

77

format, compressed sparse fiber (CSF) formats. HICOO uses up to 2.5× less storage than

COO format and comparable storage to one CSF representation. When used within CPD,

we also observe speedups against COO- and CSF-based implementations.

78

CHAPTER 5

TENSOR REORDERING FOR HICOO

HICOO works better when tensor blocks are more dense, per the results of Section 4.4,

because spatial and temporal locality improve with denser blocks. These observations raise

a natural question, which is whether there is a reordering strategy that can increase the

relative density of HICOO’s blocks. By reordering, we mean a relabeling of the indices of

one or more modes of the input tensor.

This chapter describes two such heuristic reordering schemes.1 These two approaches

arrange the non-zeros of a sparse tensor by ordering tensor indices along all modes, one

after the other. One scheme uses a breadth-first search (BFS) heuristic based on the family

of maximum cardinality search methods (and referred to as BFS-LIKE-MCS) [164]. It

determines a permutation independently for each mode. The other scheme extends doubly

lexical ordering techniques for matrices [112, 128] to tensors (called LEXI-ORDER). It

lexicographically sorts every fiber, and iteratively repeats that process for all modes.

The main contributions of this chapter may be summarized as follows.

• We propose two tensor reordering approaches, BFS-LIKE-MCS and LEXI-ORDER,

to enhance data locality by relabeling mode indices. (§ 5.1 and § 5.2)

• LEXI-ORDER improves the performance of parallel HICOO-, COO-, and CSF-MTTKRPs

by up to 2.67×, 1.27×, and 1.72× respectively. By comparing with another state-

of-the-art reordering based on hypergraph partitioning [156], we find LEXI-ORDER

achieves comparable performance on CSF-MTTKRP. While BFS-LIKE-MCS is

proved to be less effective than LEXI-ORDER on these formats. (§ 5.3)

• By using the HICOO parameters (introduced in § 4.2) and the number of iterations

1The work described in this chapter is joint with Bora Uçar and Ümit Çatalyürek.

79

of LEXI-ORDER, we can determine a good tensor reordering and seek for a balance

between performance and reordering overhead. (§ 5.3)

5.1 BFS-LIKE-MCS

BFS-LIKE-MCS is Breadth First Search (BFS)-like heuristic approach based on the max-

imum cardinality search family [164]. We first construct a hypergraph for a sparse tensor,

where vertices are all tensor indices and hyperedges represent the non-zero entries. The

weight of a vertex is the number of connections to it (calculated as shown below), and

every hyperedge has unit weight (value 1). For a third-order sparse tensor X ∈ RI1×I2×I3

with M non-zeros, its hypergraph H = (V,E) consists of |V | = I1 + I2 + I3 vertices and

|E| = M hyperedges. A non-zero entry xi1i2i3 connects the 3 vertices i1, i2, i3. Figure 5.1

shows an example of the hypergraph for a sparse tensor. Vertices are blank circles, and

hyperedges are represented by grouping vertices.

(a) Tensor

i j k val
i1 a

b
c
d

j1 k1

i1 j2 k1

i2 j2 k1

i2 j2 k2

(b) Hypergraph

i1 j1 k1

i2 j2 k2

c

d

a

b

Figure 5.1: A hypergraph example of a sparse tensor.

For an N th-order sparse tensor, we need to find the permutations for N modes. We

determine a permutation for a given mode n (permn) of a tensor X ∈ RI1×···×IN as follows.

Suppose some of the indices of mode n are already ordered, BFS-LIKE-MCS picks the

next to-be-ordered index as the one with the strongest connection to the currently ordered

index set. In the case of ties, it selects the index with the smallest number of non-zeros in the

corresponding sub-tensor. Intuitively, in the hypergraph of a sparse tensor, a stronger con-

nection represents more common indices in modes other than n, which potentially means

more data reuse of matrices.

80

This process is implemented by maintaining a max-heap (Hn) for all mode-n indices

(e.g., in). The primary key of each is the number of connections to the currently ordered

indices and the secondary key is the minus of the number of non-zeros in its corresponding

(N − 1)th-order sub-tensor (e.g., X(:, . . . , :, in, :, . . . , :)). Initially, Hn is constructed ac-

cording to the secondary keys of mode-n indices. For each mode-n index (e.g., in) of this

max-heap, BFS-LIKE-MCS traverses all connected tensor indices in the modes except n,

calculates the number of connections of mode-n indices, and then updates the heap (Hn)

using their new primary keys.

Algorithm 8 BFS-LIKE-MCS ordering based on maximum cardinality search for a given
mode.
Input: An N th-order sparse tensor X ∈ RI1×···×IN , hypergraph G = (V,E) with vertex weights

w, mode n;
Output: Permutation permn;

1: Initialize wp to zeros.
2: Initialize ws to the minus of number of non-zeros of each corresponding sub-tensor.
3: Build max-heap Hn for mode-n indices with wp and ws as the primary and secondary keys

respectively.
4: Initialize mV to zeros.

5: for in = 1, . . . , In do
6: v

(0)
n = GetHeapMax(Hn);

7: permn(v
(0)
n) = in;

8: mV (v
(0)
n) = 1;

9: for en ∈ hyperedges of v(0)
n do

10: for v ∈ en and v is not in mode n and mV (v) == 0 do
11: mV (v) = 1;
12: for e ∈ hyperedges of v and e 6= en do
13: vn = vertex in mode n of e;
14: if inHeap(vn) then
15: wp(vn) + +;
16: heapUpdateKey(Hn,wp(vn));

17: return permn;

Algorithm 8 makes BFS-LIKE-MCS more precise. Let mV denote a size-|V | array

that tracks whether a vertex has been visited. They are initialized to zeros (unvisited) and

changed to 1 once after being visited. We record a mode-n index v(0)
n , obtained from the

max-heap Hn, to the permutation array permn. The algorithm visits all its hyperedges (i.e.,

81

all non-zeros with in, Line 9) and their connected and unvisited vertices from modes other

than n (Line 10). For these vertices, we again visit their hyperedges (e in Line 12) and then

check if the connected vertices in mode n (vn) are in the remaining heap (Line 14). If so,

the primary key (connectivity) of vn is increased by 1 and the max-heap (Hn) is updated.

The BFS-LIKE-MCS procedure is heuristic for two reasons. First, the hypergraph

does not reflect the exact memory access pattern of an MTTKRP. BFS-LIKE-MCS treats

the contribution from the indices of all modes except n equally to the connectivity, thus the

connectivity might not match the actual data reuse. Secondly, it uses a greedy strategy to

determine the next-level vertices, which could miss the optimal global orderings.

5.2 LEXI-ORDER

LEXI-ORDER is an extension of doubly lexical ordering of matrices [112, 128] to tensors.

It lexicographically sorts every fiber, iteratively for all modes.

A lexicographic ordering of an integer vector is the standard dictionary ordering of

its elements. The comparison operation between two vectors is defined differently [128].

Given two equal-length vectors, x and y, we say x ≤ y iff either (i) all elements are the

same, i.e., x = y; or (ii) there exists an index j such that x(j) < y(j) and x(i) = y(i)

for all 0 ≤ i < j. For example, figure 5.2(a) shows the vector comparison of two zero-one

vectors, x ≡ (1, 0, 1, 0) and y ≡ (1, 1, 0, 0). x ≤ y because x(1) < y(1) and x(i) = y(i)

for all 0 ≤ i < 1. Give another example by considering the first two row vectors of

figure 5.2(b), where x ≡ (0, 1, 0, 0) and y ≡ (0, 1, 0, 1). Then x ≤ y because x(3) < y(3)

and x(i) = y(i) for all 0 ≤ i < 3. To obtain a lexicographic ordering of a set of vectors,

one may sort the vectors using this vector ≤ operator.

A doubly lexical ordering of a matrix is an ordering of the rows and the columns of

the matrix so that both the row vectors and the column vectors are in non-increasing lex-

icographic order. We specify to read a row vector from left to right and a column vector

from top to bottom. Figure 5.2(b) shows a doubly lexical ordering of a zero-one example

82

(1, 1, 0, 0)

(1, 0, 1, 0)

0 1 0 1
0 1 0 0
0 0 1 0
0 0 0 1

1 1 0 0
1 0 0 0
0 1 0 0
0 0 1 0

original ordered
(a) Vector comparison (b) Matrix

>

Figure 5.2: A doubly lexical ordering of a zero-one matrix and its vector comparison oper-
ation.

matrix. The row vectors are in non-increasing lexicographic order from top to bottom, and

the column vectors are in non-increasing lexicographic order from left to right. Assume

the ordered matrix in figure 5.2(b) is A, then rows a(1, :) ≥ a(2, :) ≥ a(3, :) ≥ a(4, :)

and columns a(:, 1) ≥ a(:, 2) ≥ a(:, 3) ≥ a(:, 4). Even from this simple example, the

ordered matrix has better block locality than the origin one. Doubly lexical ordering has

a number of applications, including the efficient recognition of totally balanced matrices,

subtree matrices and plaid matrices and (strongly) chordal graphs.

Original HiCOO

ek val
0 0 0 1
0 1 1 2
0 1 0 3
1 0 0 4
1 1 0 5
1 0 0 7
1 1 0
0 1 0

8
6

0 0 0

0 0 1

1 0 0

1 1 1

0

2

5

7

0 1 13

ei ejbi bj bkbptr
B1

B2
B3

B4

B5

Reordered COO

i j k val
1 0 0 1
1 1 2 2
1 1 1 3
2 3 1 4
2 2 1 5
3 2 1 6
0 0 0
0 1 0

7
8

Original COO

i j k val
0 0 0 1
0 1 1 2
0 1 2 3
1 2 2 4
1 3 2 5
2 3 2 6
3 0 0
3 1 0

7
8

Reordered HiCOO

ek val
0 0 0 7
0 1 0 8
1 0 0 1
1 1 1 3
1 1 0 2
0 0 1 5
0 1 1
1 0 1

4
6

0 0 0

0 0 1
1 1 0

0

4
5

ei ejbi bj bkbptr
B1

B2
B3

(1, 2, 3, 0)

(0, 1, 3, 2)

(0, 2, 1)

i:

j:

k:{perm

(a)

(b)

Figure 5.3: Comparison of HICOO representations before and after LEXI-ORDER— a
good example.

83

Original HiCOO

Reordered COO

i j k val
1 0 0 1
1 1 0 2
0 0 0 3
0 0 1 4
3 1 0 5
3 3 1 6
2 0 2
2 2 1

7
8

Original COO

Reordered HiCOO

ek val
0 0 0 3
0 0 1 4
1 0 0 1
1 1 0 2
1 1 0 5
0 0 0 7
0 0 1
1 1 1

8
6

0 0 0

1 0 0

1 1 0
1 0 1

0

4
5

ei ejbi bj bkbptr
B1

B2
B3
B4

(1, 0, 3, 2)

(0, 1, 3, 2)

(0, 2, 1)

i:

j:

k:{perm

(a)

(b)

i j k val
0 0 0 1
0 1 0 2
1 0 0 3
1 0 2 4
2 1 0 5
2 2 2 6
3 0 1
3 3 2

7
8

ek val
0 0 0 1
0 1 0 2
1 0 0 3
1 0 0 4
0 1 0 5
1 0 1 7
0 0 0
1 1 0

6
8

0 0 0

0 0 1
1 0 0

1 1 1

0

3
4

6

ei ejbi bj bkbptr

B1

B2

B3

B4

Figure 5.4: Comparison of HICOO representations before and after LEXI-ORDER— a fair
example of figure 4.2.

Like BFS-LIKE-MCS approach, LEXI-ORDER also finds the permutations forN modes

of an N th-order sparse tensor. Figure 5.3 illustrates the effect of LEXI-ORDER on an ex-

ample 4 × 4 × 3 sparse tensor. The original tensor converts to a HICOO representation

with block size B = 2 consisting of 5 tensor blocks, with maximum 2 non-zeros per block.

After reordering with LEXI-ORDER, the new HICOO has 3 non-zero blocks with up to 4

non-zeros per block. Thus, the blocks are more dense, which should exhibit better locality

behavior. However, this reordering scheme is heuristic. For example, consider figure 4.2,

we draw another HICOO representation after reordering in figure 5.4. Applying LEXI-

ORDER would yield a reordered HICOO representation with 4 tensor blocks, which is the

same as the input ordering, although the maximum number of non-zeros per block would

increase to 4. For this kind of tensor, LEXI-ORDER may not show a big advantage.

The basic idea of LEXI-ORDER is to determine the permutation of each tensor mode

independently, where for each mode it performs a doubly lexical ordering on the matricized

84

i j k val
0 0 0 1
3 0 0 7
3 1 0 8
0 1 1 2
0 1 2 3
1 2 2 4
1 3 2
2 3 2

5
6

LexiOrder
Quick

sort Matricize
(1, 2, 3, 0)

Original COO

i j k val
0 0 0 1
0 1 1 2
0 1 2 3
1 2 2 4
1 3 2 5
2 3 2 6
3 0 0
3 1 0

7
8

1 0 0 1
0 0 0 1
1 0 0 0
1 0 0 0
0 1 0 0
0 1 1 0

i(j,k)
(0,0)
(1,0)
(1,1)
(1,2)
(2,2)
(3,2)

Zero-one RepresentationSorted COO

0 3
3
0
0
1

i(j,k)
(0,0)
(1,0)
(1,1)
(1,2)
(2,2)
(3,2) 1 2

JK*I CSR Matrix

Non-zero
Distribution

permi

Figure 5.5: The steps of LEXI-ORDER (Algorithm 9) illustrated.

tensor [112, 128]. We start with a logical zero-one matrix to represent the non-zero dis-

tribution of a matricized tensor, and stored using Compressed Sparse Row (CSR) format.

We then use a variation of the partition refinement algorithm to compute its doubly lexical

ordering [128]. The permutations can be obtained by tracking this ordering process.

The precise algorithm appears in Algorithm 9, which we also illustrate in figure 5.5

when applied to mode 1. Given a mode n, LEXI-ORDER first sorts the non-zeros of the

tensor using quicksort with the comparison function coordCmp. This comparison func-

tion does a lexicographic comparison of the all-but-mode-n indices. This sorting of the

tensor X is the same as sorting the matricized tensor X(n) by rows, where mode n is the

column dimension and the remaining modes constitute the rows. In figure 5.5, the sorting

step orders the COO entries by (j, k) tuples, which then serve as the row indices of the ma-

tricized CSR representation of X(1). Since the sorted tensor is ordered by increasing rows

of X(n), we can easily matricize tensor X into a CSR representation by partitioning row

segments (Lines 3–7). Then, we use a similar partition refinement algorithm lexiOrder

to the Paige and Tarjan scheme [128] for every row of the matrix X(n). We use zero-one

row vectors in figure 5.5 to illustrate its non-zero distribution, which could seemlessly call

lexiOrder function.

The doubly lexical ordering algorithms for matrices, which were first explored by Lu-

biw [112] and then improved by Paige and Tarjan [128], are “direct” ordering methods

with a non-linear runtime ofO(M log(I + J) + J) andO(M + I + J) space, for an I×J

85

matrix with M non-zeros. We propose an iterative algorithm (lexiOrder), where each

iteration has a linear runtime complexity O(M + I + J) and uses O(J) space. Compared

to the prior doubly lexical ordering methods, our lexiOrder is sufficient for our needs in

that we do not need a fully ordered tensor, thereby making our approach faster and simpler

to implement. And we observe that in practice that not only is every iteration at worst linear,

but usually only a small number of iterations are needed. The bottleneck in lexiOrder

is the sorting phase (quickSort).

Algorithm 9 Multiply lexical ordering for a given mode.
Input: An N th-order sparse tensor X ∈ RI1×···×IN , mode n;
Output: Permutation permn;

. Sort all non-zeros along with all but mode n.
1: quickSort(X, coordCmp);

. Matricize X to X(n).
2: r = compose (inds ([−n]), 1);
3: for m = 1, . . . ,M do
4: c = inds(n,m); . Column index of X(n)

5: if coordCmp(X,m,m− 1) == 1 then
6: r = compose (inds ([−n]),m); . Row index of X(n)

7: X(n)(r, c) = val(m);

. Use a variation of partition refinement in [128]
8: permn = lexiOrder(X(n));
9: return permn;

. Comparison function for two indices of X
10: Function: coordCmp(X,m1,m2)
11: for n′ = 1, . . . , N do
12: if n′! = n then
13: if m1(n′) < m2(n′) then
14: return −1; . Entry m1 < entry m2

15: if m1(n′) > m2(n′) then
16: return 1; . Entry m1 > entry m2

17: return 0; . Entry m1 = entry m2

86

5.3 Evaluation

5.3.1 Experimental Setup

Platform We tested these schemes experimentally on a Linux-based Intel Xeon E5-2698

v3 multicore server platform with 32 physical cores distributed on two sockets, each with

2.3 GHz frequency. The processor microarchitecture is Haswell, having 32 KiB L1 data

cache and 128 GiB memory. The code artifact is written in the C language using OpenMP

parallelization, and was compiled using icc 18.0.1.

Dataset We use the sparse tensors, derived from real-world applications, that appear in

Table 5.1, ordered by decreasing non-zero density separately for third- and fourth-order ten-

sors. Most of these tensors are included in The Formidable Repository of Open Sparse Ten-

sors and Tools (FROSTT) dataset [151]. The darpa (source IP-destination IP-time triples),

fb-m, and fb-s (short for “freebase-music” and “freebase-sampled”, entity-entity-relation

triples) are from the dataset of HaTen2 [78], and choa is built from electronic health records

(EHRs) of pediatric patients at Children’s Healthcare of Atlanta (CHOA) [135].

Table 5.1: Description of sparse tensors.
Tensors Order Dimensions #Non-zeros Density

vast 3 165K × 11K × 2 26M 6.9× 10−3

nell2 3 12K × 9K × 29K 77M 2.4× 10−5

choa 3 712K × 10K × 767 27M 5.0× 10−6

darpa 3 22K × 22K × 24M 28M 2.4× 10−9

fb-m 3 23M × 23M × 166 100M 1.1× 10−9

fb-s 3 39M × 39M × 532 140M 1.7× 10−10

flickr 3 320K × 28M × 1.6M 113M 7.8× 10−12

deli 3 533K × 17M × 2.5M 140M 6.1× 10−12

nell1 3 2.9M × 2.1M × 25M 144M 9.1× 10−13

crime 4 6K × 24× 77× 32 5M 1.5× 10−2

uber 4 183× 24× 1140× 1717 3M 3.9× 10−4

nips 4 2K × 3K × 14K × 17 3M 1.8× 10−6

enron 4 6K × 6K × 244K × 1K 54M 5.5× 10−9

flickr4d 4 320K × 28M × 1.6M × 731 113M 1.1× 10−14

deli4d 4 533K × 17M × 2.5M × 1K 140M 4.3× 10−15

87

5.3.2 HICOO-MTTKRP with Reordering

Figure 5.6 shows the speedup of the two reordering methods on sequential HICOO-MTTKRP.

We use the total execution time of MTTKRPs on all modes for each tensor. The speedup

is the ratio of the execution time of no-reordering HICOO-MTTKRP over the one using

reordering methods. We show the best configurations (the number of iterations and the

block size B) for LEXI-ORDER to get the highest MTTKRP performance. Similar to the

experiments in § 4.4, block size B = 128 achieves the best results in most cases. The effect

of the number of iterations will be shown in figure 5.13.

LEXI-ORDER reordering gets 0.97− 2.35× speedup (1.48× on average) for sequential

HICOO-MTTKRP; while BFS-LIKE-MCS reordering does not accelerate much on most

tensors except deli and nell1, with 1.07× speedup on average. LEXI-ORDER and BFS-

LIKE-MCS do not behave as well on fourth-order tensors as on third-order tensors. Tensor

deli4d is constructed from the same data with deli, with an extra short mode (table 5.1).

LEXI-ORDER obtains 2.29× speedup on deli while only 1.14× speedup on deli4d. The

same phenomenon is also observed on tensors flickr and flickr4d. This phenomenon indicates

that it is harder to get good block locality on higher-order tensors, which will be justified

in table 5.2.

Sp
ee

du
p

0.0

0.5

1.0

1.5

2.0

2.5 Lexi-Order

BFS-Like-MCS

deli4d�ickr4denronnipsubercrimenell1deli�ickrfb-sfb-mdarpachoanell2vast

3-D Tensors 4-D Tensors

Figure 5.6: Reordered sequential HICOO-MTTKRP speedup.

The speedup of the two reordering methods on multicore parallel HICOO-MTTKRP

appears in figure 5.7. We report the result for the best configuration, considering the number

of iterations, the superblock size L, and the block size B. The block size B = 128 achieves

88

the best results in most cases. The best superblock size L can change under reordering (see

table 5.2). Overall, LEXI-ORDER results in 0.65−2.67× speedup (1.23× on average) for a

parallel HICOO-MTTKRP; while BFS-LIKE-MCS reordering gets 0.88− 1.04× speedup

(0.98× on average). Thus, the benefit from reordering using either LEXI-ORDER or BFS-

LIKE-MCS is less than in the sequential case. This observation may indicate that thread

scheduling may overcome some of the overhead from poor data locality.

Sp
ee

du
p

0.0

0.5

1.0

1.5

2.0

2.5

3.0 Lexi-Order

BFS-Like-MCS

deli4d�ickr4denronnipsubercrimenell1deli�ickrfb-sfb-mdarpachoanell2vast

3-D Tensors 4-D Tensors

Figure 5.7: Reordered parallel HICOO-MTTKRP speedup.

5.3.3 Other Formats with Reordering

We also ran the MTTKRP experiments, with and without reordering, when storing the tensor

in COO and CSF formats.

COO-MTTKRP

We show the effect of the two reordering approaches on sequential and parallel COO-

MTTKRP from PARTI! [102] in figure 5.8 and 5.9. This COO-MTTKRP is implemented

in C and OpenMP parallelized using privatization, using the same algorithm as TEN-

SOR TOOLBOX [16]. Observe that LEXI-ORDER improves sequential COO-MTTKRP per-

formance by 0.85 − 2.41× (1.42× on average), while BFS-LIKE-MCS does not yield

much improvement. Also, LEXI-ORDER improves parallel COO-MTTKRP performance

by 0.94 − 1.27× (1.04× on average), while BFS-LIKE-MCS improves by 0.64 − 1.40×

(1.02× on average). Thus, the qualitative effects of reordering on performance is the same

89

for COO-MTTKRP as it is for HICOO-MTTKRP, but with less quantitative improvement

in the parallel cases.

Sp
ee

du
p

0.0

0.5

1.0

1.5

2.0

2.5 Lexi-Order

BFS-Like-MCS

deli4d�ickr4denronnipsubercrimenell1deli�ickrfb-sfb-mdarpachoanell2vast

3-D Tensors 4-D Tensors

Figure 5.8: Reordered sequential COO-MTTKRP speedup over an unordered implementa-
tion.

Sp
ee

du
p

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 Lexi-Order

BFS-Like-MCS

deli4d�ickr4denronnipsubercrimenell1deli�ickrfb-sfb-mdarpachoanell2vast

3-D Tensors 4-D Tensors

Figure 5.9: Reordered parallel COO-MTTKRP speedup over an unordered implementation.

Sp
ee

du
p

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 Lexi-Order

BFS-Like-MCS

deli4d�ickr4denronnipsubercrimenell1deli�ickrfb-sfb-mdarpachoanell2vast

3-D Tensors 4-D Tensors

Figure 5.10: Reordered sequential CSF-MTTKRP speedup over an unordered implementa-
tion.

90

Sp
ee

du
p

0.0

0.5

1.0

1.5

2.0 Lexi-Order

BFS-Like-MCS

deli4d�ickr4denronnipsubercrimenell1deli�ickrfb-sfb-mdarpachoanell2vast

3-D Tensors 4-D Tensors

Figure 5.11: Reordered parallel CSF-MTTKRP speedup over an unordered implementation.

CSF-MTTKRP

We test the effect of the two reordering approaches on sequential and parallel CSF-MTTKRP

from SPLATT v1.1.1 [157] in figure 5.10 and 5.11. CSF-MTTKRP is set to use only one

CSF representation (ONEMODE) for MTTKRPs in all modes and with tiling option on. Our

tests using all CSF representations (ALLMODE) show quite similar results to the ONEMODE

setting. LEXI-ORDER improves sequential CSF-MTTKRP performance by 0.82 − 1.33×

(1.11× on average) and speedups parallel CSF-MTTKRP performance by 0.32 − 1.72×

(1.03× on average). The BFS-LIKE-MCS method does not improve performance much

for either the sequential and parallel CSF-MTTKRPs. These two reordering approaches,

especially LEXI-ORDER, do not perform as well on CSF as on HICOO and COO formats.

Format Comparison

Figure 5.12 compares the parallel performance of COO-, CSF-, and HICOO-MTTKRPs

with the LEXI-ORDER approach. The performance is shown by the execution time of each

implementation and normalized to the time of COO-MTTKRP for each tensor. HICOO still

achieves the best performance as tested in § 4.4, which is 1.1 − 27.0× (7.1× on average)

faster than COO and 0.8 − 9.5× (3.5× on average) faster than CSF. Because of CSF’s

poor thread scalability (discussed in § 4.4), CSF-MTTKRP runs even slower than COO-

MTTKRP on some fourth-order tensors. Overall, HICOO format has been testified to be

the most preferable one with or without tensor reordering.

91

N
or

m
al

iz
ed

 T
im

e

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5 HiCOO

CSF

COO

deli4d�ickr4denronnipsubercrimenell1deli�ickrfb-sfb-mdarpachoanell2vast

3-D Tensors 4-D Tensors

Figure 5.12: Format comparison with LEXI-ORDER on parallel MTTKRPs.

5.3.4 Reordering Methods Comparison

From the above experiments on HICOO, COO, and CSF formats, BFS-LIKE-MCS does

not get much performance enhancement on all formats and almost all tensors. This is

mainly because BFS-LIKE-MCS only takes connectivity into account and does not con-

sider much local non-zero distribution or memory access pattern. Compared to the re-

ordering method used in SPLATT [156], by setting ALLMODE (identical to Shaden et al.’s

work [156]) to CSF-MTTKRP, BFS-LIKE-MCS gets 0.95, 0.99, and 1.00× speedup on

tensors nell2, nell1, and deli respectively. By contrast, the speedups from hypergraph par-

titioning [156] on these three tensors are 1.06, 1.12, and 1.24×, respectively. However,

hypergraph partitioning is mode-dependent, which means N different permutations are

generated for a N th-order tensor. Thus, one might expect it to perform better than BFS-

LIKE-MCS, which only determines one permutation. LEXI-ORDER behaves comparably

with hypergraph partitioning, obtaining 1.03, 1.16, and 1.22× speedup on the three tensors

respectively. Moreover, LEXI-ORDER is not mode dependent and only needs one permu-

tation.

5.3.5 Effect of the Number of Iterations in LEXI-ORDER

Since LEXI-ORDER improves the ordering iteratively, we evaluated the effects of the num-

ber of iterations on HICOO-MTTKRP performance. The results appear in figure 5.13.

92

When using 5 iterations, LEXI-ORDER obtains the shortest HICOO-MTTKRP time on the

most tensors (7 instances). However, using 3 iterations only increases the running time

on an average by about 1.8% over using 5 iterations. Moreover, according to figure 5.14,

the reordering time of 3 iterations is only 60% that of 5 iterations on average. Therefore,

a rough empirical guideline is that as few as 3 iterations may be sufficient to obtain an

acceptable performance.

N
or

m
al

iz
ed

 T
im

e

0.0

0.2

0.4

0.6

0.8

1.0

1.2 1

2

3

5

10

deli4d�ickr4denronnipsubercrimenell1deli�ickrfb-sfb-mdarpachoanell2vast

3-D Tensors 4-D Tensors

Figure 5.13: Sequential HICOO-MTTKRP behavior varying the number of iterations.

N
or

m
al

iz
ed

 T
im

e

0.0

0.2

0.4

0.6

0.8

1.0 1

2

3

5

10

deli4d�ickr4denronnipsubercrimenell1deli�ickrfb-sfb-mdarpachoanell2vast

3-D Tensors 4-D Tensors

Figure 5.14: The reordering time of different numbers of iterations.

5.3.6 HICOO Parameters

We use the three most critical parameters introduced in § 4.2 and § 4.3.3, the block ratio

(αb), the average slice size per tensor block (cb), and the superblock size L. From § 4.3.3,

smaller αb and larger cb are better for HICOO-MTTKRP performance. The best value of

L depends on the tensor size and non-zero distribution, and affects the number of tasks

93

available to the superblock scheduler. Table 5.2 lists the three parameter values for all

tensors before and after LEXI-ORDER, and the HICOO-MTTKRP speedup using LEXI-

ORDER over no-ordering cases. Generally, when both parameters αb and cb are improved,

we see a good speedup using LEXI-ORDER. Also, the optimal L values differ before and

after reordering, particularly on the tensors nell2, fb-m, fb-s, flickr4d, and deli4d. It appears

necessary to re-tune L after tensor reordering.

Table 5.2: HICOO parameters change before and after LEXI-ORDER reordering.

Tensors
No reordering LEXI-ORDER Speedup

αb cb L αb cb L seq omp

vast 0.003 2.210 8 0.004 1.562 8 0.98 1.01
nell2 0.020 0.302 10 0.008 0.074 9 1.06 0.91
choa 0.023 0.070 10 0.016 0.056 10 1.01 0.97

darpa 0.217 0.016 15 0.018 0.113 15 1.96 1.13
fb-m 0.416 0.011 18 0.086 0.021 16 2.32 1.36
fb-s 0.456 0.010 18 0.099 0.020 16 2.35 1.49

flickr 0.358 0.014 13 0.097 0.025 13 1.80 2.42
deli 0.988 0.008 16 0.501 0.010 16 2.29 0.84

nell1 0.998 0.008 18 0.744 0.009 18 1.82 0.65

crime 0.000 666.892 4 0.000 654.686 4 1.00 1.01
uber 0.000 0.998 4 0.000 0.454 4 0.99 2.67
nips 0.016 0.416 7 0.004 0.435 7 1.01 1.17

enron 0.037 0.031 8 0.045 0.030 8 1.16 1.08
flickr4d 0.358 0.014 15 0.148 0.020 12 1.26 0.95
deli4d 0.797 0.009 16 0.596 0.010 15 1.14 0.82

5.3.7 Reordering Overhead

Figure 5.15 shows the overhead of LEXI-ORDER with 3 iterations. We specifically report

the ratio of LEXI-ORDER ordering time to HICOO construction time. (That is, we show

how much more expensive it might be to reorder compare to constructing the HICOO

representation in the first place.) The results lie in the range of 1.5 to 12.0×. Thus, an

important area for future work is to reduce this reordering overhead, possibly by merging

the reordering process with HICOO construction as well as using thread parallelization for

the reordering itself, which was done sequentially in these experiments.

94

Ti
m

es
 o

f H
iC

O
O

 C
on

st
ru

tio
n

0

2

4

6

8

10

12

deli4d�ickr4denronnipsubercrimenell1deli�ickrfb-sfb-mdarpachoanell2vast

3-D Tensors 4-D Tensors

Figure 5.15: The reordering overhead over HICOO construction.

5.4 Related Work

Various reordering methods have been considered for matrix algebra, such as [5, 49, 71,

72, 82, 83, 115, 116, 139–142, 184, 185]. For tensor operations, Shaden et al. [156] model

the memory access of the MTTKRP operation, while Kaya et al. [85] model computational

load and communication volume of MTTKRP using hypergraphs. These two hypergraphs

are constructed differently from our BFS-LIKE-MCS, they use fibers and tasks as ver-

tices respectively. Though they both use hypergraph partitioning methods, Shaden et al.

[156] induce a tensor reordering while Kaya et al. [85] generate a tensor partitioning on

distributed processors. Since our BFS-LIKE-MCS approach only takes connectivity into

account and does not consider memory access pattern, it does not behave well on all for-

mats and almost all tensors. However, our LEXI-ORDER performs comparably with the

hypergraph partitioning method used by Shaden et al. [156] and is not mode dependent.

5.5 Summary

Motivated by an interest in further improving a HICOO implementation, we believe the

problem of reordering to improve block density for tensor computations is a novel and in-

teresting one. LEXI-ORDER obtains large MTTKRP performance speedup for both sequen-

tial and multicore parallel implementations on HICOO and COO formats and marginal

speedup on CSF format; while BFS-LIKE-MCS does not improve much MTTKRP perfor-

95

mance. Users can control a parameter of LEXI-ORDER to reduce the reordering overhead

without much performance drop of MTTKRP and also choose the optimal HICOO param-

eters for the reordered tensors to pursue the highest MTTKRP performance.

And while the improvements are large primarily in the sequential, rather than the paral-

lel, case, the “baseline” is the tensor in its natural order after preprocessing by others. Since

we do not know the provenance of the tensors or how they were assembled, it is possible

there could be even stronger benefits in settings where there is little or no “natural” order-

ing structure as the tensor input arrives. In any case, we regard the study of this chapter as

an initial foray with many opportunities for future work.

96

CHAPTER 6

INTENSLI: AN INPUT-ADAPTIVE AND IN-PLACE DENSE TTM

In this chapter, we consider the problem of how to improve the single-node performance of

a dense mode-n product [89], or more simply, a dense TTM which multiplies a dense tensor

by a dense matrix (Section 2.2.2). For some tensor decompositions, e.g., Tucker decompo-

sition, TTM is both a fundamental building block and usually the dominant bottleneck.

The conventional way to implement TTM relies on matricization of the tensor, which

essentially transforms the tensor into an equivalent matrix [89] (Section 2.1.1). TTM then

simply becomes a GEMM. This approach is sensible, for two reasons. First, GEMM is a

clean and portable abstraction for which many fast implementations already exist [48, 66,

168, 176]. Secondly, the basic theoretical computation and communication complexity of

TTM matches GEMM [159]. Thus, TTM has high arithmetic intensity at sufficiently large

sizes and so should scale well, just like GEMM.

Unfortunately, we observe that state-of-the-art GEMM-based implementations of TTM,

such as the TENSOR TOOLBOX or CTF [162], can perform well below what one expects

from GEMM alone (§ 6.1). The problem is matricization.

Mathematically, matricization is merely a conceptual (or logical) restructuring of the

tensor, as noted in Section 2.1.1. However, this step is almost always implemented as an

explicit copy. Copying ensures that the matricized tensor has a non-unit stride in only one

dimension, as required by the Basic Linear Algebra Subprograms (BLAS) [24]. By contrast,

doing the TTM in-place without such copies would require a different interface for GEMM,

one which could support non-unit strides in both the row and column dimensions [168];

accordingly, performance may be expected to decrease due to decreases in cache line uti-

lization, prefetch bandwidth, and the degree of SIMDization. (Copying can also roughly

double the storage; see § 6.1.) Nevertheless, the conventional wisdom is that this copy need

97

not incur a performance overhead. By contrast, we find that explicit matricization can in

practice dominate the overall running time, accounting for 70% of the total running time or

more, even at large sizes1 (figure 6.2 in § 6.1).

These observations raise a very natural question: can one achieve GEMM-like perfor-

mance for TTM using only an in-place approach?

We answer the preceding question affirmatively. Our main contribution is a novel

framework for automatically generating high-performance in-place dense TTM implemen-

tations (§ 6.2). This framework generates TTM implementations that use coarse-grained

parallelism via OpenMP and any underlying high-performance GEMM. It considers sev-

eral strategies for decomposing the specific type of TTM that the user requires in order to

maximize the use of the fast GEMM. We show that our framework can produce TTM im-

plementations that achieve a high fraction of what a hypothetical pure GEMM can achieve

(§ 6.4).

Beyond a code generation strategy, the second contribution of our work is a method,

based on empirical model-based tuning, to select a good implementation of the TTM. Our

method considers the characteristics of the input to the TTM, such as the size of the tensor in

each dimension. Put differently, the code generation framework produces several parame-

terized implementations; and we use a heuristic model to select the parameters, which need

to be tuned for a given input. In this way, the framework’s results are input-adaptive [105].

Thus, even if a compiler-based loop transformation system can, from a naı̈ve TTM code

as input, produce the codes that our framework generates, the input-adaptive aspect of our

approach can be considered a distinct contribution.

We have implemented our approach as a system called INTENSLI, which is pronounced

as “intensely” and is intended to evoke an In-place and input-adaptive Tensor Library.2

1The argument would be that the copy is, asymptotically, a negligible low-order term in the overall running
time. However, that argument does not hold in many common cases, such as the case of the output tensor
being is much smaller than the input tensor. This case arises in machine learning and other data analysis
applications, and the result is that the cost of a data copy is no longer negligible.

2This work has been published [100].

98

Taken together, we show that our INTENSLI-generated TTM codes can outperform the

TTM implementations available in two widely used tools, the TENSOR TOOLBOX [16] and

CTF [162], by about 4 times and 13 times, respectively. Our framework can be directly

applied to tensor decompositions, such as the well-known Tucker decomposition, whose

computation heavily relies on efficient tensor-times-matrix multiply [89].

Table 6.1 summarizes the symbols and notations used in this chapter. For other general

symbols, refer to table 2.1.

Table 6.1: List of symbols and notations in Chapter 6.

Symbols Description

XSUB, YSUB Sub-tensors
m,n, k Matrix sizes

Q #Floating-point operations (or Flops)
W #Words

A, Â Arithmetic intensity

Input parameters
P #CPU threads
Z Last-level cache size in words

INTENSLI parameters
ML A set of loop modes
MC A set of component modes
NC #Component modes in MC , NC = |MC |
PL Loop parallel degree
PC MM parallel degree
θMS Minimum storage size threshold of a MM kernel for NC

θML Maximum storage size threshold of a MM kernel for NC

θP Storage size threshold of a MM kernel for thread allocation

6.1 Motivating Observations

Currently, most tensor toolkits, including the widely used TENSOR TOOLBOX [16] and

CTF libraries [160], implement TTM using a three-step method: (i) matricizing the tensor

by physically reorganizing it (copying it) into a matrix; (ii) carrying out the matrix-matrix

product, using a fast GEMM implementation; and (iii) tensorizing the result, again by phys-

ical reorganization. This procedure appears in algorithm 10 and figure 6.1.

To motivate the techniques proposed in § 6.2, we make a few observations about the

99

Algorithm 10 The baseline mode-n product algorithm (TTM) in Tensor Toolbox [16] and
CTF [160].
Input: A dense tensor X ∈ RI1×I2×···×IN , a matrix U ∈ RR×In , and an integer n;
Output: A dense tensor Y ∈ RI1×···×In−1×R×In+1×···×IN ;

// Matricize: Transform from X to X(n).
1: Set sz = size(X), order = [n, 1 : n− 1, n+ 1 : N];
2: X̃ = permute(X, order);
3: Xmat = reshape(X̃), Xmat ∈ RIn×

∏i=1,...,N
−n Ii;

// Multiply: Y(n) = UX(n).
4: Ymat = U ∗Xmat;

// Tensorize: Transform from X(n) to X.
5: Set out sz = [R, sz(1 : n− 1), sz(n+ 1 : N)];
6: Ỹ = tensor(Ymat, out sz);
7: Y = inversePermute(Ỹ, order);
8: return Y;

R
R Y=X x1 U

I1

R

I2I3

R Y(1)=UX(1)
GEMM

TTM

X
Y U

Y(1)

X(1)

U
Tr

an
sf

or
m

Tr
an

sf
or

m

I1

I2

I3

I3I2

I1

I1

I2I3

Figure 6.1: Structure of the baseline mode-1 TTM computation.

traditional implementations of TTM (algorithm 10). These observations reveal several in-

teresting problems and immediately suggest possible ways to improve TTM performance.

Observation 1: In a traditional TTM implementation, copy overheads dominate when

the output tensor is much smaller than the input tensor. Consider algorithm 10, which has

two transformation steps, one on lines 2–3 and the other on lines 6–7. They can carry a

large overhead when implemented as physical reorganizations, i.e., explicit copies.

For instance, consider the profiling results for a mode-2 product on 3rd-order, 4th-order,

and 5th-order dense tensors, as shown in figure 6.2. The x-axis represents tensor sizes and

the y-axis shows the fraction of time or space of the transformation step (lower dark bars)

100

0.0

0.2

0.4

0.6

0.8

1.0
MultiplyTransform

10003 2004 605

N
or

m
al

iz
ed

 T
im

e

Tensor Size
0.0

0.2

0.4

0.6

0.8

1.0
MultiplyTransform

10003 2004 605

N
or

m
al

iz
ed

 S
pa

ce

Tensor Size

(a) Time Profiling (b) Space Profiling

Figure 6.2: Profiling of algorithm 10 for mode-2 product on 3rd, 4th, and 5th-order tensors,
where the output tensors are low-rank representations of corresponding input tensors.

compared to the matrix multiply (upper light-grey bars). These profiles were gathered for

the TENSOR TOOLBOX implementation.3 Transformation takes about 70% of the total

running time and accounts for 50% of the total storage.

To see fundamentally why copying hurts performance, compare the arithmetic intensity

of TTM with copy overheads against GEMM. Consider a system with a two-level memory

hierarchy, that is, with a large slow memory connected to a fast memory (e.g., last-level

cache) of size Z words. Recall that the arithmetic intensity of a computation running on

such a system is the ratio of its floating-point operations, or flopsQ, to the number of words,

W , moved between slow and fast memory [76]; the higher a computation’s intensity, the

closer to peak it will run. For both GEMM and tensor contractions, W ≥ Q

8
√
Z
− Z [17].

Thus, an upper-bound on arithmetic intensity, A, is

A ≡ Q

W
≤ Q

Q

8
√
Z
− Z

≈ 8
√
Z, (6.1)

where the latter bound holds if Q

8
√
Z
� Z, or Q � 8Z3/2. For a non-Strassen GEMM on

n × n matrices, Q = 2n3, so that equation (6.1) holds when n3 � 4Z3/2. Assuming a

3TENSOR TOOLBOX calls Intel Math Kernel Library as the high-performance BLAS implementation of
GEMM.

101

cache of size 8 MiB, which is 220 double-precision words, then 4Z3/2 = 232, which means

the matrix dimension n should satisfy n & 1600.

Now consider a TTM implementation that copies explicitly. Suppose this TTM involves

an order-N tensor of size I in each dimension, so that the tensor’s size is IN and the TTM’s

flops are Q̂ = 2IN+1. The two transformations steps together require moving a total of

2IN words. Further suppose that this TTM does the same number of flops as the preceding

GEMM; then, Q̂ = Q or I = n
3

N+1 . The intensity Â of this TTM will be, again assuming

Q̂ = Q� 8Z3/2,

Â .
Q̂

Q̂

8
√
Z

+ Q̂
I

=
8
√
Z

1 + 8
√
Z
I

≈ A

1 + A
I

. (6.2)

Thus, copying might reduce the copy-free intensity, A, by a factor of 1 + A/I . How large

can this penalty be? If n & 1600 and N = 3, then I ≈ 254 and 1+A/I ≈ 33. This penalty

increases as the order N increases. Thus, one should avoid explicit copying.

Observation 2: The GEMM sizes that arise in TTM may be far below peak. It is

well-known that while GEMM benchmarks emphasize its performance on large and square

problem sizes, the problem sizes that arise in practical applications are often rectangular

and, therefore, may have a very different performance profile. The best example is LU

decomposition, in which one repeatedly multiplies a “tall-skinny” matrix by a “short-fat”

matrix.4 Similarly, one expects rectangular sizes to arise in TTM as well, due to the nature

of the decomposition algorithms that invoke it. That is, the GEMM on line 4 of algorithm 10

will multiply operands of varying and rectangular sizes. A particularly common case is one

in which R� Ii, which can reduce intensity relative to the case of R ≈ Ii.

Based on these expectations, we measured the performance of a highly-tuned GEMM

implementation from Intel’s Math Kernel Library [48]. Figure 6.3 shows the results. The

operation was C = BAT , where A ∈ Rn×k, B ∈ Rm×k. The value of m is fixed to be

4That is, block outer products.

102

m = 16, which corresponds to a “small” value of R. Each square is the performance at a

particular value of k (x-axis, shown as log2 k) and n (y-axis, shown as log2 n), color-coded

by its performance in GFLOP/s. Figure 6.3(a) shows the case of a single thread, and (b) for

4 threads. (The system is a single-socket quad-core platform, described in § 6.4.)

According to figure 6.3, performance can vary by roughly a factor of 6, depending

on the operand sizes. When k or n becomes very large, performance can actually de-

crease. The maximum performance in figure 6.3 is about 38 GFLOP/s for 1 thread, and

140 GFLOP/s for 4 threads. This particular GEMM can actually achieve up to 50 GFLOP/s

and 185 GFLOP/s for 1 and 4 threads, respectively, at large square sizes.

k
1 2 3 4 5 6 7 8 9 10 11 12 13 14

n

1
2
3
4
5
6
7
8
9

10
11
12
13
14

5

10

15

20

25

30

35

k
1 2 3 4 5 6 7 8 9 10 11 12 13 14

n

1
2
3
4
5
6
7
8
9

10
11
12
13
14

20

40

60

80

100

120

140

(a) m=16, using 1 thread (b) m=16, using 4 threads

Figure 6.3: Performance of dense, double-precision general matrix multiply from the Intel
Math Kernel Library for C = BAT , where A is n×k, B is m×k. The value of m is fixed
at 16, while k (x-axis) and n (y-axis) vary. Note that the x- and y-axis labels show log2 k
and log2 n, respectively. Each square is color-coded by performance in GFLOP/s.

Observation 3: Analogous to BLAS operations, different ways of organizing TTM have

inherently different levels of locality. There are several ways to organize a TTM. Some of

these formulations lead to scalar operations, which have relatively poor locality compared

to Level-2 (matrix-vector) or to Level-3 (matrix-matrix) type operations. As with linear

algebra operations, one should prefer Level-3 organizations over Level-2 or Level-1.

We summarize these different formulations in table 6.2, for the specific example of

computing a mode-1 TTM on a third-order tensor. There are two major categories. The

first is based on full reorganization (algorithm 10), which transforms the entire input ten-

103

Table 6.2: A third-order tensor’s different representation forms of mode-1 TTM. The input
tensor is X ∈ RI1×I2×I3 , the input matrix is U ∈ RI1×R, and the output tensor is Y ∈
RR×I2×I3 .

Mode-1 Product Representation Forms BLAS Level Transformation

Full
reorganization

Tensor representation — —
Y = X×1 U

Matrix representation L3 Yes
Y(1) = UX(1)

Sub-tensor
extraction

Scalar representation
Slow Noyri2i3 =

∑I1
i1=1 xi1i2i3uri1

Loops : i2(3) = 1, · · · , I2(3), r = 1, · · · , R
Fiber representation

L2 Noy(r, :, i3) = X(:, :, i3)u(r, :),

Loops : i3 = 1, · · · , I3, r = 1, · · · , R
Slice representation L3 No

Y(:, :, i3) = UX(:, :, i3), Loop : i3 = 1, · · · , I3

sor into another form before carrying out the product (§ 2.1.1). This category includes

the matricization approach. The second category is based on sub-tensor extraction. The

formulations in this category iterate over sub-tensors of different shapes, such as scalars,

fibers, or slices (§ 2.1.1). By analogy to the BLAS, each of the formulations corresponds to

the BLAS level shown in the table (column 3). The full reorganizations also imply at least

a logical transformation of the input tensor, whereas sub-tensor extraction methods do not

(column 4). Further explanation of different representations will be given in § 6.2.

6.2 In-Place and Input-Adaptive TTM

This section describes the INTENSLI framework, which automatically generates an in-

place, input-adpative TTM (INTTM). By in-place, we mean avoiding the need for physical

reorganization of the tensor or its sub-tensors when computing the TTM; by input-adaptive,

we mean choosing a near-optimal strategy for a given set of inputs, which for a mode-n

product include the value of n and the size of the input tensor (both order and length of

each dimension).

104

6.2.1 A Third-Order Tensor Example

To build some intuition for our scheme, we introduce the basic terms on a third-order tensor.

But the strategies and conclusions from this section is applicable to arbitrary-order tensors.

From § 2.1.2, there are several dense representations for a tensor operation: tensor, ma-

trix, slice, fiber, and scalar representations from two major categories. Full reorganization

transforms the entire input tensor into another form before carrying out the product; while

sub-tensor extraction iterates over sub-tensors of different shapes. We use TTM as an ex-

ample to show the different formulations of them in table 6.2. Consider a third-order tensor

X ∈ RI1×I2×I3 and a matrix U ∈ RIn×R, with which we wish to compute the mode-1

product (or TTM), Y = X ×1 U. The matrix representation of TTM first matricizes ten-

sor X to X(1), and does a matrix-matrix multiplication to compute Y(1), then converts it

back to tensor Y. The two transformations are non-trivial because of their large amount of

memory access. The slice representation fixes one mode index of Y, say i3, with an loop

iterating all its values; the fiber representation fixes the indices of two modes, say j and

i3, with two loops iterating all their values; and the scalar representation fixes the indices

of all modes inside three nested loops. Matrix representation requires twice transforma-

tions, while slice, fiber, and scalar representations can be performed in-place so long as we

pre-allocate Y. By analogy to the BLAS, the formulations corresponds to different BLAS

levels. Typically, operations in a higher BLAS level can potentially achieve higher perfor-

mance. The full reorganizations also imply at least a logical transformation of the input

tensor, whereas sub-tensor extraction methods do not. Therefore, the slice representation

is the most performance and storage efficient in table 6.2.

Moreover, for the slice representation we are also free to choose which mode(s) to fix

and which to iterate over. Alternatively, we may compute Y using another slice represen-

tation by computing Y(:, i2, :) = UX(:, i2, :) for all i2 = 1, · · · , I2 too. We use the term

stride refers to the distance in physical memory between two consecutive elements along

one mode. The last-mode dominated layout in § 2.1.2, analogous to row-major layout for

105

I1

R
I2

X(: ,
:, i 3

) U
I1

R
I3

X(:, i2, :)U

(a) Y(:, :, i3) = UX(:, :, i3), non-contiguous. (b) Y(:, i2, :) = UX(:, i2, :), contiguous.

Figure 6.4: Two examples of the slice representation.

matrices, has the unit stride for the last mode which is called leading mode. For instance,

suppose our third-order tensor X is stored in the last-mode dominated layout. Then, each

element xijk is stored at position i1 · (I2I3) + i2 · (I3) + i3. The leading mode is the third

mode. We take two examples of the slice representation, Y(:, :, i3) = UX(:, :, i3) and

Y(:, i2, :) = UX(:, i2, :) in figure 6.4. The row stride of slice X(:, :, i3) is I2I3 and the

column stride is I3, while the row stride of slice X(:, i2, :) is I2I3 and the column stride is

1. If both row and column strides are non-unit, we call the slice (or matrix) is stored in a

general stride layout.

The traditional BLAS interface for matrix-matrix multiplication (GEMM) operations

require unit stride in at least one dimension, so users cannot operate on operands stored

in a general stride layout. The BLAS-like Library Instantiation Software (BLIS) frame-

work develops interfaces to support generalized matrix storage [168]. However, GEMM on

strided matrices is generally expected to be slower than GEMM on regular matrices, since

strided memory access can easily under-utilize cache lines compared to contiguous mem-

ory access. Therefore, a reasonable implementation heuristic is to avoid non-unit stride

computation. For tensor computations, that also means we should prefer to build or refer-

ence sub-tensors starting with the leading mode. Thus, we prefer the slice representation

Y(:, i2, :) = UX(:, i2, :) to Y(:, :, i3) = UX(:, :, i3).

We can also reshape a tensor into a matrix by partitioning its indices into two disjoint

106

subsets, in different ways. For example, the tensor X(:, :, :) ∈ RI1×I2×I3 can be reshaped

into a matrix X̃(:, :) ∈ R(I1×I2)×I3 , that is, a matrix with I1I2 rows and I3 columns. This

particular reshaping is purely logical: it does not require physically reorganizing the un-

derlying storage before passing it either to a BLAS-style GEMM that requires a unit-stride

matrix or a BLIS-style GEMM that supports a general stride matrix (see § 6.2.2). Another

way to reshape X is to generate a matrix X̂(:, :) ∈ RI2×(I1×I3). As it happens, this reshape

operation is impossible without physically reorganizing the data (see § 6.2.2). Thus, we

need to be careful when choosing a new dimension order of a tensor, to avoid physical re-

organization. These two facts are the key ideas behind our overall strategy for performing

TTM in-place.

6.2.2 Algorithmic Strategy

We state two lemmas: the first suggests how to build matrices given an arbitrary number

of modes of the input tensor, and the second establishes the correctness of computing a

matrix-matrix multiplication on sub-tensors.

Lemma 6.2.1. Given an N th-order tensor X ∈ RI1×I2×···×IN and a matrix U ∈ RR×In ,

the mode-n product can be performed without physical reorganization on up to max{n −

1, N − n} contiguous dimensions.

Proof. From section § 6.2.1, to avoid physical reorganization, the dimensions of sub-tensors

should be a sub-sequence of the input tensor’s. Combining contiguous dimensions is the

only way to build a high performance MM kernel with sub-tensors (matrices).

We first prove that two contiguous modes (except mode-n) can be reshaped to one

dimension without physical reorganization. Let m and m + 1 be two contiguous modes.

Let X̃ ∈ RI1×···×Inew···×IN , where Inew = ImIm+1, be the reshaped tensor that comes from

combining these two modes into a new dimension. Because the order of the two contiguous

modes is unchanged, elements of tensor X̃ have exactly the same physical arrangement as

tensor X. Thus, we can logically form tensor X̃ from X without data movement. However,

107

for two non-contiguous modes, e.g., mode-m and (m+ 2), we cannot form a new reshaped

tensor without a permutation, which demands physically reorganizing X.

When reshaping contiguous modes, the resulting sub-tensors XSUB ∈ RIn×Inew are actu-

ally matrices. For a mode-n product, the most contiguous modes are obtained by either the

leftmost modes of mode-n, {1, · · · , n−1} or the rightmost ones {n+1, · · · , N}. Thus, up

to max{n − 1, N − n} contiguous modes can be reshaped into a “long” single dimension

in the formed matrices, without physical data reorganization.

Lemma 6.2.2 applies lemma 6.2.1 to the computation of the mode-n product.

Lemma 6.2.2. Consider the mode-n product, involving an order-N tensor. It can be com-

puted by a sequence of matrix multiplies involving sub-tensors formed either from the left-

most contiguous modes, {1, . . . ,m1}, 1 ≤ m1 ≤ n−1; or the rightmost contiguous modes,

{m2, . . . , N}, n+ 1 ≤ m2 ≤ N .

Proof. Recall the scalar definition of the mode-n product, Y = X×n U, which is

yi1···in−1r···iN =
In∑
in=1

xi1···iNurin .

Without loss of generality, consider the rightmost contiguous modes {m2, · · · , N}, and

suppose they are combined into a single dimension. Let Ip ≡ Im2 · · · IN be the total

size of this new dimension. Then, we may extract two new (logical) sub-tensors (matri-

ces): XSUB, which is taken from X and has size In × Ip, and YSUB, which is taken from Y

and has size R × Ip. The GEMM operation, YSUB = UXSUB, is in scalar form, (Ysub)rip =∑In
in=1 urin(Xsub)in,ip . The index ip = im2×Im2+1 · · · IN+· · ·+iN , corresponds to the offset

(im2 , · · · , iN) in the tensors X and Y; the remaining modes, {i1, · · · , in−1, in+1, · · · , im2−1},

are fixed indices during this GEMM. Thus, iterating over all possible values of {i1, · · · , in−1,

in+1, · · · , im2−1} and performing the corresponding matrix multiplies yields the same re-

sult as the mode-n product.

108

Lemmas 6.2.1 and 6.2.2 imply an alternative representation of a mode-n product, rela-

tive to those listed in table 6.2. This algorithmic strategy may be summarized by the INTTM

procedure shown in algorithm 11 and a sixth-order example in figure 6.5.

Algorithm 11 In-place Tensor-Times-Matrix Multiply (INTTM) algorithm to compute a
mode-n product. “inplace-mat” means in-place building a sub-tensor (matrix) from initial
full tensor, using modes for its row and column respectively.
Input: A dense tensor X ∈ RI1×I2×···×IN , a dense matrix U ∈ RR×In , and an integer n;
Output: A dense tensor Y ∈ RI1×···×In−1×R×In+1×···×IN ;

. Nested loops, using PL threads
1: parfor il = 1 to Il, all il ∈ML do
2: if MC are on the left of in then
3: XSUB = inplace-mat (X, MC , in);
4: YSUB = inplace-mat (Y, MC , r);

. Matrix-matrix multiplication, using PC threads
5: YSUB = XSUBU

′, U′ is the transpose of U.
6: else
7: XSUB = inplace-mat (X, in, MC);
8: YSUB = inplace-mat (Y, r, MC);

. Matrix-matrix multiplication, using PC threads
9: YSUB = UXSUB

10: end parfor
11: return Y;

To instantiate this algorithm for a tensor with given dimensions, we must generate a set

of nested loops (line 1) and use a proper kernel for the inner matrix-matrix multiplication

(lines 5 and 9).

A number of parameters arise as a result of this algorithm:

• Loop modes, ML. Modes utilized in nested loops. They are not involved in the

inner-most matrix multiplies. For instance, in figure 6.5, the loop modes are i1, i2.

• Component modes, MC . Modes participate in matrix multiply. ML and MC consti-

tute the set of all tensor modes, except mode-n. From lemma 6.2.1, only contiguous

modes are considered as component modes. In figure 6.5, component modes are

i4, i5, i6.

109

I
1

I2 I3 I4 I
6

{2 3 {

MC
Xsub

I3

I4I5I6 {I1I2

I5

{{
ML

Figure 6.5: Structure of new mode-3 INTTM computation for a sixth-order tensor using
forward strategy.

• Loop parallel degree, PL. The number of threads utilized by nested loops, i.e., loop

modes, to exploit parallelization at a coarse-grained level.

• MM parallel degree, PC . The number of threads employed by the inner-most matrix

multiply; fine-grained parallelism.

In algorithm 11, we avoid physical reorganization of the X and Y tensors, and build a

MM kernel accordingly using the chosen component modes (MC). IfMC is assigned to the

left modes of in (called backward strategy), XSUB and YSUB are in-place constructed with the

size of
∏

ic∈MC
Ic× In and

∏
ic∈MC

Ic×R respectively. Mode-n is taken as the columns of

XSUB and YSUB, thus we use YSUB = XSUBU
′ as the MM kernel. Otherwise, MC is assigned

to the modes to the right of in (called forward strategy), mode-n is taken as the rows of

XSUB and YSUB. Thus we use YSUB = UXSUB as the MM kernel. Note that sub-tensors

(matrices) are not explicitly built, but implicitly referred to logically sub-tensors. Multi-

threaded parallelism is additionally employed on both nested loops and the MM kernel,

exposing two additional parameters. The parameter configuration will be described in the

next section.

110

By avoiding an explicit data copy, the intensity Ã of INTTM algorithm will be,

Ã .
Q̂
Q̂

8
√
Z

= 8
√
Z ≈ A. (6.3)

Our in-place INTTM algorithm improves the arithmetic intensity of tensor-times-matrix

multiply, by eliminating the factor 1 + A
I

. The arithmetic intensity of INTTM is close to

GEMM, so it has the potential to achieve comparable performance to GEMM. Furthermore,

utilizing in-place operations decreases storage space by approximately 50%.

The INTTM algorithm also presents new challenges. Challenge 1: INTTM does not

have a natural static representation. As shown in algorithm 11, loop modes ML and com-

ponent modes MC vary with the input tensor and mode-n. Because its performance might

depend on the input, INTTM algorithm is a natural candidate for code-generation and auto-

tuning. Challenge 2: INTTM algorithm may operate on inputs in a variety of shapes, as

opposed to only square matrices. For instance, it would be common in INTTM in the case

of a third-order tensor for two of the matrix dimensions to be relatively small compared to

the third. Additionally, there might be large strides.

Despite these challenges, we still have opportunities for optimization. To this end, we

build an input-adaptive framework that generates code given general input parameters. We

also embed optimizations to determine the four parameter values ML,MC , PL, and PC in

this framework, to generate an optimal tensor-times-matrix multiply code.

6.3 An Input Adaptive Framework

Our input-adaptive framework is shown in figure 6.6, illustrating the procedure of generat-

ing INTTM for a given tensor. There are three stages: input, parameter estimation, and loop

generation, which generates the INTTM code. Input parameters include data layout, input

tensor, leading mode, MM Benchmark, and the maximum supported number of threads.

The parameter estimator predicts the optimal values of intermediate parameters, including

111

loop order, ML, MC , PL, and PC . These intermediate parameters guide the generation of

INTTM code. Within INTTM, either the BLIS or MKL libraries will be called according to

the parameter configuration.

We first illustrate parameter estimation, then explain the code generation process in the

following sections.

Hardware
Parameters

Max
#Threads

MM
Benchmark

Input
Parameters

Tensor

Thresholds

Mode n

Data Layout

Code
Generator

ML

MC

PL

PC

Parameter
Estimator InTTM Code

Mode
Partition

Thread
Allocation

A ect

MM Libraries

BLIS MKL

Nested loops

Matrix-matrix
Multiplication

 Ysub=UXsub

 Ysub=XsubU’OR

parfor i1=1: I1
parfor i2=1: I2

... ...

Figure 6.6: Input adaptive framework (INTENSLI).

6.3.1 Parameter Estimation

The two main aspects of parameter estimation are mode partitioning and thread allocation.

Mode partitioning is the most important, and its decision influences thread allocation, so

we state it first.

Mode partitioning. Apart from mode-n, all tensor modes are partitioned into two sets

ML and MC , to generate nested loops and sub-tensors for inner matrix multiply. From

figure 6.3, matrices in different sizes achieve very different performance numbers. In mode

partitioning, we primarily decide MC to maximize MM kernel’s performance, and the rest

modes are assigned to ML.

Lemma 6.2.1 implies that there are two ways to choose contiguous modes, namely,

from the modes either to the right or left of mode-n, forward and backward strategies,

respectively. Forward strategy is shown using a sixth-order example in figure 6.5. In the

112

I1 I2 I3 I4 I
6

{2 3 {
I5

X1
sub

I3

I4I5I6 {I1I2

{ { I1I2I4

I3

I5I6

X2
sub

3

2

MC ML

ML

MC

NC

Figure 6.7: Mode-3 INTTM for a sixth-order tensor using forward strategy under different
NC settings.

forward strategy, the mode set is MC = {m2, · · · , N}, where n + 1 ≤ m2 ≤ N ; whereas

in the backward strategy, the mode set MC = {1, · · · ,m1}, where 1 ≤ m1 ≤ n − 1. If

a tensor is stored in row-major pattern, the forward strategy generates a MM kernel with

unit stride access in one dimension, while the backward strategy employs a general stride

MM kernel. This means using forward strategy MM kernel can call the BLAS, but the

backward strategy would need general stride support, as provided by BLIS. Different stride

sizes and MM kernel implementations affect INTTM performance. As one would expect

and experiments confirm, it is usually not possible for BLIS operating on large general

strides to achieve performance comparable to MKL when one dimension has unit stride. In

the experiments below, we assume row-major layout, in which case we adopt the forward

strategy. (One would use the backward strategy if the default layout were assumed to be

column-major.)

After determining the strategy, the parameter m1 (or m2) in lemma 6.2.1 also needs

to be determined. We introduce another parameter, NC , which specifies the number of

component modes in MC . Once NC is decided, so is m1 (or m2). Two examples of a

sixth-order INTTM with different NCs using forward strategy is plotted in figure 6.7. For

instance, take a sixth-order tensor, X ∈ RI1×···×I6 and a matrix U ∈ RR×I3 , and suppose

we wish to compute mode-3 product using the forward strategy. When NC = 3, m2 = 4,

113

MC = {i4, i5, i6}, XSUB ∈ RI3×I4I5I6 . When NC = 2, m2 = 5, MC = {i5, i6}, XSUB ∈

RI3×I5I6 . Thus, different values ofNC imply different sub-tensors and MM kernel sizes. As

shown in figure 6.3, one would therefore expect performance to vary with different values

of k and n, when m is fixed to a small value. Based on this observation, in our scheme

we build a MM benchmark and use it to generate two thresholds, θMS and θML, which are

used to determine the optimal NC and then MC . To determine the thresholds, there are two

steps. The first step is to fix k while varying n, since m is generally fixed when the tensors

arise in some low-rank decomposition algorithm; and the second step is varying k.

Figure 6.8 shows MM performance on different values of n, when m and k are fixed.

This figure shows a clear trend: after performance reaches a top-most value, as n increases,

MM performance rebounds. We see a similar trend with other values of m and k. Matrices

with unbalanced dimensions do not achieve high performance, partially because it is more

difficult to apply a multilevel blocking strategy, as in GotoBLAS [65, 66]. Put differently,

when one dimension is relatively small, there may not actually be enough computation to

hide data transfer time.

MSTH MLTH

X3
sub

I4I5I6I5I6I6

X1
sub X2

subI3I3 I3

MC={I5,I6}
ML={I1,I2,I4}

0

30

60

90

120

150

1413121110987654321
log2n

80%

)s/P
OLF

G(ecna
mrofreP

Figure 6.8: Performance variation of MM on different sizes of n, when m = 16, k = 512,
using 4 threads. MM kernels with different NCs are also shown.

114

Figure 6.8 has a typical shape, which is some function f(n) having a peak, fmax. Con-

sider a horizontal line, κfmax, for some fraction κ = 0.8, chosen empirically. The thresholds

θMS and θML correspond to the two red bars closest to but below the horizontal line. We set

θMS (θML) as the storage size of the three matrices of the MM kernel with chosen n values.

The second step is to calculate the average of each threshold over different values of k. We

wish to find the MM kernel with the three matrices’ storage size between the computed val-

ues of θMS and θML, which is relatively more likely to produce high GEMM performance.

The size bounds of the MM kernel limit the NC parameter in our INTTM algorithm. Un-

der different NCs (a.k.a. MCs), the size of n varies a lot, the best of which is NC = 2,

MC = {i5, i6}. From our experiments on a particular machine (with a Core i7 processor in

our experiment), θMS is evaluated to 1.04 MB and θML is evaluated to 7.04 MB.

The parameterNC is first initialized to 1, and its MM kernel’s storage size is calculated.

If it is smaller than θMS , we increment NC and re-evaluate the storage size until we find

the maximum MM kernel size between θMS and θML. Now, we use NC to partition modes

to ML and MC .

From figure 6.6, the data layout also affects the partitioning process. Recall that the as-

sumed data layout affects the choice of a forward (row-major) versus a backward (column-

major) strategy. So, if NC = p, MC is {N − p + 1, · · · , N} (row-major) or {1, · · · , p}

(column-major). This choice in turn means that the component modes should be chosen

from the leading dimension, to guarantee unit stride in one dimension. The data layout also

decides the order of ML modes, where loop order is an increasing sequence of dimensions

for row-major pattern.

Thread allocation. After determining MC , we decide PL and PC according to the MM

kernel size. From our tests, if the matrix is small, parallelizing the nested loops is more

efficient than parallelizing the matrix multiply. For large matrices, the situation is the op-

posite. We use a threshold θP for thread allocation, which is also shown as the storage

size of the MM kernel. The difference is that θP is determined from INTTM experiments,

115

not from MM benchmark. If the size of MM kernel is smaller than θP , we allocate more

threads to nested loops; otherwise, more threads are allocated to MM kernel. The value of

θP is set to 800 KB in our tests. From our experiments, the highest performance is always

achieved when using maximum threads on either nested loops or the MM kernel, so we

only consider these two situations.

6.3.2 Code Generation

The code generation process consists of two pieces: generating nested loops and generating

wrappers for the matrix multiply kernel. For each mode in set ML, we build a for loop for

it according to the mode order established by ML. PL is the number of threads allocated in

nested loops. Code is generated in C++, using OpenMP with the collapse directive.

For the matrix multiply kernel, we build in-place sub-tensors XSUB and YSUB using

modes in MC . According to the row and column strides, we choose between BLIS [168]

or Intel MKL libraries [48]. Thus, a complete INTTM code is generated according to the

determined parameters.

6.4 Experiments and Analyses

Our experimental evaluation focuses on three aspects of INTENSLI: (a) assessing the ab-

solute performance (GFLOP/s) of its generated implementations; (b) comparing the frame-

work against widely used alternatives; and (c) verifying that its parameter tuning heuristics

are effective. This evaluation is based on experiments carried out on the two platforms

shown in table 6.3, one based on a Core i7-4770K processor and the other on a Xeon

E7-4820. Our experiments employ 8 and 32 threads on the two platforms respectively,

considering hyper-threading. The system based on the Xeon E7-4820 has a relatively large

memory (512 GiB), allowing us to test a much larger range of (dense) tensor sizes than has

been common in prior single-node studies. Note that all computations are performed in

double-precision.

116

Table 6.3: Experimental Platforms Configuration
Intel Intel

Parameters Core i7-4770K Xeon E7-4820

Microarchitecture Haswell Westmere
Frequency 3.5 GHz 2.0 GHz

#Physical cores 4 16
Hyper-threading On On

Peak GFLOP/s 224 128

Last-level cache 8 GiB 18 GiB
Memory size 32 GiB 512 GiB

Memory bandwidth 25.6 GB/s 34.2 GB/s
#Memory channels 2 4

Compiler icc 15.0.2 icc 15.0.0

Pe
rf

or
m

an
ce

 (G
FL

O
P/

s)

Tensor Size
3-D

60
0

80
0

10
00

24
0

22
0

16
0

18
0

20
0 50 6040 70 80

4-D 5-D

0

10

20

30

40

50

12
00

14
00

Pe
rf

or
m

an
ce

 (G
FL

O
P/

s)

Tensor Size
3-D

15
00

20
00

25
00

40
0

25
0

30
0

35
0

12
0

60 10
0

80

4-D 5-D

0

10

20

30

40

50

30
00

(a) Intel Core i7-4770K (b) Intel Xeon E7-4820

Figure 6.9: Performance of INTENSLI-generated INTTM algorithm for mode-2 product on
3rd, 4th, and 5th-order tensors. Each bar represents the performance of a specific tensor
size.

117

6.4.1 Basic benchmark.

We first check that the INTENSLI-generated INTTM delivers consistent performance at a

variety of tensor dimensions and sizes. The results for a mode-2 product, as an example,

appear in figure 6.9. We tested X ×2 U where X is an order-N tensor of size I in each

dimension (total tensor size is IN) and U is a 16 × I matrix to agree with the low-rank

property of tensor decomposition. We test N ∈ {3, 4, 5} at various values of I , shown

along the x-axis, chosen so that the largest I still permits IN to fit into main memory;

the y-axis shows performance in GFLOP/s. On the Core i7, our INTTM achieves over

40 GFLOP/s on 3rd-order tensors, with performance tending to steadily decrease or remain

flat with increasing size and order. At higher orders, dimension size decreases in order to

fit into memory, which reduces the inner GEMM performance as we would expect from

the observations of § 6.1. By contrast, performance trends on the Xeon E7 platform differ

from those on the Core i7. In particular, 3rd-order tensors show the worst performance,

compared to higher-order tensors. This stems in part from worse Intel MKL performance

on the Xeon E7—it achieves only 51 GFLOP/s on a square GEMM with operands of size

1000 × 1000, compared to 154 GFLOP/s on the Core i7. However, it also happens that,

on the Xeon E7, the multithreading within MKL does not appear to benefit GEMM perfor-

mance much. Our ability to achieve higher performance with higher orders on that platform

comes mainly from our use of coarse-grained outer-loop parallelization.

On both platforms, INTENSLI-generated INTTM does not deliver performance that

compares well with the peak performance shown in table 6.3. The main reason is, as noted

in § 6.1 and figure 6.3, GEMM performance differs from peak for rectangular shapes. Such

shapes can arise in INTENSLI-generated TTM code, since it considers a variety of ways to

aggregate and partition loops.

118

0

10

20

30

40

50

GEMMCTF

TT-TTMInTTM

Tensor Size
3-D: 10003 4-D: 1804 5-D: 605

Pe
rf

or
m

an
ce

 (G
FL

O
P/

s)

Figure 6.10: Performance comparison among INTENSLI-generated INTTM, TENSOR

TOOLBOX (TT-TTM), Cyclops Tensor Framework (CTF), and GEMM on 3rd, 4th, and
5th-order tensors of mode-2 product.

6.4.2 Comparison to other tools.

We compare INTENSLI-generated INTTM code against the equivalent implementations

in the TENSOR TOOLBOX and CTF. Note that the TENSOR TOOLBOX and CTF imple-

mentations use algorithm 10. TENSOR TOOLBOX is designed to be MATLAB-callable,

but under-the-hood uses multithreading and can link against a highly-tuned BLAS. CTF

is implemented in C++, with OpenMP parallelization and BLAS calls where possible. In

addition, it is useful to also compare against GEMM using a matricized tensor (line 4 of al-

gorithm 10) but ignoring any reorganization time and other overhead. This measurement of

just GEMM provides an estimate of the performance we might expect to achieve. TENSOR

TOOLBOX, CTF, GEMM, and our INTTM are all linked to MKL library for GEMM calls.

The results appear in figure 6.10. Because TENSOR TOOLBOX and CTF have larger

memory requirements than the INTTM, the tensor sizes selected for figure 6.10 are smaller

than for figure 6.9. In figure 6.10, the leftmost bar is INTENSLI-generated INTTM, which

achieves the highest performance among the four. The performance of TENSOR TOOL-

BOX and CTF is relatively low, at about 10 GFLOP/s and 3 GFLOP/s, respectively. Our

INTTM gets about 4× and 13× speedups compared to TENSOR TOOLBOX and CTF. The

119

main reason is that TENSOR TOOLBOX and CTF incur overheads from explicit copies. The

rightmost bar is GEMM-only performance. Our INTTM matches it, and can even outper-

form it since the INTENSLI framework considers a larger space of implementation options

than what is possible through algorithm 11.

0

10

20

30

40

50 TT-TTMInTTM

4321
Mode

Pe
rf

or
m

an
ce

 (G
FL

O
P/

s)

Figure 6.11: Performance behavior of INTENSLI-generated INTTM against TENSOR

TOOLBOX (TT-TTM) for different mode products on a 160 × 160 × 160 × 160 4th-order
tensor.

We also compare against just TENSOR TOOLBOX for varying mode-n computations in

figure 6.11, on a 4th-order tensor.5 X-axis shows the modes corresponding to our INTTM al-

gorithm. The TENSOR TOOLBOX performance varies significantly among different modes,

ranging from 3 GFLOP/s to 40 GFLOP/s. By contrast, the INTENSLI-TTM reduces this

performance variability with changing mode. This result shows the benefit of specializing

the partitioning and iteration-ordering strategy, as INTENSLI does automatically.

6.4.3 Parameter selection.

The last major aspect of the INTENSLI framework is selecting good parameters. Recall that

during the mode partitioning process, a GEMM benchmark is used to determine two thresh-

olds, θMS and θML. In figure 6.12, we compare the results of using INTENSLI’s heuristics

to choose these parameters against an exhaustive search, in the case of a mode-1 product

5The TENSOR TOOLBOX uses a column-major ordering, whereas INTENSLI uses a row-major ordering.
As such, for a order-N tensor, we compare TENSOR TOOLBOX’s mode-n product against our mode-(N −
n+ 1) product, i.e., their mode-1 against our mode-4 product, their mode-2 against our mode-3 product, and
so on. In this way, the storage pattern effect is eliminated.

120

40 50 60 70 80
Pe

rf
or

m
an

ce
 (G

FL
O

P/
s)

Tensor Size

0

10

20

30

40
BestInTensLi

Figure 6.12: Comparison between the performance with predicted configuration and the
actual highest performance on 5th-order tensors of mode-1 product.

on a 5th-order tensor. The black bars show the performance of the configuration chosen

automatically by INTENSLI, and the gray bars show the performance of the configuration

chosen by exhaustive search. For this particular input, there are 16 possible configurations,

among which INTENSLI’s heuristics select just 1. As figure 6.12 shows, INTENSLI makes

near-optimal choices.

From these experiments, INTENSLI can easily be integrated in tensor decompositions,

such as Tucker decomposition for low-order tensors and hierarchical Tucker for high-

dimensional tensors. Such applications can benefit from the performance and space-efficiency

of INTENSLI-generated code.

6.5 Related Work

One of the most widely-used tensor implementations is the TENSOR TOOLBOX. Its opti-

mized TTM kernel has been the baseline comparison for our experiments. This implemen-

tation utilizes an algorithm (METTM) [91] that alleviates the intermediate memory-blowup

problem. By carefully choosing which modes to compute with finer granularity, the inter-

mediate data remains within working memory. TENSOR TOOLBOX suffers from excessive

data copy according to our experiments, which motivates our in-place approach.

121

Cyclops Tensor Framework (CTF) [162] provides another baseline implementation.

CTF is a recent HPC implementation with two levels of parallelism (OpenMP and MPI)

which focuses on communication reduction for symmetric tensor contractions that arise

frequently in quantum chemistry. TTM is a specific instance of tensor contraction. CTF

distributes tensors via a slice-representation. Another implementation that specializes on

contraction is the Tensor Contraction Engine (TCE) [10], a mature implementation that fo-

cuses on synthesizing code and dynamically maintains load balance on distributed systems.

TCE also builds a model to choose optimal data layout, while we choose from different ma-

trix shapes. INTENSLI-generated INTTM can serve as a single-node implementation for a

distributed version.

As discussed in table 6.2, there are many different ways to think about and represent

the same tensor operation, and there has been a recent flurry of work on rethinking tensor

representations to make for more efficient, scalable decompositions.

The Matricized Tensor Times Khatri-Rao Product (MTTKRP) is an essential step of

CANDECOMP/PARAFAC (CP) Decomposition, and differs from general TTM in that the

matrix is the result of the Khatri-Rao product of two matrices. N.Ravindran, et al. created

an in-place tensor-matrix product for MTTKRP [146], but their implementation operates

on the “slice” representation of the tensor. Our work takes advantage of a more general

subtensor representation, and in particular its opportunities for performance tuning.

Baskaran et al. [21] implement a data structure approach to improving the performance

of tensor decompositions, proposing a sparse storage format that can be organized along

modes in such a way that data reuse is increased for the Tucker Decomposition. In contrast,

our approach avoids the overhead of maintaining a separate data structure and can use

native, optimized multiply operations. Di Napoli et al. [56] establish precise conditions to

determine if and when using GEMM for a tensor contraction. Our approach additionally

supplies auto-tuning method to further improve the performance.

122

6.6 Summary

The key finding of this INTENSLI work is that a mode-n product, or TTM operation, can

be performed efficiently in-place and tuned automatically to the order and dimensions of

the input tensor. Our INTENSLI framework can serve as a template for other primitives

and tensor products, a few of which appear in § 6.5. Although we focused on improving

single-node performance, including exploiting shared memory parallelism and reducing

TTM bandwidth requirements, this building block can be used as a “drop-in” replacement

for the intra-node compute component of distributed memory implementations.

123

CHAPTER 7

SPARSE TTM AND TUCKER DECOMPOSITION ON CPU-GPU PLATFORMS

This chapter considers the problem of optimizing the tensor-times-dense matrix (TTM)

operation (Section 2.2.2) in the case that the input tensor is sparse. Regarding this chapter’s

scope, we consider thread parallelism and memory locality for single-node GPU platforms.

In principle, a sparse TTM is similar to a sparse matrix-times-dense matrix. Conven-

tional SPTTM implementations, such as those in TENSOR TOOLBOX [16, 89] and Cyclops

Tensor Framework (CTF) [162], first transform a sparse tensor into an equivalent sparse

matrix and then assume an optimized sparse matrix-times-dense matrix to invoke. This ap-

proach is a reasonable way to utilize an existing and highly efficient state-of-the-art sparse

matrix-times-dense matrix subroutine. However, just as in the case of dense TTM from

Chapter 6, this conversion step incurs non-trivial cost in time and space. Furthermore,

the generated matrix could be extremely large in one dimension, the explicit indexing of

which—for a many-way tensor—might quickly exceed the range of a 64-bit unsigned in-

teger. Therefore, we are motivated to avoid any such conversion, carrying out the sparse

TTM “natively” on a given input tensor.

The main use-case for TTM is the Tucker decomposition, which invokes two types of

sparse TTMs: a general sparse TTM (SPTTM) and semi-sparse TTM (SSPTTM) (see § 7.4).

SPTTM, as we know, is a general sparse tensor times a dense matrix; while SSPTTM is a

semi-sparse tensor times a dense matrix. A semi-sparse tensor is a dense-structured tensor

that at least one mode is dense. For example, a tensor with its first mode dense means the

fibers of this mode are either empty or fully dense. For a semi-sparse tensor, as observed

by Baskaran et al. [21], its dense substructure can be explored for better performance com-

pared to the general sparse case. Here, we consider performance optimizations for both

SPTTM and SSPTTM, primarily with for GPU-based platforms.

124

Our proposed techniques make the following contributions.

• First, we design an in-place sequential SPTTM algorithm to avoid tensor-matrix data

transformation, which is based on a structured sparse tensor format and a certain

special property. Additionally, an auxiliary array is used to avoid memory write

conflict for the later-on parallel SPTTM algorithms. Our sequential SPTTM is 3 −

120× faster than the SPTTM from TENSOR TOOLBOX library [16]. (§ 7.1 and § 7.2)

• Secondly, we parallelize SPTTM on single-node GPU systems. We propose several

optimizing approaches for SPTTM on NVIDIA GPUs: employing fine thread gran-

ularity, arranging coalesced memory access, rank blocking, and using local (fast)

memory (“shared memory” on GPUs). GPU-SPTTM obtains 6 − 19× speedup on

NVIDIA K40c and 23 − 67× speedup on NVIDIA P100 over CPU-SPTTM respec-

tively for real-world tensors. Our GPU-SPTTM is 3.9× faster than the state-of-the-art

GPU implementation. (§ 7.3)

• Thirdly, we implement SSPTTM on GPUs accordingly by better exploring the dense

sub-structures. Our SSPTTM implementations outperform SPTTMs which handles

the input semi-sparse tensor in a general way by 4.5×. (§ 7.4)

• Lastly, by applying SPTTM and SSPTTM to the Tucker decomposition, it outper-

forms CPU Tucker decomposition by 3.2×. (§ 7.5)

Parts of this work have been published in our previous paper [103]. The approach us-

ing fine thread granularity is the same with non-shared memory GPU SpTTM, while our

SpTTM approach using shared memory in this chapter is an optimized version thereof.

However, the work of this chapter extends that paper in four ways. 1) This work further

optimizes SPTTM on NVIDIA GPUs by employing five optimization approaches and pro-

viding a more in-depth analysis of their performance. 2) SSPTTM optimizations on these

platforms are also explored, which further speed up TTM operations in Tucker decompo-

sition. 3) We built a parallel Tucker decomposition for GPUs by applying the optimized

125

SPTTM and SSPTTM. 4) Afterwards, these algorithms are tested on an extended sparse

tensor set, including both third- and fourth-order real-world tensors. One consequence is

that our new GPU optimizations achieve much better speedup than in our prior publication.

Table 7.1 summarizes the symbols and notation of this chapter, with other general sym-

bols listed in table 2.1.

Table 7.1: List of symbols and notations in Chapter 7.

Symbols Description

Input parameters
NTB Maximum #Threads per block
SSM Maximum shared memory size in words
NTR Maximum #Threads per block for a matrix row

Algorithm parameters
nfibs #Mode-n fibers of X
fptr The beginnings of X’s mode-n fibers, sized nfibs

flen The average length of X’s mode-n fibers, flen = M
nfibs

DY Dense mode set of a semi-sparse tensor
SY Sparse mode set of a semi-sparse tensor

nchunks #DY-chunks of Y
cptr The beginnings of Y’s DY-chunks, sized nchunks

7.1 Semi-sparse Tensor Format (sCOO)

We study “semi-sparse” tensors which are sparse tensors with at least one mode dense,

since they are intermediate results of the tensor decompositions with dense factor matrices,

thus an efficient format is critical to a tensor decomposition’s performance (details in § 2.3).

Different from § 3.2.3, we use a simple semi-COO (sCOO) format, an auxiliary format of

COO format, which only stores the indices of sparse modes and all the non-zero values in a

particular order for dense modes. The reused indices between a sparse tensor in COO and

a semi-sparse tensor in sCOO are only saved once. The idea of distinguishing dense and

sparse modes was first proposed by Baskaran et al. [21] as “Mode-generic sparse storage

format”. Figure 7.1 shows a sCOO representation of an example semi-sparse tensor with

dense mode 3.

126

Assume integer indices and floating-point values have the same size of 32 bits, sCOO

format saves 50% space of COO format for this toy example tensor. sCOO format saves at

least ND

N+1
storage space for an N th-order semi-sparse tensor with ND dense modes. The

storage saving comes from that sCOO does not store the indices of dense modes, and the

indices of sparse modes are compressed in sCOO than in COO.

val

(a) COO (b) sCOO

0 0

1 0

2 2

1 2

3 4

5 6

0 0 0 1

0 0 1 2

1 0 0 3

1 0 1 4

2 2 0 5

2 2 1 6

vali j k i j

Figure 7.1: COO and sCOO formats of a semi-sparse 3× 3× 2 tensor, with dense mode 3.

7.2 SPTTM on CPUs

Based on COO and sCOO formats, we implement sequential SPTTM by directly operating

on non-zero entries without explicit transformation between a tensor and a matrix.

Given a sparse tensor X ∈ RI1×I2×···×IN and a dense matrix U ∈ RIn×R, we know the

resulting tensor Y is a semi-sparse tensor from the above property (§ 3.2.2). The intuitive

algorithm for SPTTM without explicit transformation is to loop all non-zeros of X by mul-

tiplying each with its corresponding row of U. Then all rows having the same index pair

(i1, . . . , in−1, in+1, . . . , iN) are sum-reduced to get a fiber of Y (fYn).

This algorithm has two issues: First, in the sum-reduction stage, there is an implicit

index comparing operation even if X is pre-sorted. The complexity of the index comparison

is high especially for higher-order tensors. An extra comparison operation for an additional

mode increases the SPTTM complexity by MX (the number of non-zeros of X), which is

127

non-trivial especially for low-rank tensor decompositions with a small R. Second, the

sum-reduction stage is hard to parallelize and may lead to severe memory contention.

To solve these problems, we design our sequential SPTTM algorithm (Algorithm 12) to

avoid expensive index comparison and with inherent good parallelism. Each mode-n fiber

of Y (fYn) is a sized-R dense vector, we record nfibs as the number of fYn . Then the number

of non-zeros of Y: MY = nfibs × R. We use an extra array fptr to identify the beginning

locations of every mode-n fiber of X (fXn), then iterate all nfibs fibers of Y. Comparing

to iterating X in the intuitive algorithm, we avoid the expensive index comparison in the

sum-reduction stage.

Our SPTTM has two stages, preprocessing and computing. The preprocessing stage

includes three steps: sorting X, calculating fptr, and pre-allocating semi-sparse tensor Y.

X is first sorted according to the product mode n, then fptr is allocated and calculated to

identify the beginning locations of nfibs mode-n fibers of X (fXn). From SpTTM’s property

(§ 3.2.2), the semi-sparse tensor’s index modes remain unchanged, so the number of fYn

is also nfibs. Based on the pre-sorted X, we pre-allocate the exact space for Y and only

for its non-zero entries, because X’s (N − 1) indices can be reused by Y. During the

computation stage of Algorithm 12, each fYn = valY (i, :) locates the corresponding fXn =

valX(fptr(i), . . . , fptr(i + 1)− 1). Then fYn is the sum of rows u(k, :) scaled by each non-

zero of fiber fXn .

Algorithm 12 CPU sequential SPTTM algorithm (SEQ-SPTTM).
Input: A sparse tensor X ∈ RI1×I2×···×IN , a dense matrix U ∈ RIn×R, and an integer n;
Output: A semi-sparse tensor Y ∈ RI1×···×In−1×R×In+1···×IN ;

1: nfibs: the number of mode-n fibers of Y
2: fptr: the beginnings of each X mode-n fiber, size nfibs.
3: for i = 0, . . . , nfibs do
4: for j = fptr(i), . . . , fptr(i+ 1)− 1 do
5: k = indXn (j)
6: for r = 0, . . . , R− 1 do
7: valY (i, r)+ = valX(j)× u(k, r)

8: Return Y;

The number of floating-point operations (flops) of sequential SPTTM (Algorithm 12) is

128

flops = 2 ·MX ·R, (7.1)

where MX is the number of non-zeros of X. Algorithm 12 eliminates the index compari-

son. For a third-order sparse tensor, our SPTTM only uses nfibs extra space for fptr. Since

nfibs ≤MX , the extra space is much smaller than the matriced tensor of X (3 ·MX) in the

traditional algorithms where tensor transformation is needed.

We parallelize SPTTM on the multicore CPU architecture using OpenMP. Since our

sequential SPTTM iterates all independent fibers of Y, we can easily parallelize this loop

by assigning CPU threads, i.e., parallelize the outermost for loop. Each thread computes a

size-R fiber fYn independently and shares dense matrix U. Because our SPTTM algorithm

limits the sum-reduction dependency inside a thread, parallelized SPTTM naturally avoids

locks and utilizes CPU caches well for writing Y. We use CPU-SPTTM to represent parallel

CPU SPTTM implementation in the following contents.

7.3 SPTTM on GPUs

To fully explain our optimizations on GPUs, we first start by describing a naı̈ve imple-

mentation, then propose four more parallelization and optimization approaches for SPTTM

by incrementally considering GPU architecture characteristics. The five implementations

are: naı̈ve implementation, employing fine thread granularity, arranging coalesced memory

access, rank blocking, and using fast shared memory.

In this work, we assume the sparse tensor X and the dense matrix U both reside in GPU

memory. We assume all the division operations below are fully divisible.

7.3.1 Naı̈ve implementation

As shown in Algorithm 13, we assign each CUDA thread to one mode-n fiber of Y (fXn)

and a fiber of X (fXn). Each thread performs multiplication on every non-zero of fiber fXn

129

with its corresponding rows of u(k, :). When launching the kernel, we set dimGrid = NTB

and dimBlock = nfibs/NTB, where NTB is the number of threads per block. We tune the

value of NTB for the best performance.

Algorithm 13 Naı̈ve SpTTM algorithm on GPU (GPU-SPTTM-Naı̈ve).
Input: A sparse tensor X ∈ RI1×I2×···×IN , a dense matrix U ∈ RIn×R, an integer n, the be-

ginnings of nfibs X mode-n fiber fptr, and GPU thread hierarchy dimGrid = NTB and
dimBlock = nfibs/NTB;

Output: A semi-sparse tensor Y ∈ RI1×···×In−1×R×In+1···×IN ;
1: tidx = threadIdx.x;
2: i = blockIdx.x× blockDim.x + tidx; . i: global index of a mode-n Y fiber.

. j: global index of the non-zeros of mode-n X fiber.
3: for j = fptr(i), . . . , fptr(i+ 1)− 1 do
4: k = indsXn (j)
5: for r = 0, . . . , R− 1 do
6: valY (i, r)+ = valX(j)× u(k, r)

7: Return Y;

Some inefficient spots are observed:

• Uncoalesced and redundant memory transfers. The memory transfers for matrix U

are in a stride-R pattern, and the data transferred are much larger than the size of U

because of irregular memory access.

• Coarse-grained task granularity. Algorithm 13 assigns a fiber per CUDA thread to

do flen computations with sized-R rows of U, where flen is the average length of the

fibers. For lightweight GPU threads, it might be better to allocate fine-grained tasks

for each thread.

• Not utilizing fast memory. Algorithm 13 accesses data only from global memory

without well utilized fast scratch-pad memory (shared memory or L1 cache) for

writable data, since NVIDIA Kepler and later GPUs cannot use L1 cache for writable

data automatically.

To deal with the inefficiency, we propose optimizations described below.

130

7.3.2 Fine thread granularity

Instead of one-dimensional thread blocks, we assign two-dimensional thread blocks, so

both rows and columns of U are parallelized in Algorithm 14. However, if the matrix row

size R is a little large, say 128, the number of threads in x-dimension can be only up to 8,

which leads to imbalanced parallelism for x and y dimensions. To prevent this issue, we

set a threshold NTR to limit the number of threads allocated to each matrix column, and

compute a segment of a column in one iteration.

When launching Algorithm 14, we set dimBlock = (NTB/NTR, NTR) and dimGrid =

nfibs/NTB.

Algorithm 14 SPTTM algorithm with fine thread granularity on GPU (GPU-SPTTM-FG).
Input: A sparse tensor X ∈ RI1×I2×···×IN , a dense matrix U ∈ RIn×R, an integer n, the be-

ginnings of nfibs X mode-n fiber fptr, and GPU thread hierarchy dimGrid = nfibs/NTB and
dimBlock = (NTB/NTR, NTR);

Output: A semi-sparse tensor Y ∈ RI1×···×In−1×R×In+1···×IN ;
1: nrloops = R

blockDim.y . #Iterations for large R.
2: tidx = threadIdx.x;
3: tidy = threadIdx.y;
4: i = blockIdx.x× blockDim.x + tidx; . i: global index of a mode-n Y fiber.

. j: global index of the nonzeros of mode-n X fiber.
5: for j = fptr(i), . . . , fptr(i+ 1)− 1 do
6: k = indsXn (j)
7: for lr = 0, . . . , nrloops do
8: r = tidy + lr × blockDim.y
9: valY (i, r)+ = valX(j)× u(k, r)

10: Return Y;

7.3.3 Coalesced memory access

From Algorithm 14, we observe a memory access pattern where the memory access of

tensor indices and values are contiguous and coalesced but that of matrix U is not. In

Algorithm 14, threads in a warp, (0, 0), (1, 0), . . . , (31, 0) (x-dimension dominates), fetch

elements from random addresses because of different k indices, which leads to an unco-

alesced memory access. To solve this problem, we swap thread dimensions x and y, thus

131

x-dimension points to ranks (columns of U) and y-dimension operates on fibers of X and

Y. The algorithm named GPU-SPTTM-MC is shown in Algorithm 14.

When launching this algorithm, we set dimBlock = (NTR, NTB/NTR) and dimGrid =

nfibs/NTB. Therefore, one warp fetches coalesced global memory addresses of tensor in-

dices, values, and matrix elements.

7.3.4 Rank Blocking

The above algorithms consider the spatial data locality within a fiber, but not the temporal

locality between fibers. In Algorithm 14, different fibers may have the same k index, which

means accessing the same row of U. Rank blocking strategy is proposed to increase the

reuse of row data. Since the computation in-between matrix columns are independent, we

exchange the loop order to ensure the loop over ranks (matrix columns) goes before the

loop over fiber elements. This strategy enlarges the chance of short rows staying in caches.

Its algorithm (named GPU-SPTTM-RB) can be obtained by swapping tidx and tidy

usage and the two loops in Algorithm 14. However, for each batch of short size-NTR matrix

rows, the index ks and values of the tensors need to be reloaded from global memory. The

benefit of rank blocking depends on the non-zero distribution of the input tensor, it is not

easy to determine whether rank blocking is beneficial compared with the above memory

coalesced algorithm (GPU-SPTTM-MC).

7.3.5 Using Shared Memory

Obviously, the output valY is reused R times for each fiber of X. As we mentioned, the

writable valY of Y cannot be cached in the L1 cache for Kepler and later NVIDIA GPU

architectures, but can only reside in the slower L2 cache. Therefore, we store the output

in shared memory first and then write them back to global memory all at once. In this

way, we reduce global memory transfers. Its algorithm is shown in Algorithm 15. When

launching this algorithm, we set dimBlock = (NTR, NTB/NTR), dimGrid = nfibs/NTB

132

and set shared memory size SSM = NTB words because the size of yshr is dimBlock.y ×

dimBlock.x. Since NTB ≤ 1024 for the GPUs we used, the needed shared memory space

is smaller than 8KB. That means only the configuration of 48KB L1 cache/16KB shared

memory is used for Algorithm 15.

Algorithm 15 SpTTM algorithm using GPU shared memory (GPU-SpTTM-SM).
Input: A sparse tensor X ∈ RI1×I2×···×IN , a dense matrix U ∈ RIn×R, an integer n, the begin-

nings of each X mode-n fiber fptr, sized nfibs, and GPU thread hierarchy dimGrid = NTB and
dimBlock = (NTR, NTB/NTR);

Output: A semi-sparse tensor Y ∈ RI1×···×In−1×R×In+1···×IN ;
1: yshr: shared memory space for Y.
2: nrloops = R

blockDim.x
3: tidx = threadIdx.x;
4: tidy = threadIdx.y;
5: i = blockIdx.x× blockDim.y + tidy; . i: global index of a Y mode-n fiber.
6: for lr = 0, . . . , nrloops do
7: r = tidx + lr × blockDim.x
8: yshr(tidy, tidx) = 0;
9: sync();

. j: global index of the nonzeros of X mode-n fiber.
10: for j = fptr(i), . . . , fptr(i+ 1)− 1 do
11: k = indsXn (j)
12: yshr(tidy, tidx)+ = valX(j)× u(k, r)

13: sync();

14: valY (i, r) = yshr(tidy, tidx);
15: sync();
16: Return Y;

7.4 Semi-Sparse Tensor Times Matrix

SSPTTM is defined as the TTM product of a semi-sparse tensor and a dense matrix, the for-

mer being the result of an SPTTM. Although it is possible to convert the semi-sparse tensor

back to fully sparse so that SSPTTM can be performed with the above SPTTM algorithm,

we propose a tailored SPTTM algorithm optimized specially for semi-sparse tensors.

Given a semi-sparse tensor Y ∈ RI1×I2×···×IN with DY ⊂ {1, 2, · · · , N} being a set

of dense modes of Y and a dense matrix U ∈ RIn×R, requiring n /∈ DY, the SSPTTM

133

algorithm also computes Z = Y ×n U. We use SY to represent the sparse modes of Y,

SY = {1, 2, · · · , N} −DY.

Analogous to SPTTM, our SSPTTM also has two stages, preprocessing and computing.

To begin with, we sort values and indices of Y in a specific mode order s.t. SY ≺ n ≺ DY.

For example, if mode 1, 3, 5 is sparse, mode 2, 4 is dense, 1 ≺ 5 ≺ 3 ≺ 2 ≺ 4 would be

a valid sorting order for an SSPTTM in mode 3. The purpose of this sorting is to gather

elements sharing identical sparse mode indices together in a dense “chunk”. In the example

above, a chunk of Y is a dense array of size I2 × I4, which is a generalization of fibers in

SPTTM algorithms. Based on the sparse tensor property (§ 3.2.2), Z will have the shape of

I3× I2× I4 for all chunks by converting mode 3 to a dense mode and enlarging its chunks.

However, different from SPTTM, SSPTTM in Tucker decomposition do not need the

expensive sorting step of preprocessing stage. In the Tucker decomposition, an (N − 1)

TTM-chain (a sequence of TTMs, refer to § 7.5) can be ordered the same with the sorting

order of the input sparse tensor X, and an SPTTM or SSPTTM keeps the same order for their

sparse modes. Then, only one sorting per TTM-chain for a sparse tensor X is needed for

the first SPTTM. The input semi-sparse tensors for the following SSPTTMs remain sorted.

For an N th-order Tucker decomposition, there are N different sorting orders throughout

the entire algorithm, which can be reused among iterations. We cache the N preprocessed

tensors in CPU memory and transfer them to GPU memory when necessary to speed up the

preprocessing process and save the precious GPU memory.

The CPU parallel algorithm of SSPTTM is Algorithm 16, where the outmost loop-i is

parallelized to launch multiple OpenMP threads. For SSPTTM GPU implementations, we

map a CUDA thread block into a chunk, because the access pattern of the values inside

a Z chunk only depend on the continuously stored Y chunks from the previous sorting

stage, so inter-chunk calculations can be safely parallelized without data race. In a Tucker

decomposition application, where a typical R = 16, the number of threads per block can

vary from 16 to 65536. The first TTM in the Tucker decomposition is a SPTTM, SSPTTM

134

handles CUDA block sizes in a typical range of 256−65536, large enough to make full use

of the Streaming Multiprocessors. We adjust the block size according to CUDA’s restriction

of 1024 threads per block, by calculating chunks in batch. The amount of values inside a

block is small enough to fit into L1 / L2 caches so we do not apply shared memory to this

algorithm.

Algorithm 16 CPU parallel SSPTTM algorithm (CPU-SSPTTM).
Input: A semi-sparse tensor Y ∈ RI1×I2×···×IN with dense modesDY, a dense matrix U ∈ RIn×R,

and an integer n;
Output: A semi-sparse tensor Z ∈ RI1×···×In−1×R×In+1···×IN ;

1: nZchunks: the number of chunks in Z

2: sYchunk: the size of a chunk in Y

3: sZchunk: the size of a chunk in Z

4: cptr: the beginnings of each chunk of Y, size nZchunks.
5: parfor i = 0, . . . , nZchunks − 1 do
6: for j = cptr(i), . . . , cptr(i+ 1)− 1 do
7: r = indsYn (j);
8: for c = 0, . . . , R− 1 do
9: for k = 0, . . . , sYchunk − 1 do

10: valZ(i× sZchunk + r × sYchunk + k)+ = valY (j × sYchunk + k)× u(r, c);

11: end parfor
12: Return Z;

7.5 Sparse Tucker decomposition

Based on our optimizations of SPTTM and SSPTTM, we design the HOOI algorithm of

Tucker decomposition (described in § 2.3.2) for a heterogeneous CPU-GPU platform.

7.5.1 TTM-Chain

The TTM-chain for a sparse input tensor consists of two types of TTMs—SPTTM and

SSPTTM. The first TTM in Line 4 of Algorithm 2 is a SPTTM, and the following TTMs

are all SSPTTMs. We use our fastest CUDA implementations of them to accelerate the

TTM-chains. The output tensor of every TTM (either SPTTM or SSPTTM) resides in GPU

memory, thus no memory transfer is needed inside a TTM-chain.

135

7.5.2 SVD

According to the property in § 3.2.2, the output Y of TTM-chain is dense in all except mode

n. We treat it as a dense tensor, then Y(n) is a dense matrix. For the SVD operation,

we employ svd function (“sgesvd”) from OpenBLAS library [186] on CPUs, while use

SVD function (“cusolverDnSgesvd”) from cuSOLVER [2]. However, from our exper-

iments, the SVD function of cuSOLVER is not as efficient as OpenBLAS version, mainly

because of the irregular shape of the matricized Y(n).

7.6 Experiments

We test our algorithms on three platforms, one Intel multicore CPU platform and two GPU

platforms. Our SPTTM performance is compared with state-of-the-art Tensor Toolbox [16]

library and a recent sparse TTM implementation [107] on GPUs. We also analyze our

GPU optimization methods incrementally and the performance behavior by varying product

modes and rank sizes.

7.6.1 Platforms and Dataset

We use Intel Xeon CPU E5-2650 v4 and NVIDIA Tesla K40c and P100 platforms, their

configurations are shown in table 7.2. NVIDIA Tesla K40c and P100 have much higher

peak floating-point performance and memory bandwidth than the Intel Xeon CPU. All

experiments perform single-precision floating-point values and the performance numbers

are averaged over five runs. Without further specification, R is set to 16.

We use third-order and fourth-order sparse tensors from real applications, collected in

FROSTT [151] and HaTen2 [78]. Tensors consist of medical data from Children’s Health-

care of Atlanta project (choa with patient-medication-diagnosis), Never Ending Language

Learning (NELL) project [36] (nell1 and nell2 with noun-verb-noun), Freebase RDF data

[78] “freebase-music” and “freebase-sampled” (fb-m and fb-s with entity-entity-relation),

136

Table 7.2: Experimental Platforms Configuration
Intel NVIDIA

Parameters Xeon CPU E5-2650 v4 Tesla K40c Tesla P100

Microarchitecture Broadwell-EP Kepler Pascal
Frequency 2.2 GHz 0.75 GHz 0.72 GHz

#Physical cores 12 2880 3584
Peak SP Performance 845 GFlop/s 4290 GFlop/s 9300 GFlop/s

Last-level cache 30 MB 1.6 MB 4 MB
Memory size 792 GB 12 GB 16 GB

Memory bandwidth 77 GB/s 288 GB/s 732 GB/s

Compiler gcc 5.4.1 nvcc 9.0 nvcc 9.0

data crawled from tagging systems [64] (deli with user-item-tag and deli4d with user-item-

tag-date), Enron emails (enron with sender-receiver-word-date), Uber pickup data in 2016

(uber with date-hour-latitude-longitude), NIPS papers published from 1987 to 2003 (nips

with id-author-word-year), and tags from Flickr (flickr with user-item-tag-date). The tensor

property is shown in table 7.3. Please refer to the original dataset [78, 151] for further

information.

Table 7.3: Description of sparse tensors.
Tensors Order Mode sizes NNZ Density

choa 3 712K × 10K × 767 27M 5.0× 10−06

nell2 3 12K × 9K × 29K 77M 1.3× 10−05

fb-m 3 23M × 23M × 166 100M 1.1× 10−09

fb-s 3 39× 39× 532 140M 1.7× 10−10

deli 3 533K × 17M × 2M 140M 6.1× 10−12

nell1 3 3M × 2M × 26M 144M 9.1× 10−13

nips 4 2K × 3K × 14K × 17 3M 1.8× 10−06

uber 4 183× 24× 1140× 1717 3M 3.8× 10−04

enron 4 6K × 6K × 244K × 1K 54M 5.5× 10−09

flickr 4 320K × 28M × 2M × 731 113M 1.1× 10−14

deli4d 4 533K × 17M × 2M × 1K 140M 4.3× 10−15

137

7.6.2 Overall Performance

We first show the speedups of our GPU-SPTTM algorithms over the OpenMP parallelized

CPU-SPTTM in figure 7.2 and compare their performance to FCOO-SPTTM performance [107]

on the GPU P100 platform 1 . The speedup numbers of each tensor are averaged among all

its modes. SPTTM GPU performance is shown using the best one of all the five GPU imple-

mentations in § 7.3. GPU-SPTTM achieves up to 67× speedups over CPU-SPTTM. Com-

pared to the state-of-the-art work [107], our GPU-SPTTM implementations overperform

FCOO-SPTTM by up to 3.9×. From our experiments, the best speedup of GPU-SPTTM

is mostly obtained by GPU-SPTTM-SM (Algorithm 15), which verifies our optimizations.

The detailed analysis on the five approaches will be given afterward. CPU-SPTTM’s per-

formance is obtained by using 12 threads.

Sp
ee

du
p

0
10
20
30
40
50
60
70
80

FCOO-P100

GPU-P100

deli4d�ickrenronubernipsnell1delifb-sfb-mnell2choa
3D Tensors 4D Tensors

Figure 7.2: Our GPU-SPTTM and FCOO-SPTTM [107] speedups over CPU-SPTTM.

An interesting phenomenon is the speedup difference between tensor deli and deli4d.

From table 4.3, deli4d has the same number of non-zeros with deli, but with an extra “date”

mode, whereas GPU-SPTTM achieves higher speedup on the fourth-order deli4d. One main

reason is that of the load imbalance between CUDA threads incurred by different fiber

lengths of the input tensor X. We calculate the standard deviation of fiber lengths for each

1We don’t compare with Tensor Toolbox [16] and CTF [160] because they lack GPU parallel implemen-
tations for sparse tensors.

138

tensor mode. deli4d has a standard deviation 2.54 × 104 about a half magnitude less than

deli’s 1.21× 105.

Figure 7.3 gives the actual SPTTM floating-point operations per second (flop/s) of

“GPU-P100” and “GPU-K40c”. “GPU-P100” achieves better performance, 16-51 GFlop/s,

while “GPU-K40c” obtains less than 10 GFlop/s. The performance numbers obtained in

this work on P100 is better than the FCOO-SPTTM [107] and sparse matrix-dense matrix

multiplication [108]. However, compared to either the peak machine performance or the

attainable performance limited by memory bandwidth, our performance is far below these

bounds. There is space for further performance tuning.

0

10

20

30

40

50

60
GPU-P100

GPU-K40c

deli4d�ickrenronubernipsnell1delifb-sfb-mnell2choa
3D Tensors 4D Tensors

G
Fl

op
/s

Figure 7.3: GPU-SPTTM performance in GFlop/s.

7.6.3 Analysis

This work is analyzed from different aspects: incremental GPU optimization effects, se-

quential algorithm comparison to show the advantage of our SPTTM algorithm, SSPTTM

and SPTTM comparison for semi-sparse tensors, mode behavior, and rank behavior. After

all, we apply our optimized algorithms to Tucker decomposition.

139

GPU Optimization Comparison

We analyze the five GPU SPTTM approaches in § 7.3: naı̈ve implementation, fine thread

granularity, coalesced memory access, rank blocking, and using shared memory, on a GPU

P100 in figure 7.4. The times are normalized to the naı̈ve GPU implementation and are av-

eraged over all modes for every tensor. As the optimization methods incrementally applied

to SPTTM, we tend to get shorter execution time. Naı̈ve SPTTM is the simplest and slowest

GPU implementation. SPTTM performance is incrementally improved: 53% by integrating

fine thread granularity, 29% by arranging coalesced memory access, 7% by rank blocking,

and 40% by using shared memory for writable data, on average of all tensors. Therefore,

fine thread granularity and using shared memory optimizations are the two most effective

optimizations for SPTTM, arranging coalesced memory access also improves some perfor-

mance, while the effect of rank blocking depends on the given sparse tensors. We also test

these approaches by setting R to 32. SPTTM performance is incrementally improved: 74%

(+FG), 37% (+MC), -20% (+RB), and 43% (+SM), on average of all tensors. This shows

rank blocking is more beneficial for small ranks, because of the re-loads of index ks and

values, which coincides with our analysis in § 7.3.

0.0

0.2

0.4

0.6

0.8

1.0
+SM

+RB

+MC

+FG

naive

deli4d�ickrenronubernipsnell1delifb-sfb-mnell2choa
3D Tensors 4D Tensors

N
or

m
al

iz
ed

 T
im

e

Figure 7.4: GPU optimization methods comparison on GPU P100.

140

Sequential SPTTM Comparison

We test the SPTTM from TENSOR TOOLBOX [16] on only three small tensors without

exceeding memory. 2 Our SEQ-SPTTM achieves 3− 120× speedup over Tensor Toolbox.

One reason is Tensor Toolbox is built on MATLAB environment, this may generate some

extra overhead. For the fourth-order tensor nips, though it only has 3 million nonzeros,

Tensor Toolbox runs much slower than we expect. This shows Tensor Toolbox may be not

friendly enough for higher-order tensors.

Table 7.4: Sequential SPTTM performance comparison.
Time (sec) Tensor Toolbox SEQ-SPTTM

choa 7.39 2.78
nell2 86.50 7.33
nips 120.07 0.58

Table 7.5 shows the storage of Tensor Toolbox compared to our SPTTM in mode 1.

TENSOR TOOLBOX consumes about twice storage space than SPTTM.

Table 7.5: Total storage (GBytes) of sparse tensors.
Tensors choa nell2 fb-m fb-s deli nell1 nips uber enron flickr deli4d

TTBox 2.72 2.30 30.35 44.90 20.69 11.80 0.40 0.09 1.77 13.81 46.07
SPTTM 1.55 1.32 17.34∗ 25.65∗ 11.82 6.74 0.23 0.05 1.01 7.89 19.75∗

∗ Since an TTM only needs one index instead of all, these tensors can fit into GPU memory.

SSPTTM v.s. SPTTM for Semi-Sparse Tensors

We compare the performance of GPU-SSPTTM with GPU-SPTTM for semi-sparse tensors

in figure 7.5. We use the second TTM operation in the TTM-chain of Tucker decomposition

(Algorithm 2) to ensure the input tensor is semi-sparse. SPTTM handles the semi-sparse

input tensor as a general sparse tensor. Since the input semi-sparse tensors could be easily

as large as the tensors in table 7.3 because of the introduced dense mode. We can only run
2Since Cyclops Tensor Framework (CTF) [160, 161] indexes a sparse tensor using a one-dimensional long

index to help distribute nonzero elements in a certain way in distributed platforms, all tensors we tested cannot
be represented after vectorization, so they cannot run using CTF except in distributed memory environment.

141

SPTTM for this operation on small tensors. GPU-SSPTTM achieves up to 74× and 12×

speedups on GPU P100 and K40c platforms respectively. Compared to SPTTM, which

treats semi-sparse tensors as general sparse tensors, SSPTTM achieves up to 4.5× speedup.

This figure shows the usefulness of the SSPTTM algorithm for semi-sparse tensors.

4D Tensors

Sp
ee

du
p

0
10
20
30
40
50
60
70
80 SspTTM-K40c

SpTTM-K40c

SspTTM-P100

SpTTM-P100

ubernipsnell2choa

3D Tensors

Figure 7.5: GPU-SPTTM and GPU-SSPTTM speedups over corresponding OpenMP paral-
lelized CPU implementations on two NVIDIA GPU platforms.

Mode behavior

We compare the “GPU-P100” SPTTM behavior in different modes, using the best execution

time of the five approaches. Figure 7.6 takes mode-1 SPTTM as the baseline, then computes

the SPTTMs in other modes normalized to it. Some tensors have very diverse SPTTM

performance in different modes. From our observations, the modes in which fibers’ length

has a small standard deviation tend to be faster compared to other modes. For example,

tensor choa has small fiber sizes in mode 2 and 3, so their SPTTM performance is much

better than that in mode 1.

Rank behavior

Figure 7.7 shows the relative performance of mode-1 “GPU-P100” SPTTM on tensors choa,

nell2, uber, and enron by increasing the rank-size. We only test on small tensors because

when rank-size is 32 or 64, some tensors are too large to reside in GPU memory. As the

rank increases, the performance increases from R is 8 to 16 but stops increasing after 16.

142

0.0

0.5

1.0

1.5

2.0 M4

M3

M2

M1

deli4d�ickrenronubernipsnell1delifb-sfb-mnell2choa
3D Tensors 4D Tensors

N
or

m
al

iz
ed

 T
im

e

Figure 7.6: Relative SPTTM time in different modes.

This is because our algorithms are able to fully use the factor rows when R = 16.

0
10
20
30
40
50
60
70
80

enron

uber

nell2

choa

6432168
Rank

G
Fl
op

/s

Figure 7.7: Execution time of small tensors in different rank sizes.

Tucker Decomposition

Table 7.6 shows the execution time of the Tucker decomposition by applying our optimized

SPTTM and SSPTTM algorithms. Due to space limitation, large tensors cannot run on GPU

platforms due to the non-trivial intermediate results. The optimized Tucker decomposition

achieves up to 3.2× speedup. From Tucker decompositions, we observed that SVD and

TTM-chain performance are both important to Tucker performance. We test SVD by using

OpenBLAS and cuSOLVER. However, SVD of cuSOLVER cannot achieve as good per-

formance as OpenBLAS, especially for truncated SVD. Therefore, we use OpenBLAS to

solve SVD and include the memory transfer time into our GPU Tucker implementation.

143

Table 7.6: Tucker decomposition performance.
CPU (sec) GPU (sec)

choa 49.3 15.6
nell2 48.6 16.7

enron 389.6 290.3

7.7 Summary

The key algorithmic principle in this chapter is avoiding data transformation, just as it was

in Chapter 6. Combined with multicore and GPU optimizations—which include employ-

ing fine thread granularity, coalescing memory accesses, rank blocking, and using local

(fast) memory (“shared memory” on GPUs)—yield sequential SPTTM is 3 − 120× faster

than the SPTTM in TENSOR TOOLBOX, and GPU parallel algorithms that, on NVIDIA

P100, improve over our OpenMP-parallelized CPU-SPTTM and other state-of-the-art GPU

implementations by 3.9×. From our analysis, different input sparse tensors, ranks, and

operating on different modes all influence SPTTM performance. Looking forward, new

techniques to select the adaption parameters of the SPTTM algorithms are needed.

144

CHAPTER 8

PARTI! LIBRARY DESIGN AND IMPLEMENTATION

8.1 PARTI! Design and Implementation

PARTI!, a parallel tensor infrastructure, supports fundamental tensor operations and tensor

decompositions emphasizing on sparse data. Multiple platforms are supported including

multicore CPUs, GPUs, distributed memory systems, as well as a new prototype platform,

the Emu [58].1 PARTI! is written in C language, with OpenMP, CUDA, MPI, and Cilk (for

Emu) supports for parallel implementations, and has MATLAB interface for application

users.

The tensor methods supported in PARTI! are listed in table 8.1. It includes methods for

queries, transformations, fundamental products, factorizations, and their constraints. The

support for high-order tensor factorizations, like tensor train and hierarchical Tucker, and

incorporating constraints are left for future work.

The platforms supported in PARTI! are shown in table 8.2 for the most popular COO

1Emu is a highly scalable near memory architecture with migrating threads especially for data intensive
problems.

Table 8.1: PARTI! supported Tensor methods. To be supported methods are shown in gray.
Category Tensor methods

Queries fiber, slice, sub-tensor

Transformations
matricization (unfolding or flattening),
reshape, tensorization

Fundamental products
element-wise products, mode-n tensor-matrix/vector product, contraction
matricized tensor times Khatri-Rao product (MTTKRP)
outer product, Kronecker product, Khatri-Rao product

Factorizations
Low-order: CP, Tucker, . . .
High-order: tensor train, hierarchical Tucker, . . .

Constraints nonnegativity, orthogonality, sparsity

145

sparse tensor format and our newly proposed HICOO format in Chapter 4. Except Tucker

decomposition for HICOO format, all cases are supported for multicore CPUs and GPUs.

CP decomposition is implemented on all the four platforms for COO format and HICOO

format except Emu platform. Part of our future work is to fill up the rest functionality

for PARTI!. The sections describing the corresponding functionalities are also shown in

table 8.2.

8.1.1 COO-CPD on Multicore CPUs

Sequential MTTKRP and CPD algorithms based on COO format in PARTI! are imple-

mented following the algorithms in TENSOR TOOLBOX [16]. The only difference is that

PARTI! uses row-by-row iteration and row-major layout for dense factor matrices, while

TENSOR TOOLBOX uses column-by-column iteration and column-major layout. PARTI!

COO-MTTKRP and CPD implementations are much faster than TENSOR TOOLBOX, one

is because of the usage of the faster C language; the other is because of the row-major

pattern which makes a better memory reuse for a sparse tensor in a MTTKRP operation.

COO-MTTKRP is parallelized using OpenMP using two parallel strategies: locking and

privatization (as described in Section 4.3). These strategies are different ways to avoid data

races during matrix updates in MTTKRP (Section 4.3). In the locking approach, we allocate

one lock per matrix row to guard against concurrent updates. In the privatization method,

we use thread-local buffers for the whole output matrix. Each thread first updates their local

buffers, then uses a global reduction operation to get the final updated matrix. Privatization

accelerates COO-MTTKRP at a cost of extra space to save local copies. For multicore

parallel COO-CPD, we support high-performance math libraries, such as the BLAS [24],

OpenBLAS [186], Intel MKL [48], and LAPACK [7, 8], wherever parallel dense matrix

operations are needed.

146

Table 8.2: PARTI! supported tensor formats, factorizations and platforms.
Tensor formats Factorizations Multicore CPUs GPUs Distributed systems Emu

COO
CP Y (§ 8.1.1) Y (§ 8.1.2) Y (§ 8.1.3) Y (§ 8.1.4)

Tucker Y (§ 7) Y (§ 7) N N

HICOO
CP Y (§ 4) Y (§ 8.1.5) Y (§ 8.1.6) N

Tucker N N N N

8.1.2 COO-CPD on GPUs

COO-MTTKRP on GPUs uses the same optimization approaches with sparse COO-TTM

(§ 7.3), including naı̈ve implementation, employing fine thread granularity, arranging co-

alesced memory access, and rank blocking. For COO-MTTKRP, it is hard to take the ad-

vantage of the GPU shared memory. All the implementations use atomic operations from

CUDA to solve the data race problem. From our experiments, the best implementation is

arranging coalesced memory access or rank blocking for different tensors (also observed in

TTM in § 7.6).

8.1.3 COO-CPD on Distributed Systems

We use medium-grained and coarse-grained distribution strategies for COO-CPD.

For a given mode, the coarse-grained strategy distributes a sparse tensor by assigning

every slice in its entirety (all its non-zero elements) to a processor [41]. The factor matrices

are assigned correspondingly, i.e., each processor is assigned to the matrix rows it needs to

complete the CPD. In this way, voluminous duplication of factor matrices exists on pro-

cessors. Therefore, synchronizing communications are necessary. Coarse-grained strategy

distributes a sparse tensor and factor matrices differently for an MTTKRP in a different

mode. Thus, the tensor and matrices are all stored N times.

The medium-grained strategy, proposed by Shaden et al. [153], distributes a sparse

tensor into sub-tensors along with all tensor modes. Factor matrices are also split according

to the index ranges of the sub-tensor on each processor. A sparse tensor and factor matrices

147

is stored only once for different MTTKRPs. The detailed comparison between these two

strategies can be found in a recent work by Chakaravarthy et al. [38].

Regardless of the distribution strategy, every processor runs a sequential COO-MTTKRP

and CPD to complete a local computation. We use MPI to implement distributed COO-

CPD. All communication relies on MPI collectives.

8.1.4 COO-CPD on Emu

We also extend COO-MTTKRP to the new Emu architecture [58, 74]. The Emu Chick

prototype consists of eight nodelets, each with four Gossamer Cores (GCs). We need to

carefully allocate data on Emu to maximally reduce the thread migrating between nodelets.

Currently, we use a coarse-grained-like strategy to distribute a sparse tensor and factor

matrices. The programming model for Emu is based on Cilk [26]. COO-MTTKRP are

parallelized with cilk spawn, cilk sync, and cilk for on Emu.

8.1.5 HICOO-CPD on GPUs

HICOO-MTTKRP on GPUs uses the same optimization approaches with COO-MTTKRP

(§ 8.1.2), including naı̈ve implementation, employing fine thread granularity, arranging co-

alesced memory access, rank blocking, and using shared memory as an extra. The GPU

shared memory is also used to save blocked factor matrices to be updated. From our experi-

ments, the best implementation is coalesced memory access, rank blocking, or using shared

memory for different tensors. We envision additional optimizations for HICOO-MTTKRP

on GPUs, in particular, to address load balancing issues, perhaps by a “mixed-grain” non-

zero partitioning strategy.

8.1.6 HICOO-CPD on Distributed Systems

We use the medium-grained strategy for a distributed HICOO-MTTKRP and CPD. Two

CPD algorithms are implemented, the CP-ALS (Section 2.3.1) and CP-APR algorithms [40].

148

The CANDECOMP/PARAFAC Alternating Poisson Regression (CP-APR) algorithm ap-

plies to sparse count data assuming a Poisson distribution and is based on majorization-

minimization approach. An MTTKRP-like operation is the most computational expensive

step of CP-APR. HICOO format is used for the input sparse tensor to improve data locality

and the performance of CP-ALS and CP-APR.

8.2 Summary of Standard Library Interfaces

The capabilities of tensor libraries vary widely, and many libraries focus on a particular

application domain. Some features see very little support to date, including sparse ten-

sor support, parallelism, and tensor network methods, largely because these are still open

research questions. In table 8.3 we roughly break down the features of different packages

according criteria such as supported computational cores, decomposition methods, and ten-

sor features, where supported features are marked by a ‘Y.’ The packages we choose are

very popular at one time or keep updated till recently. Note that some implementations,

such as HyperTensor [85, 149], have not released their code yet, so they are not included in

the software list. Due to space limit, some packages are also not included, such as vmmlib

[18, 19], Tensors [61, 132, 133] since they are not actively maintained.

The first column denotes whether elementwise operations are supported. The following

columns denote whether general contractions, TTM, or MTTKRP are supported, respec-

tively. We consider a package supports MTTKRP when implemented as a whole. The

decomposition columns correspond to whether CP and Tucker decompositions introduced

in § 2.3 are natively supported along with two higher-order tensor decompositions: hierar-

chical Tucker (HT) and tensor train (TT). Note that this is a very high-level overview and

does not indicate whether methods are optimized, or whether the factorizations can be used

as a native data type.

We also show the maximum supported order of a tensor for every package, whether

a native dense or sparse data type is supported, and whether parallelism is taken advan-

149

tage of. The type of parallelism used – shared-memory, distributed-memory, or acceler-

ator platforms – is denoted by superscripts. Finally we describe application domain and

programming environment. (Factorization frameworks clearly favor MATLAB!). Further

information about each package can be found in the associated references.

In the last four high performance packages (GenTen, SPLATT, vmmlib, and PARTI!)

which support parallelism for tensor decompositions, PARTI! has the most widely support

for tensor operations, tensor decompositions, and parallelism.

150

Ta
bl

e
8.

3:
C

ap
ab

ili
tie

s
of

te
ns

or
fr

am
ew

or
ks

.

So
ft

w
ar

e
C

om
pu

ta
tio

na
lC

or
es

Te
ns

or
D

ec
om

po
si

tio
n

Te
ns

or
Fe

at
ur

es
So

ft
w

ar
e

In
fo

rm
at

io
n

A
∗
B

A
×

m n
B

A
×

n
B

M
T

T
K

R
P

C
P

Tu
ck

er
H

T
T

T
O

rd
er

D
en

se
Sp

ar
se

Pa
ra

lle
l

D
om

ai
n

E
nv

ir
on

.
B

as
ic

Fu
nc

tio
na

lit
y

N
um

py
[4

7,
12

4,
16

7]
Y

N
N

N
N

N
N

N
A

rb
.

Y
N

N
G

en
.

Py
th

on
te

ns
or

(T
he

an
o)

[2
2,

23
]

Y
Y

Y
N

N
N

N
N

A
rb

.
Y

N
N

G
en

.
Py

th
on

T
C

E
(N

W
C

he
m

)[
10

,1
1]

Y
Y

Y
N

N
N

N
N

≤
4

Y
Y

Y
2
,3

C
he

m
.

D
SL

lib
te

ns
or

[5
9,

60
]

Y
Y

Y
N

N
N

N
N

A
rb

.
Y

Y
Y

1
G

en
.

C
B

oo
st

.M
ul

tiA
rr

ay
[6

2,
63

]
N

N
N

N
N

N
N

N
A

rb
.

Y
N

N
G

en
.

C
++

FT
en

so
r[

96
,9

7]
Y

Y
Y

N
N

N
N

N
≤

4
Y

N
N

G
en

.
C

++
lte

ns
or

[1
06

]
Y

Y
Y

N
N

N
N

N
≤

4
Y

N
N

G
en

.
C

++
B

lit
z+

+
[1

70
]

Y
Y

Y
N

N
N

N
N

≤
1
1

Y
N

N
G

en
.

C
++

Ti
le

dA
rr

ay
[3

4,
35

]
Y

Y
Y

N
N

N
N

N
A

rb
.

Y
Y

Y
1
,2

G
en

.
C

++
B

TA
S

[1
66

]
Y

Y
Y

N
N

N
N

N
A

rb
.

Y
N

N
G

en
.

C
++

M
Sh

ad
ow

[3
9]

Y
Y

Y
N

N
N

N
N

A
rb

.
Y

N
Y

3
M

L
C

++
U

ni
10

[8
1,

12
1]

Y
Y

Y
N

N
N

N
N

A
rb

.
Y

N
Y

3
G

en
.

C
++

T
L

(D
yn

ar
e+

+)
[5

7,
79

]
Y

Y
Y

N
N

N
N

N
A

rb
.

Y
Y

Y
1

FI
N

C
++

C
T

F
[1

60
,1

63
]

Y
Y

Y
N

N
N

N
N

A
rb

.
Y

Y
Y

1
,2
,3

G
en

.
C

++
R

ed
be

rr
y

[2
7,

28
]

Y
Y

Y
N

N
N

N
N

A
rb

.
Y

N
N

G
en

.
JA

VA
Te

ns
or

D
ec

om
po

si
tio

ns
Te

ns
or

To
ol

bo
x

[1
4,

16
]

Y
Y

Y
Y

Y
Y

N
N

A
rb

.
Y

Y
N

G
en

.
M

A
T

L
A

B
Te

ns
or

la
b

[1
71

]
Y

Y
Y

Y
Y

N
N

Y
A

rb
.

Y
Y

Y
1

G
en

.
M

A
T

L
A

B
N

-w
ay

To
ol

bo
x

[9
,2

9]
Y

N
Y

N
Y

Y
N

N
A

rb
.

Y
N

N
G

en
.

M
A

T
L

A
B

PL
S

To
ol

bo
x

[1
79

]
Y

Y
Y

N
Y

Y
N

N
A

rb
.

Y
Y

N
C

he
m

.
M

A
T

L
A

B
T

T-
To

ol
bo

x
[1

25
]

Y
Y

Y
N

N
Y

N
Y

A
rb

.
Y

Y
N

G
en

.
M

A
T

L
A

B
H

-T
uc

ke
r[

94
,9

5]
Y

Y
Y

N
N

N
Y

Y
A

rb
.

Y
Y

N
G

en
.

M
A

T
L

A
B

C
uB

at
ch

[6
7,

68
]

Y
Y

Y
N

Y
Y

N
N

A
rb

.
Y

N
N

G
en

.
M

A
T

L
A

B
T

D
A

L
A

B
[1

88
,1

89
]

Y
N

N
N

Y
Y

N
N

A
rb

.
Y

Y
N

G
en

.
M

A
T

L
A

B
T

E
N

SO
R

B
O

X
[1

36
]

Y
Y

Y
Y

Y
Y

N
N

A
rb

.
Y

Y
N

G
en

.
M

A
T

L
A

B
Te

ns
or

Ly
[9

2]
Y

Y
Y

N
Y

Y
N

N
A

rb
.

Y
N

Y
1
,3

G
en

.
Py

th
on

sc
ik

it-
te

ns
or

[1
22

]
Y

N
Y

N
Y

Y
N

N
A

rb
.

Y
Y

N
G

en
.

Py
th

on
Py

Te
ns

or
[1

44
,1

45
,1

83
]

N
N

Y
N

N
Y

N
N

A
rb

.
Y

Y
N

Si
m

.
Py

th
on

H
aT

en
2

[7
7,

78
]

N
Y

Y
Y

Y
Y

N
N

≤
3

N
Y

Y
2

M
L

JA
VA

IT
en

so
r[

11
8]

Y
Y

Y
N

N
N

N
Y

A
rb

.
Y

Y
N

Si
m

.
C

++
D

Fa
cT

o
[4

1,
42

]
N

N
N

Y
Y

N
N

N
≤

3
N

Y
Y

1
G

en
.

C
++

G
en

Te
n

[1
38

]
N

N
N

Y
Y

N
N

N
A

rb
.

N
Y

Y
1
,2
,3

G
en

.
C

++
S

P
L

A
T

T
[1

56
,1

57
]

N
N

Y
Y

Y
Y

N
N

A
rb

.
N

Y
Y

1
,2
,3

G
en

.
C

PA
R

T
I!

[1
02

]
Y

N
Y

Y
Y

Y
N

N
A

rb
.

N
Y

Y
1
,2
,3

G
en

.
C

M
T

T
K

R
P:

O
pt

im
iz

ed
M

T
T

K
R

P;
O

rd
er

:A
rb

.-
A

rb
itr

ar
y;

E
nv

ir
on

.:
D

SL
-D

om
ai

n
Sp

ec
ifi

c
L

an
gu

ag
e;

Pa
ra

lle
liz

ed
:1

M
ul

ti-
T

hr
ea

di
ng

Pa
ra

lle
lis

m
;

2
D

is
tr

ib
ut

ed
Pa

ra
lle

lis
m

;
3
A

cc
el

er
at

or
Pa

ra
lle

lis
m

(G
PU

s,
X

eo
n

Ph
ip

ro
ce

ss
or

s)
D

om
ai

n:
G

en
.-

G
en

er
al

;
Si

m
.-

Si
m

ul
at

io
n;

C
he

m
.-

C
he

m
is

tr
y;

M
L

-M
ac

hi
ne

L
ea

rn
in

g;
FI

N
-F

in
an

ce
;

CHAPTER 9

CONCLUSION AND FUTURE DIRECTIONS

9.1 Conclusion

This dissertation develops high-performance tensor algorithms for large-scale dense and

sparse data by optimizing them from diverse scopes. We summarize the main results of the

whole dissertation to give a broad idea of the efficiency of these optimization approaches.

• Memoization (Chapter 3): By using memoization in sparse MTTKRP and CPD algo-

rithms, ADATM outperforms the state-of-the-art library SPLATT [157] by up to 8×,

on real sparse tensors with orders as high as 85.

• HICOO (Chapter 4): HICOO achieves an average of 6.8× speedup over COO from

PARTI! [102] by using up to 2.5× less storage than it and 3.1× speedup over CSF

from SPLATT [157] by using comparable storage with only one CSF representation,

which are the two state-of-the-art libraries. Our reordering methods obtain up to

2.67× further speedups.

• In-place dense approach (Chapter 6): Our INTENSLI-generated TTM codes outper-

form the TTM implementations available in two widely used tools, the TENSOR

TOOLBOX [89] and CTF [162], by about 4× and 13×, respectively.

• In-place sparse approach (Chapter 7): Our sparse TTM on GPUs is 3.9× faster than

the state-of-the-art GPU implementation [107]. Our Tucker decomposition on GPUs

outperforms CPU Tucker decomposition by 3.2×.

• PARTI! library (Chapter 8): PARTI! implements diverse CP and Tucker decompo-

sitions on multiple platforms including multicore CPUs, GPUs, distributed systems,

and Emu, supporting two sparse tensor formats, the popular COO and our HICOO.

152

To conclude this dissertation, memoization and in-place techniques are useful and ap-

plicable to various tensor decompositions and baseline tensor operations; HICOO format

is an efficient way to compress a sparse tensor and achieves good data locality and perfor-

mance speedup for HICOO based tensor algorithms. Tuning the algorithmic parameters

enclosed in these approaches is critical for their performance. Besides, flexible parameters

are necessities for evolving computer architectures. Some tuning methods like model-

driven mechanism are already used in our work, while more intelligent and automatic per-

formance tuning is still in a dire need. Automatic performance tuning of tensor methods

considering different input tensors and diverse computer architectures with a fast search in

their parameter space is one direction worth to explore in the future. Another direction is

to develop a fast estimation of the actual parameter values, e.g., for HICOO format.

9.2 Future Directions

9.2.1 CP Decomposition

Looking forward to our ADATM work, it is worth to apply our adaptive tensor memoiza-

tion algorithm to our newly proposed HICOO format-based tensor decompositions. We

also believe a closer inspection of not just the arithmetic but also communication proper-

ties of our method, coupled with more architecture-specific tuning, manycore co-processor

acceleration, and extensions for distributed memory, are ripe opportunities for future work.

The future directions for HICOO format will be exploring the behavior of the per-

formance critical parameters of HICOO and predict their optimal choice by sampling non-

zero distribution of an input tensor. For tensor reordering, further acceleration of reordering

process is needed, such as parallelizing this process and merging HICOO construction and

reorder processes together. We also consider alternative reordering approaches, such as

co-clustering techniques. It is also important to develop HICOO variants of other widely

used kernels, such as tensor-times-matrix multiplication (TTM).

153

9.2.2 Tucker Decomposition

One direction is to show the impact of our performance improvements of INTENSLI in the

context of higher-level decomposition algorithms, such as Tucker, hierarchical Tucker, or

tensor trains, among others [69, 73, 126, 165]. The case of dense tensors has numerous

scientific applications, including, for instance, time series analysis for molecular dynamics

[143], which we will pursue.

The sparse Tucker decomposition still has a large optimization space: first, using HICOO

format to obtain better data locality; second, overlapping some preprocessing stages and

memory transfer with the TTM computation time and better handling the load-balance is-

sue on GPUs; third, extending our algorithms to multi-GPU platforms to support larger

sparse tensors.

9.2.3 Higher-Order Tensor Decompositions

Many interesting topics can be explored from higher-order tensor decompositions such

as tensor train, hierarchical Tucker decompositions, which are emerging popularized in

applications. These higher-order tensor decompositions can solve the issue with both CP

and Tucker decompositions that they may lead to a flattening of multi-way relationships.

That is, CP and Tucker decompositions assume a model in which every mode interacts with

the other modes but ignore the situations where modes may interact among themselves in

subgroups or hierarchies. Developing efficient higher-order decompositions could be very

useful to large-scale applications.

9.2.4 Develop Highly Hybrid Tensor Algorithms

State-of-the-art high-performance tensor algorithms are mostly emphasized on only one

parallelism level, while few of them employed two parallelism levels, such as SPLATT [157]

and CTF [162]. It is very promising to fully explore a machine’s computational power of

all kinds, including distributed systems, multicore CPUs, and accelerators (GPUs or Intel

154

Xeon Phi processors), to accelerate tensor methods. This topic involves load balance and

task scheduling along with other interesting research problems. In this direction, maybe

a more generic framework or a domain-specific language can be developed for not only

tensor methods but more computational kernels. The tensor algebra compiler (TACO) [87]

generates tensor algebra kernels including tensor, matrix, and vector operations, but it is

not adaptive to multiple platforms yet.

155

REFERENCES

[1] CUDA C best practices guide.

[2] cuSOLVER v9.0.

[3] ACAR, E., HARRISON, R. J., OLKEN, F., ALTER, O., HELAL, M., OMBERG,

L., BADER, B., KENNEDY, A., PARK, H., BAI, Z., KIM, D., PLEMMONS, R.,

BEYLKIN, G., KOLDA, T., RAGNARSSON, S., DELATHAUWER, L., LANGOU, J.,

PONNAPALLI, S. P., DHILLON, I., LIM, L.-H., RAMANUJAM, J. R., DING, C.,

MAHONEY, M., RAYNOLDS, J., ELDN, L., MARTIN, C., REGALIA, P., DRINEAS,

P., MOHLENKAMP, M., FALOUTSOS, C., MORTON, J., SAVAS, B., FRIEDLAND,

S., MULLIN, L., AND VAN LOAN, C. Future directions in tensor-based computa-

tion and modeling, 2009.

[4] ACAR, E., AND YENER, B. Unsupervised multiway data analysis: A literature

survey. Knowledge and Data Engineering, IEEE Transactions on 21, 1 (Jan 2009),

6–20.

[5] AKBUDAK, K., AND AYKANAT, C. Exploiting locality in sparse matrix-matrix

multiplication on many-core architectures. IEEE Transactions on Parallel and Dis-

tributed Systems 28, 8 (Aug 2017), 2258–2271.

[6] ANANDKUMAR, A., GE, R., HSU, D., KAKADE, S. M., AND TELGARSKY, M.

Tensor decompositions for learning latent variable models. J. Mach. Learn. Res. 15,

1 (Jan. 2014), 2773–2832.

[7] ANDERSON, E., BAI, Z., BISCHOF, C., BLACKFORD, L., DEMMEL, J., DON-

GARRA, J., DU CROZ, J., GREENBAUM, A., HAMMARLING, S., MCKENNEY,

156

A., AND SORENSEN, D. LAPACK Users’ Guide, third ed. Society for Industrial

and Applied Mathematics, 1999.

[8] ANDERSON, E., BAI, Z., DONGARRA, J., GREENBAUM, A., MCKENNEY, A.,

DU CROZ, J., HAMMARLING, S., DEMMEL, J., BISCHOF, C., AND SORENSEN,

D. LAPACK: A portable linear algebra library for high-performance computers. In

Proceedings of the 1990 ACM/IEEE Conference on Supercomputing (Los Alamitos,

CA, USA, 1990), Supercomputing ’90, IEEE Computer Society Press, pp. 2–11.

[9] ANDERSSON, C. A., AND BRO, R. The N-way Toolbox for MATLAB. Chemo-

metrics and Intelligent Laboratory Systems 52, 1 (Aug 2000), 1–4.

[10] AUER, A. A., ET AL. Automatic code generation for many-body electronic structure

methods: the tensor contraction engine. Molecular Physics 104, 2 (2006), 211–228.

[11] AUER, A. A., ET AL. Tensor Contraction Engine in NWChem (Version 6.8). Avail-

able from http://www.nwchem-sw.org, Dec 2017.

[12] AZAD, A., BALLARD, G., BULUÇ, A., DEMMEL, J., GRIGORI, L., SCHWARTZ,

O., TOLEDO, S., AND WILLIAMS, S. Exploiting multiple levels of parallelism in

sparse matrix-matrix multiplication. SIAM Journal on Scientific Computing 38, 6

(2016), C624–C651.

[13] AZAD, A., AND BULUÇ, A. A work-efficient parallel sparse matrix-sparse vec-

tor multiplication algorithm. In 2017 IEEE International Parallel and Distributed

Processing Symposium (IPDPS) (May 2017), pp. 688–697.

[14] BADER, B. W., AND KOLDA, T. G. Algorithm 862: MATLAB tensor classes

for fast algorithm prototyping. ACM Transactions on Mathematical Software 32, 4

(December 2006), 635–653.

157

http://www.nwchem-sw.org

[15] BADER, B. W., AND KOLDA, T. G. Efficient MATLAB computations with sparse

and factored tensors. SIAM Journal on Scientific Computing 30, 1 (December 2007),

205–231.

[16] BADER, B. W., KOLDA, T. G., ET AL. MATLAB Tensor Toolbox (Version 3.0-

dev). Available online, Oct. 2017.

[17] BALLARD, G., CARSON, E., DEMMEL, J., HOEMMEN, M., KNIGHT, N., AND

SCHWARTZ, O. Communication lower bounds and optimal algorithms for numerical

linear algebra. Acta Numerica 23 (2014), pp. 1–155.

[18] BALLESTER, R. vmmlib: A templatized C++ vector and matrix math library (Ver-

sion 1.6.2). Available from http://vmml.github.io/vmmlib/, 2013.

[19] BALLESTER-RIPOLL, R., SUTER, S. K., AND PAJAROLA, R. Analysis of tensor

approximation for compression-domain volume visualization. Computers & Graph-

ics 47 (2015), 34–47.

[20] BASKARAN, M., MEISTER, B., LETHIN, R., AND CAI, J. Optimization of sym-

metric tensor computations. In IEEE Conference on High Performance Extreme

Computing (HPEC), Waltham, MA, USA (Sep 2015), IEEE, September.

[21] BASKARAN, M., MEISTER, B., VASILACHE, N., AND LETHIN, R. Efficient and

scalable computations with sparse tensors. In High Performance Extreme Computing

(HPEC), 2012 IEEE Conference on (Sept 2012), pp. 1–6.

[22] BASTIEN, F., LAMBLIN, P., PASCANU, R., BERGSTRA, J., GOODFELLOW, I. J.,

BERGERON, A., BOUCHARD, N., AND BENGIO, Y. Theano: new features and

speed improvements. Deep Learning and Unsupervised Feature Learning NIPS 2012

Workshop, 2012.

158

http://vmml.github.io/vmmlib/

[23] BASTIEN, F., LAMBLIN, P., PASCANU, R., BERGSTRA, J., GOODFELLOW, I. J.,

BERGERON, A., BOUCHARD, N., AND BENGIO, Y. Basic tensor functionality

in theano (Version 1.0.2). Available from https://github.com/Theano/

Theano, May 2018.

[24] BLACKFORD, L. S., DEMMEL, J., DONGARRA, J., DUFF, I., HAMMARLING, S.,

HENRY, G., HEROUX, M., KAUFMAN, L., LUMSDAINE, A., PETITET, A., POZO,

R., REMINGTON, K., AND WHALEY, R. C. An updated set of basic linear algebra

subprograms (BLAS). ACM Transactions on Mathematical Software 28 (2001),

135–151.

[25] BLELLOCH, G. Scans as primitive parallel operations. IEEE Trans. Comput. 38, 11

(nov 1989), 1526–1538.

[26] BLUMOFE, R. D., JOERG, C. F., KUSZMAUL, B. C., LEISERSON, C. E., RAN-

DALL, K. H., AND ZHOU, Y. Cilk: An efficient multithreaded runtime system. In

Proceedings of the Fifth ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming (New York, NY, USA, 1995), PPOPP ’95, ACM, pp. 207–

216.

[27] BOLOTIN, D. A., AND POSLAVSKY, S. V. Introduction to Redberry: a computer

algebra system designed for tensor manipulation. CoRR abs/1302.1219 (2013).

[28] BOLOTIN, D. A., AND POSLAVSKY, S. V. Redberry: an open source computer

algebra system designed for algebraic manipulations with tensors (Version 1.1.9).

Available from http://redberry.cc, 2015.

[29] BRO, R., AND ANDERSSON, C. A. The N-way Toolbox (Version 3.31). Available

from http://www.models.life.ku.dk/nwaytoolbox, July 2013.

[30] BULUÇ, A., FINEMAN, J. T., FRIGO, M., GILBERT, J. R., AND LEISERSON,

C. E. Parallel sparse matrix-vector and matrix-transpose-vector multiplication using

159

https://github.com/Theano/Theano
https://github.com/Theano/Theano
http://redberry.cc
http://www.models.life.ku.dk/nwaytoolbox

compressed sparse blocks. In Proceedings of the Twenty-first Annual Symposium on

Parallelism in Algorithms and Architectures (New York, NY, USA, 2009), SPAA

’09, ACM, pp. 233–244.

[31] BULUÇ, A., AND GILBERT, J. R. Challenges and advances in parallel sparse

matrix-matrix multiplication. In 2008 37th International Conference on Parallel

Processing (Sept 2008), pp. 503–510.

[32] BULUÇ, A., AND GILBERT, J. R. On the representation and multiplication of hyper-

sparse matrices. In 2008 IEEE International Symposium on Parallel and Distributed

Processing (April 2008), pp. 1–11.

[33] BULUÇ, A., AND GILBERT, J. R. Parallel sparse matrix-matrix multiplication and

indexing: Implementation and experiments. SIAM Journal on Scientific Computing

34, 4 (2012), C170–C191.

[34] CALVIN, J. A., LEWIS, C. A., AND VALEEV, E. F. Scalable task-based algo-

rithm for multiplication of block-rank-sparse matrices. In Proceedings of the 5th

Workshop on Irregular Applications: Architectures and Algorithms (New York, NY,

USA, 2015), IAˆ3 ’15, ACM, pp. 4:1–4:8.

[35] CALVIN, J. A., AND VALEEV, E. F. TiledArray: A massively-parallel, block-

sparse tensor framework (Version v0.6.0). Available from https://github.

com/valeevgroup/tiledarray, Nov 2016.

[36] CARLSON, A., BETTERIDGE, J., KISIEL, B., SETTLES, B., HRUSCHKA, E., AND

MITCHELL, T. Toward an architecture for never-ending language learning.

[37] CARROLL, J. D., AND CHANG, J.-J. Analysis of individual differences in multi-

dimensional scaling via an n-way generalization of “eckart-young” decomposition.

Psychometrika 35, 3 (Sep 1970), 283–319.

160

https://github.com/valeevgroup/tiledarray
https://github.com/valeevgroup/tiledarray

[38] CHAKARAVARTHY, V. T., CHOI, J. W., JOSEPH, D. J., MURALI, P., PANDIAN,

S. S., SABHARWAL, Y., AND SREEDHAR, D. On optimizing distributed Tucker

decomposition for sparse tensors. In Proceedings of the 32nd ACM International

Conference on Supercomputing (2018), ICS ’18.

[39] CHEN, T. Matrix Shadow: Lightweight CPU/GPU matrix and tensor template li-

brary in C++/CUDA for (deep) machine learning (Version 1.1). Available from

https://github.com/tqchen/mshadow, Dec 2014.

[40] CHI, E. C., AND KOLDA, T. G. On tensors, sparsity, and nonnegative factorizations.

SIAM Journal on Matrix Analysis and Applications 33, 4 (2012), 1272–1299.

[41] CHOI, J. H., AND VISHWANATHAN, S. DFacTo: Distributed factorization of ten-

sors. In Advances in Neural Information Processing Systems 27, Z. Ghahramani,

M. Welling, C. Cortes, N. Lawrence, and K. Weinberger, Eds. Curran Associates,

Inc., 2014, pp. 1296–1304.

[42] CHOI, J. H., AND VISHWANATHAN, S. DFacTo: Distributed factorization of

tensors (Initial Version). Available from http://web.ics.purdue.edu/

˜choi240/, 2014.

[43] CHOI, J. W., SINGH, A., AND VUDUC, R. W. Model-driven autotuning of sparse

matrix-vector multiply on GPUs. In Proceedings of the 15th ACM SIGPLAN Sym-

posium on Principles and Practice of Parallel Programming (New York, NY, USA,

2010), PPoPP ’10, ACM, pp. 115–126.

[44] CICHOCKI, A. Era of big data processing: A new approach via tensor networks and

tensor decompositions. CoRR abs/1403.2048 (2014).

[45] CICHOCKI, A., LEE, N., OSELEDETS, I. V., PHAN, A., ZHAO, Q., AND MANDIC,

D. Low-rank tensor networks for dimensionality reduction and large-scale optimiza-

tion problems: Perspectives and challenges part 1. ArXiv e-prints (Sept. 2016).

161

https://github.com/tqchen/mshadow
http://web.ics.purdue.edu/~choi240/
http://web.ics.purdue.edu/~choi240/

[46] COMON, P. Tensors: a brief introduction. IEEE Signal Processing Magazine 31, 3

(May 2014), 44–53.

[47] CONTRIBUTORS, N. P. NumPy (Version 1.14). Available from http://www.

numpy.org, Jan 2018.

[48] CORPORATION, I. Intel math kernel library. Tech. rep., 2018.

[49] COUTINHO, A. L. G. A., MARTINS, M. A. D., SYDENSTRICKER, R. M., AND

ELIAS, R. N. Performance comparison of data-reordering algorithms for sparse

matrixvector multiplication in edge-based unstructured grid computations. Interna-

tional Journal for Numerical Methods in Engineering 66, 3 (2006), 431–460.

[50] DE LATHAUWER, L. Decompositions of a higher-order tensor in block terms — part

II: Definitions and uniqueness. SIAM J. Matrix Anal. Appl 30, 3 (2008), 1033–1066.

[51] DE LATHAUWER, L. Decompositions of a higher-order tensor in block terms—

part I: Lemmas for partitioned matrices. SIAM Journal on Matrix Analysis and

Applications 30, 3 (2008), 1022–1032.

[52] DE LATHAUWER, L., DE MOOR, B., AND VANDEWALLE, J. A multilinear singu-

lar value decomposition. SIAM J. Matrix Anal. Appl 21 (2000), 1253–1278.

[53] DE LATHAUWER, L., DE MOOR, B., AND VANDEWALLE, J. On the best rank-1

and Rank-(R1,R2,. . .,RN) approximation of higher-order tensors. SIAM J. Matrix

Anal. Appl. 21, 4 (Mar. 2000), 1324–1342.

[54] DE LATHAUWER, L., AND NION, D. Decompositions of a higher-order tensor in

block termspart III: Alternating least squares algorithms. SIAM Journal on Matrix

Analysis and Applications 30, 3 (2008), 1067–1083.

[55] DE LATHAUWER, L., VERVLIET, N., BOUSS, M., AND DEBALS, O. Dealing with

curse and blessing of dimensionality through tensor decompositions, 2017.

162

http://www.numpy.org
http://www.numpy.org

[56] DI NAPOLI, E., FABREGAT-TRAVER, D., QUINTANA-ORT, G., AND BIENTINESI,

P. Towards an efficient use of the BLAS library for multilinear tensor contractions.

Applied Mathematics and Computation 235 (2014), 454 – 468.

[57] DYNARETEAM. Dynare++: A platform for handling a wide class of economic mod-

els (Version 4.5.5). Available from https://github.com/DynareTeam/

dynare, June 2018.

[58] DYSART, T., KOGGE, P., DENEROFF, M., BOVELL, E., BRIGGS, P., BROCK-

MAN, J., JACOBSEN, K., JUAN, Y., KUNTZ, S., LETHIN, R., MCMAHON, J.,

PAWAR, C., PERRIGO, M., RUCKER, S., RUTTENBERG, J., RUTTENBERG, M.,

AND STEIN, S. Highly scalable near memory processing with migrating threads

on the Emu system architecture. In Proceedings of the Sixth Workshop on Irregular

Applications: Architectures and Algorithms (Piscataway, NJ, USA, 2016), IA3̂ ’16,

IEEE Press, pp. 2–9.

[59] EPIFANOVSKY, E., WORMIT, M., KU, T., LANDAU, A., ZUEV, D., KHISTYAEV,

K., KALIMAN, I., MANOHAR, P., DREUW, A., AND KRYLOV, A. libtensor

(Version 2.5). Available from http://iopenshell.usc.edu/downloads/

tensor, May 2016.

[60] EPIFANOVSKY, E., WORMIT, M., KU, T., LANDAU, A., ZUEV, D., KHISTYAEV,

K., MANOHAR, P., KALIMAN, I., DREUW, A., AND KRYLOV, A. I. New im-

plementation of high-level correlated methods using a general block tensor library

for high-performance electronic structure calculations. Journal of Computational

Chemistry 34, 26 (2013), 2293–2309.

[61] FARIAS, M. M., PEDROSO, D. M., AND NAKAI, T. Automatic substepping inte-

gration of the subloading tij model with stress path dependent hardening. Computers

and Geotechnics 36, 4 (2009), 537 – 548.

163

https://github.com/DynareTeam/dynare
https://github.com/DynareTeam/dynare
http://iopenshell.usc.edu/downloads/tensor
http://iopenshell.usc.edu/downloads/tensor

[62] GARCIA, R., AND LUMSDAINE, A. MultiArray: A C++ library for generic pro-

gramming with arrays. Software Practive Experience 35 (2004), 159–188.

[63] GARCIA, R., SIEK, J., AND LUMSDAINE, A. Boost.MultiArray from Boost C++

libraries (Version 1.67.0). Available from https://www.boost.org, April

2018.

[64] GÖRLITZ, O., SIZOV, S., AND STAAB, S. PINTS: Peer-to-peer infrastructure for

tagging systems. In Proceedings of the 7th International Conference on Peer-to-peer

Systems (Berkeley, CA, USA, 2008), IPTPS’08, USENIX Association, pp. 19–19.

[65] GOTO, K., AND VAN DE GEIJN, R. High-performance implementation of the level-

3 BLAS. ACM Trans. Math. Softw. 35, 1 (July 2008), 4:1–4:14.

[66] GOTO, K., AND VAN DE GEIJN, R. A. Anatomy of high-performance matrix mul-

tiplication. ACM Trans. Math. Softw. 34, 3 (May 2008), 12:1–12:25.

[67] GOURVENEC, S., TOMASI, G., DURVILLE, C., DI CRESCENZO, E., SABY, C.,

MASSART, D. L., BRO, R., AND OPPENHEIM, G. CuBatch, a MATLAB interface

for n-mode data analysis. Chemometrics and Intelligent Laboratory Systems 77, 1-2

(May 2005), 122–130.

[68] GOURVENEC, S., TOMASI, G., DURVILLE, C., DI CRESCENZO, E., SABY, C.,

MASSART, D. L., BRO, R., AND OPPENHEIM, G. CuBatch (Version 2.1). Avail-

able from http://www.models.life.ku.dk/cubatch, 2011.

[69] GRASEDYCK, L. Hierarchical singular value decomposition of tensors. SIAM J.

Matrix Anal. Appl. 31, 4 (May 2010), 2029–2054.

[70] GRASEDYCK, L., KRESSNER, D., AND TOBLER, C. A literature survey of low-

rank tensor approximation techniques. GAMM-Mitteilungen 36, 1 (2013), 53–78.

164

https://www.boost.org
http://www.models.life.ku.dk/cubatch

[71] HAN, H., AND TSENG, C.-W. Exploiting locality for irregular scientific codes.

IEEE Transactions on Parallel and Distributed Systems 17, 7 (July 2006), 606–618.

[72] HAQUE, S. A., AND HOSSAIN, S. A note on the performance of sparse matrix-

vector multiplication with column reordering. In 2009 International Conference on

Computing, Engineering and Information (April 2009), pp. 23–26.

[73] HARSHMAN, R. A. Foundations of the PARAFAC procedure: Models and condi-

tions for an “explanatory” multi-modal factor analysis. UCLA Working Papers in

Phonetics 16, 1 (1970), 84.

[74] HEIN, E., CONTE, T., YOUNG, J. S., ESWAR, S., LI, J., LAVIN, P., VUDUC, R.,

AND RIEDY, J. An initial characterization of the Emu Chick. 2018 IEEE Interna-

tional Parallel and Distributed Processing Symposium Workshops (May 2018).

[75] HO, J. C., GHOSH, J., AND SUN, J. Marble: High-throughput phenotyping from

electronic health records via sparse nonnegative tensor factorization. In Proceedings

of the 20th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining (New York, NY, USA, 2014), KDD ’14, ACM, pp. 115–124.

[76] HOCKNEY, R. W., AND CURINGTON, I. J. f 1
2
: A parameter to characterize memory

and communication bottlenecks. Parallel Computing 10 (1989), 277–286.

[77] JEON, I., PAPALEXAKIS, E. E., KANG, U., AND FALOUTSOS, C. HaTen2:

Billion-scale tensor decompositions. In IEEE International Conference on Data

Engineering (ICDE) (2015).

[78] JEON, I., PAPALEXAKIS, E. E., AND U KANG, C. F. HaTen2: Billion-scale tensor

decompositions (Version 1.0). Available from http://datalab.snu.ac.kr/

haten2/, 2015.

165

http://datalab.snu.ac.kr/haten2/
http://datalab.snu.ac.kr/haten2/

[79] KAMENIK, O. Multidimensional tensor library: algorithms and documentation,

2004. www.cepremap.cnrs.fr/dynare.

[80] KANG, U., PAPALEXAKIS, E., HARPALE, A., AND FALOUTSOS, C. GigaTensor:

Scaling tensor analysis up by 100 times - algorithms and discoveries. In Proceedings

of the 18th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining (New York, NY, USA, 2012), KDD ’12, ACM, pp. 316–324.

[81] KAO, Y.-J., HSIEH, Y.-D., AND CHEN, P. Uni10: an open-source library for tensor

network algorithms. Journal of Physics: Conference Series 640, 1 (2015), 012040.

[82] KARSAVURAN, M. O., AKBUDAK, K., AND AYKANAT, C. Locality-aware parallel

sparse matrix-vector and matrix-transpose-vector multiplication on many-core pro-

cessors. IEEE Transactions on Parallel and Distributed Systems 27, 6 (June 2016),

1713–1726.

[83] KARYPIS, G., AND KUMAR, V. A parallel algorithm for multilevel graph partition-

ing and sparse matrix ordering. Journal of Parallel and Distributed Computing 48,

1 (1998), 71 – 95.

[84] KAYA, O., AND UÇAR, B. High-performance parallel algorithms for the Tucker

decomposition of higher order sparse tensors. Tech. rep., Inria - Research Centre

Grenoble Rhone-Alpes, 2015.

[85] KAYA, O., AND UÇAR, B. Scalable sparse tensor decompositions in distributed

memory systems. In Proceedings of the International Conference for High Perfor-

mance Computing, Networking, Storage and Analysis (New York, NY, USA, 2015),

SC ’15, ACM, pp. 77:1–77:11.

[86] KAYA, O., AND UAR, B. Parallel Candecomp/Parafac decomposition of sparse

tensors using dimension trees. SIAM Journal on Scientific Computing 40, 1 (2018),

C99–C130.

166

[87] KJOLSTAD, F., KAMIL, S., CHOU, S., LUGATO, D., AND AMARASINGHE, S.

The tensor algebra compiler. Proc. ACM Program. Lang. 1, OOPSLA (Oct. 2017),

77:1–77:29.

[88] KOANANTAKOOL, P., AZAD, A., BULUÇ, A., MOROZOV, D., OH, S. Y.,

OLIKER, L., AND YELICK, K. Communication-avoiding parallel sparse-dense

matrix-matrix multiplication. In 2016 IEEE International Parallel and Distributed

Processing Symposium (IPDPS) (May 2016), pp. 842–853.

[89] KOLDA, T., AND BADER, B. Tensor decompositions and applications. SIAM Re-

view 51, 3 (2009), 455–500.

[90] KOLDA, T. G. Multilinear operators for higher-order decompositions. Technical

Report (2006).

[91] KOLDA, T. G., AND SUN, J. Scalable tensor decompositions for multi-aspect

data mining. In Proceedings of the 2008 Eighth IEEE International Conference on

Data Mining (Washington, DC, USA, 2008), ICDM ’08, IEEE Computer Society,

pp. 363–372.

[92] KOSSAIFI, J., PANAGAKIS, Y., ANANDKUMAR, A., AND PANTIC, M. TensorLy:

Tensor learning in Python. CoRR abs/1610.09555 (2018).

[93] KOURTIS, K., KARAKASIS, V., GOUMAS, G., AND KOZIRIS, N. CSX: An ex-

tended compression format for SpMV on shared memory systems. In Proceedings

of the 16th ACM Symposium on Principles and Practice of Parallel Programming

(New York, NY, USA, 2011), PPoPP ’11, ACM, pp. 247–256.

[94] KRESSNER, D., AND TOBLER, C. Hierarchical Tucker Toolbox (Version 1.2).

Available from http://anchp.epfl.ch/htucker, Feb 2013.

167

http://anchp.epfl.ch/htucker

[95] KRESSNER, D., AND TOBLER, C. Algorithm 941: Htucker—a Matlab Toolbox for

tensors in hierarchical Tucker format. ACM Trans. Math. Softw. 40, 3 (Apr. 2014),

22:1–22:22.

[96] LANDRY, W. Implementing a high performance tensor library. Sci. Program. 11, 4

(Dec. 2003), 273–290.

[97] LANDRY, W. FTensor. Available from http://www.wlandry.net/

Projects/FTensor, April 2018.

[98] LATCHOUMANE, C.-F. V., VIALATTE, F.-B., SOLÉ-CASALS, J., MAURICE, M.,

WIMALARATNA, S. R., HUDSON, N., JEONG, J., AND CICHOCKI, A. Multiway

array decomposition analysis of EEGs in Alzheimer’s disease. Journal of neuro-

science methods 207, 1 (2012), 41–50.

[99] LEBEDEV, V., GANIN, Y., RAKHUBA, M., OSELEDETS, I., AND LEMPITSKY,

V. Speeding-up convolutional neural networks using fine-tuned CP-decomposition.

arXiv preprint arXiv:1412.6553 (2014).

[100] LI, J., BATTAGLINO, C., PERROS, I., SUN, J., AND VUDUC, R. An input-adaptive

and in-place approach to dense tensor-times-matrix multiply. In ACM/IEEE Super-

computing (SC ’15) (New York, NY, USA, 2015), ACM.

[101] LI, J., CHOI, J., PERROS, I., SUN, J., AND VUDUC, R. Model-driven sparse CP

decomposition for higher-order tensors. In 2017 IEEE International Parallel and

Distributed Processing Symposium (IPDPS) (May 2017), pp. 1048–1057.

[102] LI, J., MA, Y., AND VUDUC, R. ParTI!: A Parallel Tensor Infrastructure for Mul-

ticore CPU and GPUs (Version 0.1.0). Available from https://github.com/

hpcgarage/ParTI, 2016.

168

http://www.wlandry.net/Projects/FTensor
http://www.wlandry.net/Projects/FTensor
https://github.com/hpcgarage/ParTI
https://github.com/hpcgarage/ParTI

[103] LI, J., MA, Y., YAN, C., AND VUDUC, R. Optimizing sparse tensor times matrix

on multi-core and many-core architectures. In Proceedings of the Sixth Workshop on

Irregular Applications: Architectures and Algorithms (Piscataway, NJ, USA, 2016),

IAˆ3 ’16, IEEE Press, pp. 26–33.

[104] LI, J., SUN, J., AND VUDUC, R. HiCOO: Hierarchical storage of sparse tensors.

In Proceedings of the ACM/IEEE International Conference on High Performance

Computing, Networking, Storage and Analysis (SC) (Dallas, TX, USA, November

2018). (to appear).

[105] LI, J., TAN, G., CHEN, M., AND SUN, N. SMAT: An input adaptive auto-tuner

for sparse matrix-vector multiplication. In Proceedings of the 34th ACM SIGPLAN

Conference on Programming Language Design and Implementation (New York, NY,

USA, 2013), PLDI ’13, ACM, pp. 117–126.

[106] LIMACHE, A. C., AND ROJAS FREDINI, P. S. LTensor: A high performance C++

tensor library based on index notation (Version 21112012). Available from http:

//code.google.com/p/ltensor/, Nov 2012.

[107] LIU, B., WEN, C., SARWATE, A. D., AND DEHNAVI, M. M. A unified optimiza-

tion approach for sparse tensor operations on GPUs. In 2017 IEEE International

Conference on Cluster Computing (CLUSTER) (Sept 2017), pp. 47–57.

[108] LIU, W., AND VINTER, B. An efficient GPU general sparse matrix-matrix multipli-

cation for irregular data. In Proceedings of the 2014 IEEE 28th International Parallel

and Distributed Processing Symposium (Washington, DC, USA, 2014), IPDPS ’14,

IEEE Computer Society, pp. 370–381.

[109] LIU, W., AND VINTER, B. A Framework for General Sparse Matrix-Matrix Mul-

tiplication on GPUs and Heterogeneous Processors. Journal of Parallel and Dis-

tributed Computing 85, C (nov 2015), 47–61.

169

http://code.google.com/p/ltensor/
http://code.google.com/p/ltensor/

[110] LIU, W., AND VINTER, B. CSR5: An efficient storage format for cross-platform

sparse matrix-vector multiplication. In Proceedings of the 29th ACM International

Conference on Supercomputing (2015), ICS ’15, ACM, pp. 339–350.

[111] LU, H., PLATANIOTIS, K. N., AND VENETSANOPOULOS, A. N. A survey of

multilinear subspace learning for tensor data. Pattern Recognition 44, 7 (2011),

1540 – 1551.

[112] LUBIW, A. Doubly lexical orderings of matrices. SIAM Journal on Computing 16,

5 (1987), 854–879.

[113] MA, Y., LI, J., WU, X., YAN, C., SUN, J., AND VUDUC, R. Optimizing sparse

tensor times matrix on GPUs. Journal of Parallel and Distributed Computing (2018).

(To appear).

[114] MCCALPIN, J. Memory bandwidth and machine balance in high performance com-

puters. 19–25.

[115] MELHEM, R. G., AND RAMARAO, K. V. S. Multicolor reordering of sparse ma-

trices resulting from irregular grids. ACM Trans. Math. Softw. 14, 2 (June 1988),

117–138.

[116] MELLOR-CRUMMEY, J., WHALLEY, D., AND KENNEDY, K. Improving memory

hierarchy performance for irregular applications using data and computation reorder-

ings. International Journal of Parallel Programming 29, 3 (Jun 2001), 217–247.

[117] MERRILL, D., AND GARLAND, M. Merge-based parallel sparse matrix-vector mul-

tiplication. In SC16: International Conference for High Performance Computing,

Networking, Storage and Analysis (Nov 2016), pp. 678–689.

[118] MILES, E., WHITE, S. R., ET AL. ITensor, (Version 2.1.1). Available from http:

//itensor.org, Aug 2017.

170

http://itensor.org
http://itensor.org

[119] MORTON, G. M. A computer oriented geodetic data base; and a new technique in

file sequencing. Tech. rep., Ottawa, Canada: IBM Ltd, 1966.

[120] NAGASAKA, Y., NUKADA, A., AND MATSUOKA, S. High-performance and

memory-saving sparse general matrix-matrix multiplication for NVIDIA Pascal

GPU. In 2017 46th International Conference on Parallel Processing (ICPP) (Aug

2017), pp. 101–110.

[121] ND OTHERS, Y.-D. H. Uni10: The universal tensor network library (Version 2.0.0).

Available from http://www.uni10.org, Jan 2018.

[122] NICKEL, M. scikit-tensor library (Version 0.1). Available from https://pypi.

python.org/pypi/scikit-tensor, Feb 2014.

[123] NOVIKOV, A., PODOPRIKHIN, D., OSOKIN, A., AND VETROV, D. Tensorizing

neural networks. CoRR abs/1509.06569 (2015).

[124] OLIPHANT, T. E. Python for scientific computing. Computing in Science Engineer-

ing 9, 3 (May 2007), 10–20.

[125] OSELEDETS, I., ET AL. TT-Toolbox (Version 2.3). Available from https://

github.com/oseledets/TT-Toolbox, 2014.

[126] OSELEDETS, I. V. Tensor-train decomposition. SIAM J. Sci. Comput. 33, 5 (Sept.

2011), 2295–2317.

[127] OZOG, D., HAMMOND, J. R., DINAN, J., BALAJI, P., SHENDE, S., AND MAL-

ONY, A. Inspector-executor load balancing algorithms for block-sparse tensor con-

tractions. In Parallel Processing (ICPP), 2013 42nd International Conference on

(Oct 2013), pp. 30–39.

[128] PAIGE, R., AND TARJAN, R. E. Three partition refinement algorithms. SIAM

Journal on Computing 16, 6 (Dec. 1987), 973–989.

171

http://www.uni10.org
https://pypi.python.org/pypi/scikit-tensor
https://pypi.python.org/pypi/scikit-tensor
https://github.com/oseledets/TT-Toolbox
https://github.com/oseledets/TT-Toolbox

[129] PAPALEXAKIS, E. E., FALOUTSOS, C., AND SIDIROPOULOS, N. D. ParCube:

Sparse parallelizable tensor decompositions. In Proceedings of the 2012 European

Conference on Machine Learning and Knowledge Discovery in Databases - Volume

Part I (Berlin, Heidelberg, 2012), ECML PKDD’12, Springer-Verlag, pp. 521–536.

[130] PAPALEXAKIS, E. E., FALOUTSOS, C., AND SIDIROPOULOS, N. D. ParCube:

Sparse parallelizable CANDECOMP-PARAFAC tensor decomposition. ACM Trans.

Knowl. Discov. Data 10, 1 (July 2015), 3:1–3:25.

[131] PAPALEXAKIS, E. E., KANG, U., FALOUTSOS, C., SIDIROPOULOS, N. D., AND

HARPALE, A. Large scale tensor decompositions: Algorithmic developments and

applications. IEEE Data Eng. Bull. 36, 3 (2013), 59–66.

[132] PEDROSO, D. Tensors C++ library for tensor algebra (Version 1.0). Available from

http://www.nongnu.org/tensors/index.shtml, 2012.

[133] PEDROSO, D. M., FARIAS, M. M., AND NAKAI, T. An interpretation of subloading

tij model in the context of conventional elastoplasticity theory. Soils and Foundations

45, 4 (2005), 61–77.

[134] PERROS, I., CHEN, R., VUDUC, R., AND SUN, J. Sparse hierarchical Tucker

factorization and its application to healthcare. IEEE International Conference on

Data Mining (ICDM) (2015).

[135] PERROS, I., PAPALEXAKIS, E. E., WANG, F., VUDUC, R., SEARLES, E., THOMP-

SON, M., AND SUN, J. SPARTan: Scalable PARAFAC2 for large & sparse data.

In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (New York, NY, USA, 2017), KDD ’17, ACM, pp. 375–

384.

172

http://www.nongnu.org/tensors/index.shtml

[136] PHAN, A.-H., TICHAVSKY, P., AND CICHOCKI, A. TENSORBOX: a Mat-

lab package for tensor decomposition (Version 2015.11). Available from http:

//www.bsp.brain.riken.jp/˜phan/tensorbox.php, Nov 2015.

[137] PHAN, A. H., TICHAVSK, P., AND CICHOCKI, A. Fast alternating LS algorithms

for high order CANDECOMP/PARAFAC tensor factorizations. IEEE Transactions

on Signal Processing 61, 19 (Oct 2013), 4834–4846.

[138] PHIPPS, E. T., KOLDA, T. G., DUNLAVY, D., BALLARD, G., AND PLANTENGA,

T. Genten: Software for generalized tensor decompositions v. 1.0.0, 6 2017.

[139] PICHEL, J., HERAS, D., CABALEIRO, J., AND RIVERA, F. Performance opti-

mization of irregular codes based on the combination of reordering and blocking

techniques. Parallel Computing 31, 8 (2005), 858 – 876.

[140] PICHEL, J. C., RIVERA, F. F., FERNNDEZ, M., AND RODRGUEZ, A. Optimiza-

tion of sparse matrixvector multiplication using reordering techniques on GPUs.

Microprocessors and Microsystems 36, 2 (2012), 65 – 77. SPECIAL ISSUE -

EXPLOITATION OF HARDWARE ACCELERATORS.

[141] PICHEL, J. C., SINGH, D. E., AND CARRETERO, J. Reordering algorithms for in-

creasing locality on multicore processors. In 2008 10th IEEE International Confer-

ence on High Performance Computing and Communications (Sept 2008), pp. 123–

130.

[142] POTHEN, A., AND FAN, C.-J. Computing the block triangular form of a sparse

matrix. ACM Trans. Math. Softw. 16, 4 (Dec. 1990), 303–324.

[143] RAMANATHAN, A., AGARWAL, P. K., KURNIKOVA, M., AND LANGMEAD, C. J.

An online approach for mining collective behaviors from molecular dynamics simu-

lations, vol. LNCS 5541. 2009, pp. pp. 138–154.

173

http://www.bsp.brain.riken.jp/~phan/tensorbox.php
http://www.bsp.brain.riken.jp/~phan/tensorbox.php

[144] RAMANATHAN, A., YOO, J. O., AND LANGMEAD, C. J. PyTensor (Version r2).

Available from https://code.google.com/p/pytensor/, 2009.

[145] RAMANATHAN, A., YOO, J. O., AND LANGMEAD, C. J. On-the-fly identifica-

tion of conformational substates from molecular dynamics simulations. Journal of

Chemical Theory and Computation 7, 3 (2011), 778–789. PMID: 26596308.

[146] RAVINDRAN, N., SIDIROPOULOS, N. D., SMITH, S., AND KARYPIS, G. Memory-

efficient parallel computation of tensor and matrix products for big tensor decompo-

sitions. Proceedings of the Asilomar Conference on Signals, Systems, and Comput-

ers (2014).

[147] SAAD, Y. SPARSKIT: a basic tool kit for sparse matrix computations, 1990.

[148] SANDERS, B., BARTLETT, R., DEUMENS, E., LOTRICH, V., AND PONTON, M.

A block-oriented language and runtime system for tensor algebra with very large

arrays. In High Performance Computing, Networking, Storage and Analysis (SC),

2010 International Conference for (Nov 2010), pp. 1–11.

[149] SCHATZ, M. D. Anatomy of parallel computation with tensors. The University of

Texas at Austin, Department of Computer Science Report (Dec. 2013).

[150] SIDIROPOULOS, N. D., DE LATHAUWER, L., FU, X., HUANG, K., PAPALEX-

AKIS, E. E., AND FALOUTSOS, C. Tensor decomposition for signal processing

and machine learning. IEEE Transactions on Signal Processing 65, 13 (July 2017),

3551–3582.

[151] SMITH, S., CHOI, J. W., LI, J., VUDUC, R., PARK, J., LIU, X., AND KARYPIS,

G. FROSTT: The Formidable Repository of Open Sparse Tensors and Tools, 2017.

174

https://code.google.com/p/pytensor/

[152] SMITH, S., AND KARYPIS, G. Tensor-matrix products with a compressed sparse

tensor. In Proceedings of the 5th Workshop on Irregular Applications: Architectures

and Algorithms (2015), ACM, p. 7.

[153] SMITH, S., AND KARYPIS, G. A medium-grained algorithm for distributed sparse

tensor factorization. In Parallel and Distributed Processing Symposium (IPDPS),

2016 IEEE International (2016), IEEE.

[154] SMITH, S., AND KARYPIS, G. Accelerating the Tucker decomposition with com-

pressed sparse tensors. In European Conference on Parallel Processing (2017),

Springer.

[155] SMITH, S., PARK, J., AND KARYPIS, G. Sparse tensor factorization on many-

core processors with high-bandwidth memory. 31st IEEE International Parallel &

Distributed Processing Symposium (IPDPS’17) (2017).

[156] SMITH, S., RAVINDRAN, N., SIDIROPOULOS, N., AND KARYPIS, G. SPLATT:

Efficient and parallel sparse tensor-matrix multiplication. In Proceedings of the 29th

IEEE International Parallel & Distributed Processing Symposium (2015), IPDPS.

[157] SMITH, S., RAVINDRAN, N., SIDIROPOULOS, N., AND KARYPIS, G. SPLATT:

The Surprisingly ParalleL spArse Tensor Toolkit (Version 1.1.1). Available from

https://github.com/ShadenSmith/splatt, 2016.

[158] SOLOMONIK, E. Provably Efficient Algorithms for Numerical Tensor Algebra. PhD

thesis, EECS Department, University of California, Berkeley, Sep 2014.

[159] SOLOMONIK, E., DEMMEL, J., AND HOEFLER, T. Communication lower bounds

for tensor contraction algorithms. Tech. rep., ETH Zürich, 2015.

[160] SOLOMONIK, E., ET AL. Cyclops Tensor Framework (Version 1.5.2). Available

from https://github.com/cyclops-community/ctf, Jun. 2018.

175

https://github.com/ShadenSmith/splatt
https://github.com/cyclops-community/ctf

[161] SOLOMONIK, E., AND HOEFLER, T. Sparse Tensor Algebra as a Parallel Program-

ming Model. ArXiv e-prints (Nov. 2015).

[162] SOLOMONIK, E., MATTHEWS, D., HAMMOND, J., AND DEMMEL, J. Cyclops

Tensor Framework: reducing communication and eliminating load imbalance in

massively parallel contractions. Tech. Rep. UCB/EECS-2012-210, EECS Depart-

ment, University of California, Berkeley, Nov 2012.

[163] SOLOMONIK, E., MATTHEWS, D., HAMMOND, J. R., STANTON, J. F., AND

DEMMEL, J. A massively parallel tensor contraction framework for coupled-cluster

computations. Journal of Parallel and Distributed Computing 74, 12 (2014), 3176–

3190.

[164] TARJAN, R. E., AND YANNAKAKIS, M. Simple linear-time algorithms to test

chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic

hypergraphs. SIAM Journal on Computing 13, 3 (1984), 566–579.

[165] TUCKER, L. R. Some mathematical notes on three-mode factor analysis. Psychome-

trika 31 (1966), 279–311.

[166] VALEEV, E., NAKATANI, N., STOUDENMIRE, M., SHIOZAKI, T., AND CHAN,

G. Basic Tensor Algebra Subroutines (Version v0.0.1). Available from https:

//github.com/BTAS/BTAS/, 2018.

[167] VAN DER WALT, S., COLBERT, S., AND VAROQUAUX, G. The NumPy array: A

structure for efficient numerical computation. Computing in Science Engineering

13, 2 (March 2011), 22–30.

[168] VAN ZEE, F. G., AND VAN DE GEIJN, R. A. BLIS: A framework for rapidly

instantiating BLAS functionality. ACM Trans. Math. Softw. 41, 3 (June 2015), 14:1–

14:33.

176

https://github.com/BTAS/BTAS/
https://github.com/BTAS/BTAS/

[169] VASILESCU, M. A. O., AND TERZOPOULOS, D. Multilinear analysis of image

ensembles: TensorFaces. In IN PROCEEDINGS OF THE EUROPEAN CONFER-

ENCE ON COMPUTER VISION (2002), pp. 447–460.

[170] VELDHUIZEN, T., ET AL. The Blitz++ library (Version 0.10). Available from

http://sourceforge.net/projects/blitz/, March 2014.

[171] VERVLIET, N., DEBALS, O., SORBER, L., VAN BAREL, M., AND DE LATH-

AUWER, L. Tensorlab (Version 3.0). Available from http://www.tensorlab.

net, March 2016.

[172] VUDUC, R., DEMMEL, J. W., AND YELICK, K. A. OSKI: A library of automat-

ically tuned sparse matrix kernels. Journal of Physics: Conference Series 16, 1

(2005), 521.

[173] VUDUC, R. W. Automatic performance tuning of sparse matrix kernels. PhD thesis,

University of California, Berkeley, CA, USA, January 2004.

[174] WANG, H., LIU, W., HOU, K., AND FENG, W.-C. Parallel transposition of sparse

data structures. In Proceedings of the 2016 International Conference on Supercom-

puting (2016), ICS ’16, pp. 33:1–33:13.

[175] WANG, Y., CHEN, R., GHOSH, J., DENNY, J. C., KHO, A., CHEN, Y., MALIN,

B. A., AND SUN, J. Rubik: Knowledge guided tensor factorization and completion

for health data analytics. In Proceedings of the 21th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (New York, NY, USA, 2015),

KDD ’15, ACM, pp. 1265–1274.

[176] WHALEY, R. C., AND DONGARRA, J. J. Automatically tuned linear algebra soft-

ware. In Proceedings of the 1998 ACM/IEEE Conference on Supercomputing (Wash-

ington, DC, USA, 1998), SC ’98, IEEE Computer Society, pp. 1–27.

177

http://sourceforge.net/projects/blitz/
http://www.tensorlab.net
http://www.tensorlab.net

[177] WILLCOCK, J., AND LUMSDAINE, A. Accelerating sparse matrix computations via

data compression. In Proceedings of the 20th Annual International Conference on

Supercomputing (New York, NY, USA, 2006), ICS ’06, ACM, pp. 307–316.

[178] WILLIAMS, S., OLIKER, L., VUDUC, R., SHALF, J., YELICK, K., AND DEM-

MEL, J. Optimization of sparse matrixvector multiplication on emerging multicore

platforms. Parallel Computing 35, 3 (2009), 178 – 194. Revolutionary Technologies

for Acceleration of Emerging Petascale Applications.

[179] WISE, B. M., AND GALLAGHER, N. B. PLS Toolbox (Version 8.6.2). Avail-

able from http://www.eigenvector.com/software/index.htm, Jun.

2018.

[180] XIE, B., ZHAN, J., LIU, X., GAO, W., JIA, Z., HE, X., AND ZHANG, L. CVR:

Efficient vectorization of SpMV on x86 processors. In Proceedings of the 2018

International Symposium on Code Generation and Optimization (New York, NY,

USA, 2018), CGO 2018, ACM, pp. 149–162.

[181] YAN, S., LI, C., ZHANG, Y., AND ZHOU, H. yaSpMV: Yet another SpMV frame-

work on GPUs. In Proceedings of the 19th ACM SIGPLAN Symposium on Prin-

ciples and Practice of Parallel Programming (New York, NY, USA, 2014), PPoPP

’14, ACM, pp. 107–118.

[182] YANG, C., BULUÇ, A., AND OWENS, J. Design principles for sparse matrix mul-

tiplication on the GPU. 24th International European Conference on Parallel and

Distributed Computing (2018).

[183] YOO, J. O., RAMANATHAN, A., AND LANGMEAD, C. J. PyTensor: A Python

based tensor library. Tech. rep., CMU, 2010.

178

http://www.eigenvector.com/software/index.htm

[184] YZELMAN, A. J. N., AND ROOSE, D. High-level strategies for parallel shared-

memory sparse matrix-vector multiplication. IEEE Transactions on Parallel and

Distributed Systems 25, 1 (Jan 2014), 116–125.

[185] YZELMAN, A. N. Fast sparse matrix-vector multiplication by partitioning and

reordering. PhD thesis, Utrecht University, Utrecht, the Netherlands, October 2011.

[186] ZHANG, X. OpenBLAS : An optimized BLAS library.

[187] ZHAO, Y., LI, J., LIAO, C., AND SHEN, X. Bridging the gap between deep learning

and sparse matrix format selection. In Proceedings of the 23rd ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming (New York, NY,

USA, 2018), PPoPP ’18, ACM, pp. 94–108.

[188] ZHOU, G., AND CICHOCKI, A. A brief guide for TDALAB, April 2013.

[189] ZHOU, G., AND CICHOCKI, A. Matlab Toolbox for tensor decomposition &

analysis (Version 1.1). Available from http://www.bsp.brain.riken.jp/

TDALAB/, May 2013.

[190] ZHOU, S., VINH, N. X., BAILEY, J., JIA, Y., AND DAVIDSON, I. Accelerating

online CP decompositions for higher order tensors. In Proceedings of the 22Nd ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining (New

York, NY, USA, 2016), KDD ’16, ACM, pp. 1375–1384.

179

http://www.bsp.brain.riken.jp/TDALAB/
http://www.bsp.brain.riken.jp/TDALAB/

VITA

Jiajia Li is a 5th-year Ph.D. candidate in Computational Science & Engineering at Geor-

gia Institute of Technology. Before, she was a research intern of IBM Thomas J. Watson

Research Center and Intel Parallel Computing Lab in the summers of 2015 and 2016 re-

spectively. In the past, she received a Ph.D. degree from Institute of Computing Technology

at Chinese Academy of Sciences. Her current research emphasizes on optimizing tensor

algorithms including tensor decompositions and fundamental tensor operations especially

for sparse data by utilizing various parallel architectures. She has published in top-tier high

performance computing and other related venues, such as SC, ICS, PLDI, IPDPS, etc.

180

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Contributions

	Background on Tensors and Parallel Platforms
	Tensor Representations
	Mathematical Representations
	Dense Tensor Layout
	Sparse Tensor Formats

	Fundamental Tensor Operations
	Element-wise Operations
	Tensor-Times-Matrix
	Kronecker and Khatri-Rao Products
	Matriced Tensor Times Khatri-Rao Product

	Tensor Decompositions and Algorithms
	CP Decomposition
	Tucker Decomposition

	Parallel Computer Architectures
	Multicore CPUs
	NVIDIA GPU Architecture
	Intel Xeon Phi Processors

	AdaTM: Memoized Sparse CPD
	Why to Optimize the Mttkrp Sequence?
	Mttkrp is the performance bottleneck of CP-ALS.
	The time of an Mttkrp sequence grows with tensor order.
	An Mttkrp sequence has arithmetic redundancy.

	Mttkrp Algorithms and Semi-sparse Tensor Format (vCSF)
	Mttkrp Algorithms
	Sparse Tensor Product Property
	vCSF Format

	Memoization for the Mttkrp Sequence
	Two Fourth-Order Tensor Memoization Algorithms
	Memoization Strategy Analysis

	AdaTM: Adaptive Tensor Memoization
	Parameter Selection
	A Model-Driven Framework
	Predictive Model
	Strategy Guided Trade-off
	Parallelization

	Experiments and Analyses
	Data Sets and Platforms
	Performance
	Analysis
	CPD

	Related Work
	Summary

	A Novel Sparse Tensor Format — HiCOO
	Sparse Tensor Format Comparison
	Summary
	COO Format
	CSF Format
	F-COO Format

	HiCOO Format
	Conversion
	Improvement of CSB
	Analysis

	HiCOO-Mttkrp Algorithms on Multicore CPUs
	Sequential Algorithm
	Parallel Algorithm
	Parameter Guidance

	Experiments and Analyses
	Experimental Setup
	Overall Performance
	Optimization Breakdown
	Thread Scalability
	Storage Space
	Superblock Size L
	CPD
	Experiments on KNL

	Related Work
	Summary

	Tensor Reordering for HiCOO
	BFS-Like-MCS
	Lexi-Order
	Evaluation
	Experimental Setup
	HiCOO-Mttkrp with Reordering
	Other Formats with Reordering
	Reordering Methods Comparison
	Effect of the Number of Iterations in Lexi-Order
	HiCOO Parameters
	Reordering Overhead

	Related Work
	Summary

	InTensLi: An Input-Adaptive and In-Place Dense Ttm
	Motivating Observations
	In-Place and Input-Adaptive Ttm
	A Third-Order Tensor Example
	Algorithmic Strategy

	An Input Adaptive Framework
	Parameter Estimation
	Code Generation

	Experiments and Analyses
	Basic benchmark.
	Comparison to other tools.
	Parameter selection.

	Related Work
	Summary

	Sparse Ttm and Tucker Decomposition on CPU-GPU Platforms
	Semi-sparse Tensor Format (sCOO)
	SpTtm on CPUs
	SpTtm on GPUs
	Naïve implementation
	Fine thread granularity
	Coalesced memory access
	Rank Blocking
	Using Shared Memory

	Semi-Sparse Tensor Times Matrix
	Sparse Tucker decomposition
	Ttm-Chain
	SVD

	Experiments
	Platforms and Dataset
	Overall Performance
	Analysis

	Summary

	ParTI! Library Design and Implementation
	ParTI! Design and Implementation
	COO-CPD on Multicore CPUs
	COO-CPD on GPUs
	COO-CPD on Distributed Systems
	COO-CPD on Emu
	HiCOO-CPD on GPUs
	HiCOO-CPD on Distributed Systems

	Summary of Standard Library Interfaces

	Conclusion and Future Directions
	Conclusion
	Future Directions
	CP Decomposition
	Tucker Decomposition
	Higher-Order Tensor Decompositions
	Develop Highly Hybrid Tensor Algorithms

	References
	Vita

